Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kirti Wankhede | 4526 | 33.10% | 17 | 13.39% |
Alex Williamson | 3592 | 26.27% | 23 | 18.11% |
shameer | 1772 | 12.96% | 6 | 4.72% |
Steve Sistare | 871 | 6.37% | 7 | 5.51% |
Daniel Jordan | 541 | 3.96% | 6 | 4.72% |
Suravee Suthikulpanit | 432 | 3.16% | 1 | 0.79% |
Zhao Yan | 366 | 2.68% | 4 | 3.15% |
Jason Gunthorpe | 286 | 2.09% | 3 | 2.36% |
Christoph Hellwig | 230 | 1.68% | 10 | 7.87% |
Yi L Liu | 201 | 1.47% | 1 | 0.79% |
Keqian Zhu | 135 | 0.99% | 3 | 2.36% |
Lu Baolu | 113 | 0.83% | 2 | 1.57% |
Eric Auger | 109 | 0.80% | 3 | 2.36% |
Will Deacon | 102 | 0.75% | 2 | 1.57% |
Robin Murphy | 102 | 0.75% | 4 | 3.15% |
Matthew Rosato | 75 | 0.55% | 1 | 0.79% |
Nicolin Chen | 63 | 0.46% | 3 | 2.36% |
Antonios Motakis | 19 | 0.14% | 1 | 0.79% |
Xiaoyang Xu | 17 | 0.12% | 1 | 0.79% |
John Hubbard | 17 | 0.12% | 3 | 2.36% |
Dan Carpenter | 10 | 0.07% | 1 | 0.79% |
Wei Yongjun | 10 | 0.07% | 1 | 0.79% |
Max Gurtovoy | 10 | 0.07% | 1 | 0.79% |
Anthony Yznaga | 8 | 0.06% | 1 | 0.79% |
Sean Christopherson | 7 | 0.05% | 1 | 0.79% |
Andrey Konovalov | 7 | 0.05% | 1 | 0.79% |
Michael S. Tsirkin | 6 | 0.04% | 1 | 0.79% |
Gustavo A. R. Silva | 6 | 0.04% | 2 | 1.57% |
Andre Przywara | 5 | 0.04% | 1 | 0.79% |
Xiang Zheng | 5 | 0.04% | 1 | 0.79% |
Ben Luo | 4 | 0.03% | 1 | 0.79% |
Ingo Molnar | 4 | 0.03% | 2 | 1.57% |
Michel Lespinasse | 4 | 0.03% | 1 | 0.79% |
Jike Song | 3 | 0.02% | 1 | 0.79% |
Zhen Lei | 3 | 0.02% | 1 | 0.79% |
Lorenzo Stoakes | 2 | 0.01% | 1 | 0.79% |
Joerg Roedel | 2 | 0.01% | 1 | 0.79% |
Zenghui Yu | 2 | 0.01% | 1 | 0.79% |
tom | 1 | 0.01% | 1 | 0.79% |
Shenming Lu | 1 | 0.01% | 1 | 0.79% |
Jiacheng Shi | 1 | 0.01% | 1 | 0.79% |
Pierre Morel | 1 | 0.01% | 1 | 0.79% |
Liam R. Howlett | 1 | 0.01% | 1 | 0.79% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.79% |
Total | 13673 | 127 |
// SPDX-License-Identifier: GPL-2.0-only /* * VFIO: IOMMU DMA mapping support for Type1 IOMMU * * Copyright (C) 2012 Red Hat, Inc. All rights reserved. * Author: Alex Williamson <alex.williamson@redhat.com> * * Derived from original vfio: * Copyright 2010 Cisco Systems, Inc. All rights reserved. * Author: Tom Lyon, pugs@cisco.com * * We arbitrarily define a Type1 IOMMU as one matching the below code. * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel * VT-d, but that makes it harder to re-use as theoretically anyone * implementing a similar IOMMU could make use of this. We expect the * IOMMU to support the IOMMU API and have few to no restrictions around * the IOVA range that can be mapped. The Type1 IOMMU is currently * optimized for relatively static mappings of a userspace process with * userspace pages pinned into memory. We also assume devices and IOMMU * domains are PCI based as the IOMMU API is still centered around a * device/bus interface rather than a group interface. */ #include <linux/compat.h> #include <linux/device.h> #include <linux/fs.h> #include <linux/highmem.h> #include <linux/iommu.h> #include <linux/module.h> #include <linux/mm.h> #include <linux/kthread.h> #include <linux/rbtree.h> #include <linux/sched/signal.h> #include <linux/sched/mm.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/vfio.h> #include <linux/workqueue.h> #include <linux/notifier.h> #include <linux/irqdomain.h> #include "vfio.h" #define DRIVER_VERSION "0.2" #define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>" #define DRIVER_DESC "Type1 IOMMU driver for VFIO" static bool allow_unsafe_interrupts; module_param_named(allow_unsafe_interrupts, allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(allow_unsafe_interrupts, "Enable VFIO IOMMU support for on platforms without interrupt remapping support."); static bool disable_hugepages; module_param_named(disable_hugepages, disable_hugepages, bool, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(disable_hugepages, "Disable VFIO IOMMU support for IOMMU hugepages."); static unsigned int dma_entry_limit __read_mostly = U16_MAX; module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644); MODULE_PARM_DESC(dma_entry_limit, "Maximum number of user DMA mappings per container (65535)."); struct vfio_iommu { struct list_head domain_list; struct list_head iova_list; struct mutex lock; struct rb_root dma_list; struct list_head device_list; struct mutex device_list_lock; unsigned int dma_avail; unsigned int vaddr_invalid_count; uint64_t pgsize_bitmap; uint64_t num_non_pinned_groups; wait_queue_head_t vaddr_wait; bool v2; bool nesting; bool dirty_page_tracking; bool container_open; struct list_head emulated_iommu_groups; }; struct vfio_domain { struct iommu_domain *domain; struct list_head next; struct list_head group_list; bool fgsp : 1; /* Fine-grained super pages */ bool enforce_cache_coherency : 1; }; struct vfio_dma { struct rb_node node; dma_addr_t iova; /* Device address */ unsigned long vaddr; /* Process virtual addr */ size_t size; /* Map size (bytes) */ int prot; /* IOMMU_READ/WRITE */ bool iommu_mapped; bool lock_cap; /* capable(CAP_IPC_LOCK) */ bool vaddr_invalid; struct task_struct *task; struct rb_root pfn_list; /* Ex-user pinned pfn list */ unsigned long *bitmap; }; struct vfio_batch { struct page **pages; /* for pin_user_pages_remote */ struct page *fallback_page; /* if pages alloc fails */ int capacity; /* length of pages array */ int size; /* of batch currently */ int offset; /* of next entry in pages */ }; struct vfio_iommu_group { struct iommu_group *iommu_group; struct list_head next; bool pinned_page_dirty_scope; }; struct vfio_iova { struct list_head list; dma_addr_t start; dma_addr_t end; }; /* * Guest RAM pinning working set or DMA target */ struct vfio_pfn { struct rb_node node; dma_addr_t iova; /* Device address */ unsigned long pfn; /* Host pfn */ unsigned int ref_count; }; struct vfio_regions { struct list_head list; dma_addr_t iova; phys_addr_t phys; size_t len; }; #define DIRTY_BITMAP_BYTES(n) (ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE) /* * Input argument of number of bits to bitmap_set() is unsigned integer, which * further casts to signed integer for unaligned multi-bit operation, * __bitmap_set(). * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte, * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page * system. */ #define DIRTY_BITMAP_PAGES_MAX ((u64)INT_MAX) #define DIRTY_BITMAP_SIZE_MAX DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX) #define WAITED 1 static int put_pfn(unsigned long pfn, int prot); static struct vfio_iommu_group* vfio_iommu_find_iommu_group(struct vfio_iommu *iommu, struct iommu_group *iommu_group); /* * This code handles mapping and unmapping of user data buffers * into DMA'ble space using the IOMMU */ static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu, dma_addr_t start, size_t size) { struct rb_node *node = iommu->dma_list.rb_node; while (node) { struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node); if (start + size <= dma->iova) node = node->rb_left; else if (start >= dma->iova + dma->size) node = node->rb_right; else return dma; } return NULL; } static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu, dma_addr_t start, u64 size) { struct rb_node *res = NULL; struct rb_node *node = iommu->dma_list.rb_node; struct vfio_dma *dma_res = NULL; while (node) { struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node); if (start < dma->iova + dma->size) { res = node; dma_res = dma; if (start >= dma->iova) break; node = node->rb_left; } else { node = node->rb_right; } } if (res && size && dma_res->iova >= start + size) res = NULL; return res; } static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new) { struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL; struct vfio_dma *dma; while (*link) { parent = *link; dma = rb_entry(parent, struct vfio_dma, node); if (new->iova + new->size <= dma->iova) link = &(*link)->rb_left; else link = &(*link)->rb_right; } rb_link_node(&new->node, parent, link); rb_insert_color(&new->node, &iommu->dma_list); } static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old) { rb_erase(&old->node, &iommu->dma_list); } static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize) { uint64_t npages = dma->size / pgsize; if (npages > DIRTY_BITMAP_PAGES_MAX) return -EINVAL; /* * Allocate extra 64 bits that are used to calculate shift required for * bitmap_shift_left() to manipulate and club unaligned number of pages * in adjacent vfio_dma ranges. */ dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64), GFP_KERNEL); if (!dma->bitmap) return -ENOMEM; return 0; } static void vfio_dma_bitmap_free(struct vfio_dma *dma) { kvfree(dma->bitmap); dma->bitmap = NULL; } static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize) { struct rb_node *p; unsigned long pgshift = __ffs(pgsize); for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) { struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node); bitmap_set(dma->bitmap, (vpfn->iova - dma->iova) >> pgshift, 1); } } static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu) { struct rb_node *n; unsigned long pgshift = __ffs(iommu->pgsize_bitmap); for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) { struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node); bitmap_set(dma->bitmap, 0, dma->size >> pgshift); } } static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize) { struct rb_node *n; for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) { struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node); int ret; ret = vfio_dma_bitmap_alloc(dma, pgsize); if (ret) { struct rb_node *p; for (p = rb_prev(n); p; p = rb_prev(p)) { struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node); vfio_dma_bitmap_free(dma); } return ret; } vfio_dma_populate_bitmap(dma, pgsize); } return 0; } static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu) { struct rb_node *n; for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) { struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node); vfio_dma_bitmap_free(dma); } } /* * Helper Functions for host iova-pfn list */ static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova) { struct vfio_pfn *vpfn; struct rb_node *node = dma->pfn_list.rb_node; while (node) { vpfn = rb_entry(node, struct vfio_pfn, node); if (iova < vpfn->iova) node = node->rb_left; else if (iova > vpfn->iova) node = node->rb_right; else return vpfn; } return NULL; } static void vfio_link_pfn(struct vfio_dma *dma, struct vfio_pfn *new) { struct rb_node **link, *parent = NULL; struct vfio_pfn *vpfn; link = &dma->pfn_list.rb_node; while (*link) { parent = *link; vpfn = rb_entry(parent, struct vfio_pfn, node); if (new->iova < vpfn->iova) link = &(*link)->rb_left; else link = &(*link)->rb_right; } rb_link_node(&new->node, parent, link); rb_insert_color(&new->node, &dma->pfn_list); } static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old) { rb_erase(&old->node, &dma->pfn_list); } static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova, unsigned long pfn) { struct vfio_pfn *vpfn; vpfn = kzalloc(sizeof(*vpfn), GFP_KERNEL); if (!vpfn) return -ENOMEM; vpfn->iova = iova; vpfn->pfn = pfn; vpfn->ref_count = 1; vfio_link_pfn(dma, vpfn); return 0; } static void vfio_remove_from_pfn_list(struct vfio_dma *dma, struct vfio_pfn *vpfn) { vfio_unlink_pfn(dma, vpfn); kfree(vpfn); } static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma, unsigned long iova) { struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova); if (vpfn) vpfn->ref_count++; return vpfn; } static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn) { int ret = 0; vpfn->ref_count--; if (!vpfn->ref_count) { ret = put_pfn(vpfn->pfn, dma->prot); vfio_remove_from_pfn_list(dma, vpfn); } return ret; } static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async) { struct mm_struct *mm; int ret; if (!npage) return 0; mm = async ? get_task_mm(dma->task) : dma->task->mm; if (!mm) return -ESRCH; /* process exited */ ret = mmap_write_lock_killable(mm); if (!ret) { ret = __account_locked_vm(mm, abs(npage), npage > 0, dma->task, dma->lock_cap); mmap_write_unlock(mm); } if (async) mmput(mm); return ret; } /* * Some mappings aren't backed by a struct page, for example an mmap'd * MMIO range for our own or another device. These use a different * pfn conversion and shouldn't be tracked as locked pages. * For compound pages, any driver that sets the reserved bit in head * page needs to set the reserved bit in all subpages to be safe. */ static bool is_invalid_reserved_pfn(unsigned long pfn) { if (pfn_valid(pfn)) return PageReserved(pfn_to_page(pfn)); return true; } static int put_pfn(unsigned long pfn, int prot) { if (!is_invalid_reserved_pfn(pfn)) { struct page *page = pfn_to_page(pfn); unpin_user_pages_dirty_lock(&page, 1, prot & IOMMU_WRITE); return 1; } return 0; } #define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *)) static void vfio_batch_init(struct vfio_batch *batch) { batch->size = 0; batch->offset = 0; if (unlikely(disable_hugepages)) goto fallback; batch->pages = (struct page **) __get_free_page(GFP_KERNEL); if (!batch->pages) goto fallback; batch->capacity = VFIO_BATCH_MAX_CAPACITY; return; fallback: batch->pages = &batch->fallback_page; batch->capacity = 1; } static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma) { while (batch->size) { unsigned long pfn = page_to_pfn(batch->pages[batch->offset]); put_pfn(pfn, dma->prot); batch->offset++; batch->size--; } } static void vfio_batch_fini(struct vfio_batch *batch) { if (batch->capacity == VFIO_BATCH_MAX_CAPACITY) free_page((unsigned long)batch->pages); } static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm, unsigned long vaddr, unsigned long *pfn, bool write_fault) { pte_t *ptep; spinlock_t *ptl; int ret; ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl); if (ret) { bool unlocked = false; ret = fixup_user_fault(mm, vaddr, FAULT_FLAG_REMOTE | (write_fault ? FAULT_FLAG_WRITE : 0), &unlocked); if (unlocked) return -EAGAIN; if (ret) return ret; ret = follow_pte(vma->vm_mm, vaddr, &ptep, &ptl); if (ret) return ret; } if (write_fault && !pte_write(*ptep)) ret = -EFAULT; else *pfn = pte_pfn(*ptep); pte_unmap_unlock(ptep, ptl); return ret; } /* * Returns the positive number of pfns successfully obtained or a negative * error code. */ static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr, long npages, int prot, unsigned long *pfn, struct page **pages) { struct vm_area_struct *vma; unsigned int flags = 0; int ret; if (prot & IOMMU_WRITE) flags |= FOLL_WRITE; mmap_read_lock(mm); ret = pin_user_pages_remote(mm, vaddr, npages, flags | FOLL_LONGTERM, pages, NULL, NULL); if (ret > 0) { int i; /* * The zero page is always resident, we don't need to pin it * and it falls into our invalid/reserved test so we don't * unpin in put_pfn(). Unpin all zero pages in the batch here. */ for (i = 0 ; i < ret; i++) { if (unlikely(is_zero_pfn(page_to_pfn(pages[i])))) unpin_user_page(pages[i]); } *pfn = page_to_pfn(pages[0]); goto done; } vaddr = untagged_addr(vaddr); retry: vma = vma_lookup(mm, vaddr); if (vma && vma->vm_flags & VM_PFNMAP) { ret = follow_fault_pfn(vma, mm, vaddr, pfn, prot & IOMMU_WRITE); if (ret == -EAGAIN) goto retry; if (!ret) { if (is_invalid_reserved_pfn(*pfn)) ret = 1; else ret = -EFAULT; } } done: mmap_read_unlock(mm); return ret; } static int vfio_wait(struct vfio_iommu *iommu) { DEFINE_WAIT(wait); prepare_to_wait(&iommu->vaddr_wait, &wait, TASK_KILLABLE); mutex_unlock(&iommu->lock); schedule(); mutex_lock(&iommu->lock); finish_wait(&iommu->vaddr_wait, &wait); if (kthread_should_stop() || !iommu->container_open || fatal_signal_pending(current)) { return -EFAULT; } return WAITED; } /* * Find dma struct and wait for its vaddr to be valid. iommu lock is dropped * if the task waits, but is re-locked on return. Return result in *dma_p. * Return 0 on success with no waiting, WAITED on success if waited, and -errno * on error. */ static int vfio_find_dma_valid(struct vfio_iommu *iommu, dma_addr_t start, size_t size, struct vfio_dma **dma_p) { int ret = 0; do { *dma_p = vfio_find_dma(iommu, start, size); if (!*dma_p) return -EINVAL; else if (!(*dma_p)->vaddr_invalid) return ret; else ret = vfio_wait(iommu); } while (ret == WAITED); return ret; } /* * Wait for all vaddr in the dma_list to become valid. iommu lock is dropped * if the task waits, but is re-locked on return. Return 0 on success with no * waiting, WAITED on success if waited, and -errno on error. */ static int vfio_wait_all_valid(struct vfio_iommu *iommu) { int ret = 0; while (iommu->vaddr_invalid_count && ret >= 0) ret = vfio_wait(iommu); return ret; } /* * Attempt to pin pages. We really don't want to track all the pfns and * the iommu can only map chunks of consecutive pfns anyway, so get the * first page and all consecutive pages with the same locking. */ static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr, long npage, unsigned long *pfn_base, unsigned long limit, struct vfio_batch *batch) { unsigned long pfn; struct mm_struct *mm = current->mm; long ret, pinned = 0, lock_acct = 0; bool rsvd; dma_addr_t iova = vaddr - dma->vaddr + dma->iova; /* This code path is only user initiated */ if (!mm) return -ENODEV; if (batch->size) { /* Leftover pages in batch from an earlier call. */ *pfn_base = page_to_pfn(batch->pages[batch->offset]); pfn = *pfn_base; rsvd = is_invalid_reserved_pfn(*pfn_base); } else { *pfn_base = 0; } while (npage) { if (!batch->size) { /* Empty batch, so refill it. */ long req_pages = min_t(long, npage, batch->capacity); ret = vaddr_get_pfns(mm, vaddr, req_pages, dma->prot, &pfn, batch->pages); if (ret < 0) goto unpin_out; batch->size = ret; batch->offset = 0; if (!*pfn_base) { *pfn_base = pfn; rsvd = is_invalid_reserved_pfn(*pfn_base); } } /* * pfn is preset for the first iteration of this inner loop and * updated at the end to handle a VM_PFNMAP pfn. In that case, * batch->pages isn't valid (there's no struct page), so allow * batch->pages to be touched only when there's more than one * pfn to check, which guarantees the pfns are from a * !VM_PFNMAP vma. */ while (true) { if (pfn != *pfn_base + pinned || rsvd != is_invalid_reserved_pfn(pfn)) goto out; /* * Reserved pages aren't counted against the user, * externally pinned pages are already counted against * the user. */ if (!rsvd && !vfio_find_vpfn(dma, iova)) { if (!dma->lock_cap && mm->locked_vm + lock_acct + 1 > limit) { pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n", __func__, limit << PAGE_SHIFT); ret = -ENOMEM; goto unpin_out; } lock_acct++; } pinned++; npage--; vaddr += PAGE_SIZE; iova += PAGE_SIZE; batch->offset++; batch->size--; if (!batch->size) break; pfn = page_to_pfn(batch->pages[batch->offset]); } if (unlikely(disable_hugepages)) break; } out: ret = vfio_lock_acct(dma, lock_acct, false); unpin_out: if (batch->size == 1 && !batch->offset) { /* May be a VM_PFNMAP pfn, which the batch can't remember. */ put_pfn(pfn, dma->prot); batch->size = 0; } if (ret < 0) { if (pinned && !rsvd) { for (pfn = *pfn_base ; pinned ; pfn++, pinned--) put_pfn(pfn, dma->prot); } vfio_batch_unpin(batch, dma); return ret; } return pinned; } static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova, unsigned long pfn, long npage, bool do_accounting) { long unlocked = 0, locked = 0; long i; for (i = 0; i < npage; i++, iova += PAGE_SIZE) { if (put_pfn(pfn++, dma->prot)) { unlocked++; if (vfio_find_vpfn(dma, iova)) locked++; } } if (do_accounting) vfio_lock_acct(dma, locked - unlocked, true); return unlocked; } static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr, unsigned long *pfn_base, bool do_accounting) { struct page *pages[1]; struct mm_struct *mm; int ret; mm = get_task_mm(dma->task); if (!mm) return -ENODEV; ret = vaddr_get_pfns(mm, vaddr, 1, dma->prot, pfn_base, pages); if (ret != 1) goto out; ret = 0; if (do_accounting && !is_invalid_reserved_pfn(*pfn_base)) { ret = vfio_lock_acct(dma, 1, true); if (ret) { put_pfn(*pfn_base, dma->prot); if (ret == -ENOMEM) pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK " "(%ld) exceeded\n", __func__, dma->task->comm, task_pid_nr(dma->task), task_rlimit(dma->task, RLIMIT_MEMLOCK)); } } out: mmput(mm); return ret; } static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova, bool do_accounting) { int unlocked; struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova); if (!vpfn) return 0; unlocked = vfio_iova_put_vfio_pfn(dma, vpfn); if (do_accounting) vfio_lock_acct(dma, -unlocked, true); return unlocked; } static int vfio_iommu_type1_pin_pages(void *iommu_data, struct iommu_group *iommu_group, dma_addr_t user_iova, int npage, int prot, struct page **pages) { struct vfio_iommu *iommu = iommu_data; struct vfio_iommu_group *group; int i, j, ret; unsigned long remote_vaddr; struct vfio_dma *dma; bool do_accounting; dma_addr_t iova; if (!iommu || !pages) return -EINVAL; /* Supported for v2 version only */ if (!iommu->v2) return -EACCES; mutex_lock(&iommu->lock); /* * Wait for all necessary vaddr's to be valid so they can be used in * the main loop without dropping the lock, to avoid racing vs unmap. */ again: if (iommu->vaddr_invalid_count) { for (i = 0; i < npage; i++) { iova = user_iova + PAGE_SIZE * i; ret = vfio_find_dma_valid(iommu, iova, PAGE_SIZE, &dma); if (ret < 0) goto pin_done; if (ret == WAITED) goto again; } } /* Fail if no dma_umap notifier is registered */ if (list_empty(&iommu->device_list)) { ret = -EINVAL; goto pin_done; } /* * If iommu capable domain exist in the container then all pages are * already pinned and accounted. Accounting should be done if there is no * iommu capable domain in the container. */ do_accounting = list_empty(&iommu->domain_list); for (i = 0; i < npage; i++) { unsigned long phys_pfn; struct vfio_pfn *vpfn; iova = user_iova + PAGE_SIZE * i; dma = vfio_find_dma(iommu, iova, PAGE_SIZE); if (!dma) { ret = -EINVAL; goto pin_unwind; } if ((dma->prot & prot) != prot) { ret = -EPERM; goto pin_unwind; } vpfn = vfio_iova_get_vfio_pfn(dma, iova); if (vpfn) { pages[i] = pfn_to_page(vpfn->pfn); continue; } remote_vaddr = dma->vaddr + (iova - dma->iova); ret = vfio_pin_page_external(dma, remote_vaddr, &phys_pfn, do_accounting); if (ret) goto pin_unwind; ret = vfio_add_to_pfn_list(dma, iova, phys_pfn); if (ret) { if (put_pfn(phys_pfn, dma->prot) && do_accounting) vfio_lock_acct(dma, -1, true); goto pin_unwind; } pages[i] = pfn_to_page(phys_pfn); if (iommu->dirty_page_tracking) { unsigned long pgshift = __ffs(iommu->pgsize_bitmap); /* * Bitmap populated with the smallest supported page * size */ bitmap_set(dma->bitmap, (iova - dma->iova) >> pgshift, 1); } } ret = i; group = vfio_iommu_find_iommu_group(iommu, iommu_group); if (!group->pinned_page_dirty_scope) { group->pinned_page_dirty_scope = true; iommu->num_non_pinned_groups--; } goto pin_done; pin_unwind: pages[i] = NULL; for (j = 0; j < i; j++) { dma_addr_t iova; iova = user_iova + PAGE_SIZE * j; dma = vfio_find_dma(iommu, iova, PAGE_SIZE); vfio_unpin_page_external(dma, iova, do_accounting); pages[j] = NULL; } pin_done: mutex_unlock(&iommu->lock); return ret; } static void vfio_iommu_type1_unpin_pages(void *iommu_data, dma_addr_t user_iova, int npage) { struct vfio_iommu *iommu = iommu_data; bool do_accounting; int i; /* Supported for v2 version only */ if (WARN_ON(!iommu->v2)) return; mutex_lock(&iommu->lock); do_accounting = list_empty(&iommu->domain_list); for (i = 0; i < npage; i++) { dma_addr_t iova = user_iova + PAGE_SIZE * i; struct vfio_dma *dma; dma = vfio_find_dma(iommu, iova, PAGE_SIZE); if (!dma) break; vfio_unpin_page_external(dma, iova, do_accounting); } mutex_unlock(&iommu->lock); WARN_ON(i != npage); } static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain, struct list_head *regions, struct iommu_iotlb_gather *iotlb_gather) { long unlocked = 0; struct vfio_regions *entry, *next; iommu_iotlb_sync(domain->domain, iotlb_gather); list_for_each_entry_safe(entry, next, regions, list) { unlocked += vfio_unpin_pages_remote(dma, entry->iova, entry->phys >> PAGE_SHIFT, entry->len >> PAGE_SHIFT, false); list_del(&entry->list); kfree(entry); } cond_resched(); return unlocked; } /* * Generally, VFIO needs to unpin remote pages after each IOTLB flush. * Therefore, when using IOTLB flush sync interface, VFIO need to keep track * of these regions (currently using a list). * * This value specifies maximum number of regions for each IOTLB flush sync. */ #define VFIO_IOMMU_TLB_SYNC_MAX 512 static size_t unmap_unpin_fast(struct vfio_domain *domain, struct vfio_dma *dma, dma_addr_t *iova, size_t len, phys_addr_t phys, long *unlocked, struct list_head *unmapped_list, int *unmapped_cnt, struct iommu_iotlb_gather *iotlb_gather) { size_t unmapped = 0; struct vfio_regions *entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (entry) { unmapped = iommu_unmap_fast(domain->domain, *iova, len, iotlb_gather); if (!unmapped) { kfree(entry); } else { entry->iova = *iova; entry->phys = phys; entry->len = unmapped; list_add_tail(&entry->list, unmapped_list); *iova += unmapped; (*unmapped_cnt)++; } } /* * Sync if the number of fast-unmap regions hits the limit * or in case of errors. */ if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) { *unlocked += vfio_sync_unpin(dma, domain, unmapped_list, iotlb_gather); *unmapped_cnt = 0; } return unmapped; } static size_t unmap_unpin_slow(struct vfio_domain *domain, struct vfio_dma *dma, dma_addr_t *iova, size_t len, phys_addr_t phys, long *unlocked) { size_t unmapped = iommu_unmap(domain->domain, *iova, len); if (unmapped) { *unlocked += vfio_unpin_pages_remote(dma, *iova, phys >> PAGE_SHIFT, unmapped >> PAGE_SHIFT, false); *iova += unmapped; cond_resched(); } return unmapped; } static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma, bool do_accounting) { dma_addr_t iova = dma->iova, end = dma->iova + dma->size; struct vfio_domain *domain, *d; LIST_HEAD(unmapped_region_list); struct iommu_iotlb_gather iotlb_gather; int unmapped_region_cnt = 0; long unlocked = 0; if (!dma->size) return 0; if (list_empty(&iommu->domain_list)) return 0; /* * We use the IOMMU to track the physical addresses, otherwise we'd * need a much more complicated tracking system. Unfortunately that * means we need to use one of the iommu domains to figure out the * pfns to unpin. The rest need to be unmapped in advance so we have * no iommu translations remaining when the pages are unpinned. */ domain = d = list_first_entry(&iommu->domain_list, struct vfio_domain, next); list_for_each_entry_continue(d, &iommu->domain_list, next) { iommu_unmap(d->domain, dma->iova, dma->size); cond_resched(); } iommu_iotlb_gather_init(&iotlb_gather); while (iova < end) { size_t unmapped, len; phys_addr_t phys, next; phys = iommu_iova_to_phys(domain->domain, iova); if (WARN_ON(!phys)) { iova += PAGE_SIZE; continue; } /* * To optimize for fewer iommu_unmap() calls, each of which * may require hardware cache flushing, try to find the * largest contiguous physical memory chunk to unmap. */ for (len = PAGE_SIZE; !domain->fgsp && iova + len < end; len += PAGE_SIZE) { next = iommu_iova_to_phys(domain->domain, iova + len); if (next != phys + len) break; } /* * First, try to use fast unmap/unpin. In case of failure, * switch to slow unmap/unpin path. */ unmapped = unmap_unpin_fast(domain, dma, &iova, len, phys, &unlocked, &unmapped_region_list, &unmapped_region_cnt, &iotlb_gather); if (!unmapped) { unmapped = unmap_unpin_slow(domain, dma, &iova, len, phys, &unlocked); if (WARN_ON(!unmapped)) break; } } dma->iommu_mapped = false; if (unmapped_region_cnt) { unlocked += vfio_sync_unpin(dma, domain, &unmapped_region_list, &iotlb_gather); } if (do_accounting) { vfio_lock_acct(dma, -unlocked, true); return 0; } return unlocked; } static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma) { WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list)); vfio_unmap_unpin(iommu, dma, true); vfio_unlink_dma(iommu, dma); put_task_struct(dma->task); vfio_dma_bitmap_free(dma); if (dma->vaddr_invalid) { iommu->vaddr_invalid_count--; wake_up_all(&iommu->vaddr_wait); } kfree(dma); iommu->dma_avail++; } static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu) { struct vfio_domain *domain; iommu->pgsize_bitmap = ULONG_MAX; list_for_each_entry(domain, &iommu->domain_list, next) iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap; /* * In case the IOMMU supports page sizes smaller than PAGE_SIZE * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes. * That way the user will be able to map/unmap buffers whose size/ * start address is aligned with PAGE_SIZE. Pinning code uses that * granularity while iommu driver can use the sub-PAGE_SIZE size * to map the buffer. */ if (iommu->pgsize_bitmap & ~PAGE_MASK) { iommu->pgsize_bitmap &= PAGE_MASK; iommu->pgsize_bitmap |= PAGE_SIZE; } } static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu, struct vfio_dma *dma, dma_addr_t base_iova, size_t pgsize) { unsigned long pgshift = __ffs(pgsize); unsigned long nbits = dma->size >> pgshift; unsigned long bit_offset = (dma->iova - base_iova) >> pgshift; unsigned long copy_offset = bit_offset / BITS_PER_LONG; unsigned long shift = bit_offset % BITS_PER_LONG; unsigned long leftover; /* * mark all pages dirty if any IOMMU capable device is not able * to report dirty pages and all pages are pinned and mapped. */ if (iommu->num_non_pinned_groups && dma->iommu_mapped) bitmap_set(dma->bitmap, 0, nbits); if (shift) { bitmap_shift_left(dma->bitmap, dma->bitmap, shift, nbits + shift); if (copy_from_user(&leftover, (void __user *)(bitmap + copy_offset), sizeof(leftover))) return -EFAULT; bitmap_or(dma->bitmap, dma->bitmap, &leftover, shift); } if (copy_to_user((void __user *)(bitmap + copy_offset), dma->bitmap, DIRTY_BITMAP_BYTES(nbits + shift))) return -EFAULT; return 0; } static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu, dma_addr_t iova, size_t size, size_t pgsize) { struct vfio_dma *dma; struct rb_node *n; unsigned long pgshift = __ffs(pgsize); int ret; /* * GET_BITMAP request must fully cover vfio_dma mappings. Multiple * vfio_dma mappings may be clubbed by specifying large ranges, but * there must not be any previous mappings bisected by the range. * An error will be returned if these conditions are not met. */ dma = vfio_find_dma(iommu, iova, 1); if (dma && dma->iova != iova) return -EINVAL; dma = vfio_find_dma(iommu, iova + size - 1, 0); if (dma && dma->iova + dma->size != iova + size) return -EINVAL; for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) { struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node); if (dma->iova < iova) continue; if (dma->iova > iova + size - 1) break; ret = update_user_bitmap(bitmap, iommu, dma, iova, pgsize); if (ret) return ret; /* * Re-populate bitmap to include all pinned pages which are * considered as dirty but exclude pages which are unpinned and * pages which are marked dirty by vfio_dma_rw() */ bitmap_clear(dma->bitmap, 0, dma->size >> pgshift); vfio_dma_populate_bitmap(dma, pgsize); } return 0; } static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size) { if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) || (bitmap_size < DIRTY_BITMAP_BYTES(npages))) return -EINVAL; return 0; } /* * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate * and unmap iovas within the range we're about to unmap. Drivers MUST unpin * pages in response to an invalidation. */ static void vfio_notify_dma_unmap(struct vfio_iommu *iommu, struct vfio_dma *dma) { struct vfio_device *device; if (list_empty(&iommu->device_list)) return; /* * The device is expected to call vfio_unpin_pages() for any IOVA it has * pinned within the range. Since vfio_unpin_pages() will eventually * call back down to this code and try to obtain the iommu->lock we must * drop it. */ mutex_lock(&iommu->device_list_lock); mutex_unlock(&iommu->lock); list_for_each_entry(device, &iommu->device_list, iommu_entry) device->ops->dma_unmap(device, dma->iova, dma->size); mutex_unlock(&iommu->device_list_lock); mutex_lock(&iommu->lock); } static int vfio_dma_do_unmap(struct vfio_iommu *iommu, struct vfio_iommu_type1_dma_unmap *unmap, struct vfio_bitmap *bitmap) { struct vfio_dma *dma, *dma_last = NULL; size_t unmapped = 0, pgsize; int ret = -EINVAL, retries = 0; unsigned long pgshift; dma_addr_t iova = unmap->iova; u64 size = unmap->size; bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL; bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR; struct rb_node *n, *first_n; mutex_lock(&iommu->lock); pgshift = __ffs(iommu->pgsize_bitmap); pgsize = (size_t)1 << pgshift; if (iova & (pgsize - 1)) goto unlock; if (unmap_all) { if (iova || size) goto unlock; size = U64_MAX; } else if (!size || size & (pgsize - 1) || iova + size - 1 < iova || size > SIZE_MAX) { goto unlock; } /* When dirty tracking is enabled, allow only min supported pgsize */ if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) && (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) { goto unlock; } WARN_ON((pgsize - 1) & PAGE_MASK); again: /* * vfio-iommu-type1 (v1) - User mappings were coalesced together to * avoid tracking individual mappings. This means that the granularity * of the original mapping was lost and the user was allowed to attempt * to unmap any range. Depending on the contiguousness of physical * memory and page sizes supported by the IOMMU, arbitrary unmaps may * or may not have worked. We only guaranteed unmap granularity * matching the original mapping; even though it was untracked here, * the original mappings are reflected in IOMMU mappings. This * resulted in a couple unusual behaviors. First, if a range is not * able to be unmapped, ex. a set of 4k pages that was mapped as a * 2M hugepage into the IOMMU, the unmap ioctl returns success but with * a zero sized unmap. Also, if an unmap request overlaps the first * address of a hugepage, the IOMMU will unmap the entire hugepage. * This also returns success and the returned unmap size reflects the * actual size unmapped. * * We attempt to maintain compatibility with this "v1" interface, but * we take control out of the hands of the IOMMU. Therefore, an unmap * request offset from the beginning of the original mapping will * return success with zero sized unmap. And an unmap request covering * the first iova of mapping will unmap the entire range. * * The v2 version of this interface intends to be more deterministic. * Unmap requests must fully cover previous mappings. Multiple * mappings may still be unmaped by specifying large ranges, but there * must not be any previous mappings bisected by the range. An error * will be returned if these conditions are not met. The v2 interface * will only return success and a size of zero if there were no * mappings within the range. */ if (iommu->v2 && !unmap_all) { dma = vfio_find_dma(iommu, iova, 1); if (dma && dma->iova != iova) goto unlock; dma = vfio_find_dma(iommu, iova + size - 1, 0); if (dma && dma->iova + dma->size != iova + size) goto unlock; } ret = 0; n = first_n = vfio_find_dma_first_node(iommu, iova, size); while (n) { dma = rb_entry(n, struct vfio_dma, node); if (dma->iova >= iova + size) break; if (!iommu->v2 && iova > dma->iova) break; if (invalidate_vaddr) { if (dma->vaddr_invalid) { struct rb_node *last_n = n; for (n = first_n; n != last_n; n = rb_next(n)) { dma = rb_entry(n, struct vfio_dma, node); dma->vaddr_invalid = false; iommu->vaddr_invalid_count--; } ret = -EINVAL; unmapped = 0; break; } dma->vaddr_invalid = true; iommu->vaddr_invalid_count++; unmapped += dma->size; n = rb_next(n); continue; } if (!RB_EMPTY_ROOT(&dma->pfn_list)) { if (dma_last == dma) { BUG_ON(++retries > 10); } else { dma_last = dma; retries = 0; } vfio_notify_dma_unmap(iommu, dma); goto again; } if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) { ret = update_user_bitmap(bitmap->data, iommu, dma, iova, pgsize); if (ret) break; } unmapped += dma->size; n = rb_next(n); vfio_remove_dma(iommu, dma); } unlock: mutex_unlock(&iommu->lock); /* Report how much was unmapped */ unmap->size = unmapped; return ret; } static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova, unsigned long pfn, long npage, int prot) { struct vfio_domain *d; int ret; list_for_each_entry(d, &iommu->domain_list, next) { ret = iommu_map(d->domain, iova, (phys_addr_t)pfn << PAGE_SHIFT, npage << PAGE_SHIFT, prot | IOMMU_CACHE); if (ret) goto unwind; cond_resched(); } return 0; unwind: list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) { iommu_unmap(d->domain, iova, npage << PAGE_SHIFT); cond_resched(); } return ret; } static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma, size_t map_size) { dma_addr_t iova = dma->iova; unsigned long vaddr = dma->vaddr; struct vfio_batch batch; size_t size = map_size; long npage; unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; int ret = 0; vfio_batch_init(&batch); while (size) { /* Pin a contiguous chunk of memory */ npage = vfio_pin_pages_remote(dma, vaddr + dma->size, size >> PAGE_SHIFT, &pfn, limit, &batch); if (npage <= 0) { WARN_ON(!npage); ret = (int)npage; break; } /* Map it! */ ret = vfio_iommu_map(iommu, iova + dma->size, pfn, npage, dma->prot); if (ret) { vfio_unpin_pages_remote(dma, iova + dma->size, pfn, npage, true); vfio_batch_unpin(&batch, dma); break; } size -= npage << PAGE_SHIFT; dma->size += npage << PAGE_SHIFT; } vfio_batch_fini(&batch); dma->iommu_mapped = true; if (ret) vfio_remove_dma(iommu, dma); return ret; } /* * Check dma map request is within a valid iova range */ static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu, dma_addr_t start, dma_addr_t end) { struct list_head *iova = &iommu->iova_list; struct vfio_iova *node; list_for_each_entry(node, iova, list) { if (start >= node->start && end <= node->end) return true; } /* * Check for list_empty() as well since a container with * a single mdev device will have an empty list. */ return list_empty(iova); } static int vfio_dma_do_map(struct vfio_iommu *iommu, struct vfio_iommu_type1_dma_map *map) { bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR; dma_addr_t iova = map->iova; unsigned long vaddr = map->vaddr; size_t size = map->size; int ret = 0, prot = 0; size_t pgsize; struct vfio_dma *dma; /* Verify that none of our __u64 fields overflow */ if (map->size != size || map->vaddr != vaddr || map->iova != iova) return -EINVAL; /* READ/WRITE from device perspective */ if (map->flags & VFIO_DMA_MAP_FLAG_WRITE) prot |= IOMMU_WRITE; if (map->flags & VFIO_DMA_MAP_FLAG_READ) prot |= IOMMU_READ; if ((prot && set_vaddr) || (!prot && !set_vaddr)) return -EINVAL; mutex_lock(&iommu->lock); pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap); WARN_ON((pgsize - 1) & PAGE_MASK); if (!size || (size | iova | vaddr) & (pgsize - 1)) { ret = -EINVAL; goto out_unlock; } /* Don't allow IOVA or virtual address wrap */ if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) { ret = -EINVAL; goto out_unlock; } dma = vfio_find_dma(iommu, iova, size); if (set_vaddr) { if (!dma) { ret = -ENOENT; } else if (!dma->vaddr_invalid || dma->iova != iova || dma->size != size) { ret = -EINVAL; } else { dma->vaddr = vaddr; dma->vaddr_invalid = false; iommu->vaddr_invalid_count--; wake_up_all(&iommu->vaddr_wait); } goto out_unlock; } else if (dma) { ret = -EEXIST; goto out_unlock; } if (!iommu->dma_avail) { ret = -ENOSPC; goto out_unlock; } if (!vfio_iommu_iova_dma_valid(iommu, iova, iova + size - 1)) { ret = -EINVAL; goto out_unlock; } dma = kzalloc(sizeof(*dma), GFP_KERNEL); if (!dma) { ret = -ENOMEM; goto out_unlock; } iommu->dma_avail--; dma->iova = iova; dma->vaddr = vaddr; dma->prot = prot; /* * We need to be able to both add to a task's locked memory and test * against the locked memory limit and we need to be able to do both * outside of this call path as pinning can be asynchronous via the * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a * task_struct and VM locked pages requires an mm_struct, however * holding an indefinite mm reference is not recommended, therefore we * only hold a reference to a task. We could hold a reference to * current, however QEMU uses this call path through vCPU threads, * which can be killed resulting in a NULL mm and failure in the unmap * path when called via a different thread. Avoid this problem by * using the group_leader as threads within the same group require * both CLONE_THREAD and CLONE_VM and will therefore use the same * mm_struct. * * Previously we also used the task for testing CAP_IPC_LOCK at the * time of pinning and accounting, however has_capability() makes use * of real_cred, a copy-on-write field, so we can't guarantee that it * matches group_leader, or in fact that it might not change by the * time it's evaluated. If a process were to call MAP_DMA with * CAP_IPC_LOCK but later drop it, it doesn't make sense that they * possibly see different results for an iommu_mapped vfio_dma vs * externally mapped. Therefore track CAP_IPC_LOCK in vfio_dma at the * time of calling MAP_DMA. */ get_task_struct(current->group_leader); dma->task = current->group_leader; dma->lock_cap = capable(CAP_IPC_LOCK); dma->pfn_list = RB_ROOT; /* Insert zero-sized and grow as we map chunks of it */ vfio_link_dma(iommu, dma); /* Don't pin and map if container doesn't contain IOMMU capable domain*/ if (list_empty(&iommu->domain_list)) dma->size = size; else ret = vfio_pin_map_dma(iommu, dma, size); if (!ret && iommu->dirty_page_tracking) { ret = vfio_dma_bitmap_alloc(dma, pgsize); if (ret) vfio_remove_dma(iommu, dma); } out_unlock: mutex_unlock(&iommu->lock); return ret; } static int vfio_iommu_replay(struct vfio_iommu *iommu, struct vfio_domain *domain) { struct vfio_batch batch; struct vfio_domain *d = NULL; struct rb_node *n; unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; int ret; ret = vfio_wait_all_valid(iommu); if (ret < 0) return ret; /* Arbitrarily pick the first domain in the list for lookups */ if (!list_empty(&iommu->domain_list)) d = list_first_entry(&iommu->domain_list, struct vfio_domain, next); vfio_batch_init(&batch); n = rb_first(&iommu->dma_list); for (; n; n = rb_next(n)) { struct vfio_dma *dma; dma_addr_t iova; dma = rb_entry(n, struct vfio_dma, node); iova = dma->iova; while (iova < dma->iova + dma->size) { phys_addr_t phys; size_t size; if (dma->iommu_mapped) { phys_addr_t p; dma_addr_t i; if (WARN_ON(!d)) { /* mapped w/o a domain?! */ ret = -EINVAL; goto unwind; } phys = iommu_iova_to_phys(d->domain, iova); if (WARN_ON(!phys)) { iova += PAGE_SIZE; continue; } size = PAGE_SIZE; p = phys + size; i = iova + size; while (i < dma->iova + dma->size && p == iommu_iova_to_phys(d->domain, i)) { size += PAGE_SIZE; p += PAGE_SIZE; i += PAGE_SIZE; } } else { unsigned long pfn; unsigned long vaddr = dma->vaddr + (iova - dma->iova); size_t n = dma->iova + dma->size - iova; long npage; npage = vfio_pin_pages_remote(dma, vaddr, n >> PAGE_SHIFT, &pfn, limit, &batch); if (npage <= 0) { WARN_ON(!npage); ret = (int)npage; goto unwind; } phys = pfn << PAGE_SHIFT; size = npage << PAGE_SHIFT; } ret = iommu_map(domain->domain, iova, phys, size, dma->prot | IOMMU_CACHE); if (ret) { if (!dma->iommu_mapped) { vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT, size >> PAGE_SHIFT, true); vfio_batch_unpin(&batch, dma); } goto unwind; } iova += size; } } /* All dmas are now mapped, defer to second tree walk for unwind */ for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) { struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node); dma->iommu_mapped = true; } vfio_batch_fini(&batch); return 0; unwind: for (; n; n = rb_prev(n)) { struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node); dma_addr_t iova; if (dma->iommu_mapped) { iommu_unmap(domain->domain, dma->iova, dma->size); continue; } iova = dma->iova; while (iova < dma->iova + dma->size) { phys_addr_t phys, p; size_t size; dma_addr_t i; phys = iommu_iova_to_phys(domain->domain, iova); if (!phys) { iova += PAGE_SIZE; continue; } size = PAGE_SIZE; p = phys + size; i = iova + size; while (i < dma->iova + dma->size && p == iommu_iova_to_phys(domain->domain, i)) { size += PAGE_SIZE; p += PAGE_SIZE; i += PAGE_SIZE; } iommu_unmap(domain->domain, iova, size); vfio_unpin_pages_remote(dma, iova, phys >> PAGE_SHIFT, size >> PAGE_SHIFT, true); } } vfio_batch_fini(&batch); return ret; } /* * We change our unmap behavior slightly depending on whether the IOMMU * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage * for practically any contiguous power-of-two mapping we give it. This means * we don't need to look for contiguous chunks ourselves to make unmapping * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when * hugetlbfs is in use. */ static void vfio_test_domain_fgsp(struct vfio_domain *domain) { struct page *pages; int ret, order = get_order(PAGE_SIZE * 2); pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order); if (!pages) return; ret = iommu_map(domain->domain, 0, page_to_phys(pages), PAGE_SIZE * 2, IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE); if (!ret) { size_t unmapped = iommu_unmap(domain->domain, 0, PAGE_SIZE); if (unmapped == PAGE_SIZE) iommu_unmap(domain->domain, PAGE_SIZE, PAGE_SIZE); else domain->fgsp = true; } __free_pages(pages, order); } static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain, struct iommu_group *iommu_group) { struct vfio_iommu_group *g; list_for_each_entry(g, &domain->group_list, next) { if (g->iommu_group == iommu_group) return g; } return NULL; } static struct vfio_iommu_group* vfio_iommu_find_iommu_group(struct vfio_iommu *iommu, struct iommu_group *iommu_group) { struct vfio_iommu_group *group; struct vfio_domain *domain; list_for_each_entry(domain, &iommu->domain_list, next) { group = find_iommu_group(domain, iommu_group); if (group) return group; } list_for_each_entry(group, &iommu->emulated_iommu_groups, next) if (group->iommu_group == iommu_group) return group; return NULL; } static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions, phys_addr_t *base) { struct iommu_resv_region *region; bool ret = false; list_for_each_entry(region, group_resv_regions, list) { /* * The presence of any 'real' MSI regions should take * precedence over the software-managed one if the * IOMMU driver happens to advertise both types. */ if (region->type == IOMMU_RESV_MSI) { ret = false; break; } if (region->type == IOMMU_RESV_SW_MSI) { *base = region->start; ret = true; } } return ret; } /* * This is a helper function to insert an address range to iova list. * The list is initially created with a single entry corresponding to * the IOMMU domain geometry to which the device group is attached. * The list aperture gets modified when a new domain is added to the * container if the new aperture doesn't conflict with the current one * or with any existing dma mappings. The list is also modified to * exclude any reserved regions associated with the device group. */ static int vfio_iommu_iova_insert(struct list_head *head, dma_addr_t start, dma_addr_t end) { struct vfio_iova *region; region = kmalloc(sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; INIT_LIST_HEAD(®ion->list); region->start = start; region->end = end; list_add_tail(®ion->list, head); return 0; } /* * Check the new iommu aperture conflicts with existing aper or with any * existing dma mappings. */ static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu, dma_addr_t start, dma_addr_t end) { struct vfio_iova *first, *last; struct list_head *iova = &iommu->iova_list; if (list_empty(iova)) return false; /* Disjoint sets, return conflict */ first = list_first_entry(iova, struct vfio_iova, list); last = list_last_entry(iova, struct vfio_iova, list); if (start > last->end || end < first->start) return true; /* Check for any existing dma mappings below the new start */ if (start > first->start) { if (vfio_find_dma(iommu, first->start, start - first->start)) return true; } /* Check for any existing dma mappings beyond the new end */ if (end < last->end) { if (vfio_find_dma(iommu, end + 1, last->end - end)) return true; } return false; } /* * Resize iommu iova aperture window. This is called only if the new * aperture has no conflict with existing aperture and dma mappings. */ static int vfio_iommu_aper_resize(struct list_head *iova, dma_addr_t start, dma_addr_t end) { struct vfio_iova *node, *next; if (list_empty(iova)) return vfio_iommu_iova_insert(iova, start, end); /* Adjust iova list start */ list_for_each_entry_safe(node, next, iova, list) { if (start < node->start) break; if (start >= node->start && start < node->end) { node->start = start; break; } /* Delete nodes before new start */ list_del(&node->list); kfree(node); } /* Adjust iova list end */ list_for_each_entry_safe(node, next, iova, list) { if (end > node->end) continue; if (end > node->start && end <= node->end) { node->end = end; continue; } /* Delete nodes after new end */ list_del(&node->list); kfree(node); } return 0; } /* * Check reserved region conflicts with existing dma mappings */ static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu, struct list_head *resv_regions) { struct iommu_resv_region *region; /* Check for conflict with existing dma mappings */ list_for_each_entry(region, resv_regions, list) { if (region->type == IOMMU_RESV_DIRECT_RELAXABLE) continue; if (vfio_find_dma(iommu, region->start, region->length)) return true; } return false; } /* * Check iova region overlap with reserved regions and * exclude them from the iommu iova range */ static int vfio_iommu_resv_exclude(struct list_head *iova, struct list_head *resv_regions) { struct iommu_resv_region *resv; struct vfio_iova *n, *next; list_for_each_entry(resv, resv_regions, list) { phys_addr_t start, end; if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE) continue; start = resv->start; end = resv->start + resv->length - 1; list_for_each_entry_safe(n, next, iova, list) { int ret = 0; /* No overlap */ if (start > n->end || end < n->start) continue; /* * Insert a new node if current node overlaps with the * reserve region to exclude that from valid iova range. * Note that, new node is inserted before the current * node and finally the current node is deleted keeping * the list updated and sorted. */ if (start > n->start) ret = vfio_iommu_iova_insert(&n->list, n->start, start - 1); if (!ret && end < n->end) ret = vfio_iommu_iova_insert(&n->list, end + 1, n->end); if (ret) return ret; list_del(&n->list); kfree(n); } } if (list_empty(iova)) return -EINVAL; return 0; } static void vfio_iommu_resv_free(struct list_head *resv_regions) { struct iommu_resv_region *n, *next; list_for_each_entry_safe(n, next, resv_regions, list) { list_del(&n->list); kfree(n); } } static void vfio_iommu_iova_free(struct list_head *iova) { struct vfio_iova *n, *next; list_for_each_entry_safe(n, next, iova, list) { list_del(&n->list); kfree(n); } } static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu, struct list_head *iova_copy) { struct list_head *iova = &iommu->iova_list; struct vfio_iova *n; int ret; list_for_each_entry(n, iova, list) { ret = vfio_iommu_iova_insert(iova_copy, n->start, n->end); if (ret) goto out_free; } return 0; out_free: vfio_iommu_iova_free(iova_copy); return ret; } static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu, struct list_head *iova_copy) { struct list_head *iova = &iommu->iova_list; vfio_iommu_iova_free(iova); list_splice_tail(iova_copy, iova); } /* Redundantly walks non-present capabilities to simplify caller */ static int vfio_iommu_device_capable(struct device *dev, void *data) { return device_iommu_capable(dev, (enum iommu_cap)data); } static int vfio_iommu_domain_alloc(struct device *dev, void *data) { struct iommu_domain **domain = data; *domain = iommu_domain_alloc(dev->bus); return 1; /* Don't iterate */ } static int vfio_iommu_type1_attach_group(void *iommu_data, struct iommu_group *iommu_group, enum vfio_group_type type) { struct vfio_iommu *iommu = iommu_data; struct vfio_iommu_group *group; struct vfio_domain *domain, *d; bool resv_msi, msi_remap; phys_addr_t resv_msi_base = 0; struct iommu_domain_geometry *geo; LIST_HEAD(iova_copy); LIST_HEAD(group_resv_regions); int ret = -EINVAL; mutex_lock(&iommu->lock); /* Check for duplicates */ if (vfio_iommu_find_iommu_group(iommu, iommu_group)) goto out_unlock; ret = -ENOMEM; group = kzalloc(sizeof(*group), GFP_KERNEL); if (!group) goto out_unlock; group->iommu_group = iommu_group; if (type == VFIO_EMULATED_IOMMU) { list_add(&group->next, &iommu->emulated_iommu_groups); /* * An emulated IOMMU group cannot dirty memory directly, it can * only use interfaces that provide dirty tracking. * The iommu scope can only be promoted with the addition of a * dirty tracking group. */ group->pinned_page_dirty_scope = true; ret = 0; goto out_unlock; } ret = -ENOMEM; domain = kzalloc(sizeof(*domain), GFP_KERNEL); if (!domain) goto out_free_group; /* * Going via the iommu_group iterator avoids races, and trivially gives * us a representative device for the IOMMU API call. We don't actually * want to iterate beyond the first device (if any). */ ret = -EIO; iommu_group_for_each_dev(iommu_group, &domain->domain, vfio_iommu_domain_alloc); if (!domain->domain) goto out_free_domain; if (iommu->nesting) { ret = iommu_enable_nesting(domain->domain); if (ret) goto out_domain; } ret = iommu_attach_group(domain->domain, group->iommu_group); if (ret) goto out_domain; /* Get aperture info */ geo = &domain->domain->geometry; if (vfio_iommu_aper_conflict(iommu, geo->aperture_start, geo->aperture_end)) { ret = -EINVAL; goto out_detach; } ret = iommu_get_group_resv_regions(iommu_group, &group_resv_regions); if (ret) goto out_detach; if (vfio_iommu_resv_conflict(iommu, &group_resv_regions)) { ret = -EINVAL; goto out_detach; } /* * We don't want to work on the original iova list as the list * gets modified and in case of failure we have to retain the * original list. Get a copy here. */ ret = vfio_iommu_iova_get_copy(iommu, &iova_copy); if (ret) goto out_detach; ret = vfio_iommu_aper_resize(&iova_copy, geo->aperture_start, geo->aperture_end); if (ret) goto out_detach; ret = vfio_iommu_resv_exclude(&iova_copy, &group_resv_regions); if (ret) goto out_detach; resv_msi = vfio_iommu_has_sw_msi(&group_resv_regions, &resv_msi_base); INIT_LIST_HEAD(&domain->group_list); list_add(&group->next, &domain->group_list); msi_remap = irq_domain_check_msi_remap() || iommu_group_for_each_dev(iommu_group, (void *)IOMMU_CAP_INTR_REMAP, vfio_iommu_device_capable); if (!allow_unsafe_interrupts && !msi_remap) { pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n", __func__); ret = -EPERM; goto out_detach; } /* * If the IOMMU can block non-coherent operations (ie PCIe TLPs with * no-snoop set) then VFIO always turns this feature on because on Intel * platforms it optimizes KVM to disable wbinvd emulation. */ if (domain->domain->ops->enforce_cache_coherency) domain->enforce_cache_coherency = domain->domain->ops->enforce_cache_coherency( domain->domain); /* * Try to match an existing compatible domain. We don't want to * preclude an IOMMU driver supporting multiple bus_types and being * able to include different bus_types in the same IOMMU domain, so * we test whether the domains use the same iommu_ops rather than * testing if they're on the same bus_type. */ list_for_each_entry(d, &iommu->domain_list, next) { if (d->domain->ops == domain->domain->ops && d->enforce_cache_coherency == domain->enforce_cache_coherency) { iommu_detach_group(domain->domain, group->iommu_group); if (!iommu_attach_group(d->domain, group->iommu_group)) { list_add(&group->next, &d->group_list); iommu_domain_free(domain->domain); kfree(domain); goto done; } ret = iommu_attach_group(domain->domain, group->iommu_group); if (ret) goto out_domain; } } vfio_test_domain_fgsp(domain); /* replay mappings on new domains */ ret = vfio_iommu_replay(iommu, domain); if (ret) goto out_detach; if (resv_msi) { ret = iommu_get_msi_cookie(domain->domain, resv_msi_base); if (ret && ret != -ENODEV) goto out_detach; } list_add(&domain->next, &iommu->domain_list); vfio_update_pgsize_bitmap(iommu); done: /* Delete the old one and insert new iova list */ vfio_iommu_iova_insert_copy(iommu, &iova_copy); /* * An iommu backed group can dirty memory directly and therefore * demotes the iommu scope until it declares itself dirty tracking * capable via the page pinning interface. */ iommu->num_non_pinned_groups++; mutex_unlock(&iommu->lock); vfio_iommu_resv_free(&group_resv_regions); return 0; out_detach: iommu_detach_group(domain->domain, group->iommu_group); out_domain: iommu_domain_free(domain->domain); vfio_iommu_iova_free(&iova_copy); vfio_iommu_resv_free(&group_resv_regions); out_free_domain: kfree(domain); out_free_group: kfree(group); out_unlock: mutex_unlock(&iommu->lock); return ret; } static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu) { struct rb_node *node; while ((node = rb_first(&iommu->dma_list))) vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node)); } static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu) { struct rb_node *n, *p; n = rb_first(&iommu->dma_list); for (; n; n = rb_next(n)) { struct vfio_dma *dma; long locked = 0, unlocked = 0; dma = rb_entry(n, struct vfio_dma, node); unlocked += vfio_unmap_unpin(iommu, dma, false); p = rb_first(&dma->pfn_list); for (; p; p = rb_next(p)) { struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node); if (!is_invalid_reserved_pfn(vpfn->pfn)) locked++; } vfio_lock_acct(dma, locked - unlocked, true); } } /* * Called when a domain is removed in detach. It is possible that * the removed domain decided the iova aperture window. Modify the * iova aperture with the smallest window among existing domains. */ static void vfio_iommu_aper_expand(struct vfio_iommu *iommu, struct list_head *iova_copy) { struct vfio_domain *domain; struct vfio_iova *node; dma_addr_t start = 0; dma_addr_t end = (dma_addr_t)~0; if (list_empty(iova_copy)) return; list_for_each_entry(domain, &iommu->domain_list, next) { struct iommu_domain_geometry *geo = &domain->domain->geometry; if (geo->aperture_start > start) start = geo->aperture_start; if (geo->aperture_end < end) end = geo->aperture_end; } /* Modify aperture limits. The new aper is either same or bigger */ node = list_first_entry(iova_copy, struct vfio_iova, list); node->start = start; node = list_last_entry(iova_copy, struct vfio_iova, list); node->end = end; } /* * Called when a group is detached. The reserved regions for that * group can be part of valid iova now. But since reserved regions * may be duplicated among groups, populate the iova valid regions * list again. */ static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu, struct list_head *iova_copy) { struct vfio_domain *d; struct vfio_iommu_group *g; struct vfio_iova *node; dma_addr_t start, end; LIST_HEAD(resv_regions); int ret; if (list_empty(iova_copy)) return -EINVAL; list_for_each_entry(d, &iommu->domain_list, next) { list_for_each_entry(g, &d->group_list, next) { ret = iommu_get_group_resv_regions(g->iommu_group, &resv_regions); if (ret) goto done; } } node = list_first_entry(iova_copy, struct vfio_iova, list); start = node->start; node = list_last_entry(iova_copy, struct vfio_iova, list); end = node->end; /* purge the iova list and create new one */ vfio_iommu_iova_free(iova_copy); ret = vfio_iommu_aper_resize(iova_copy, start, end); if (ret) goto done; /* Exclude current reserved regions from iova ranges */ ret = vfio_iommu_resv_exclude(iova_copy, &resv_regions); done: vfio_iommu_resv_free(&resv_regions); return ret; } static void vfio_iommu_type1_detach_group(void *iommu_data, struct iommu_group *iommu_group) { struct vfio_iommu *iommu = iommu_data; struct vfio_domain *domain; struct vfio_iommu_group *group; bool update_dirty_scope = false; LIST_HEAD(iova_copy); mutex_lock(&iommu->lock); list_for_each_entry(group, &iommu->emulated_iommu_groups, next) { if (group->iommu_group != iommu_group) continue; update_dirty_scope = !group->pinned_page_dirty_scope; list_del(&group->next); kfree(group); if (list_empty(&iommu->emulated_iommu_groups) && list_empty(&iommu->domain_list)) { WARN_ON(!list_empty(&iommu->device_list)); vfio_iommu_unmap_unpin_all(iommu); } goto detach_group_done; } /* * Get a copy of iova list. This will be used to update * and to replace the current one later. Please note that * we will leave the original list as it is if update fails. */ vfio_iommu_iova_get_copy(iommu, &iova_copy); list_for_each_entry(domain, &iommu->domain_list, next) { group = find_iommu_group(domain, iommu_group); if (!group) continue; iommu_detach_group(domain->domain, group->iommu_group); update_dirty_scope = !group->pinned_page_dirty_scope; list_del(&group->next); kfree(group); /* * Group ownership provides privilege, if the group list is * empty, the domain goes away. If it's the last domain with * iommu and external domain doesn't exist, then all the * mappings go away too. If it's the last domain with iommu and * external domain exist, update accounting */ if (list_empty(&domain->group_list)) { if (list_is_singular(&iommu->domain_list)) { if (list_empty(&iommu->emulated_iommu_groups)) { WARN_ON(!list_empty( &iommu->device_list)); vfio_iommu_unmap_unpin_all(iommu); } else { vfio_iommu_unmap_unpin_reaccount(iommu); } } iommu_domain_free(domain->domain); list_del(&domain->next); kfree(domain); vfio_iommu_aper_expand(iommu, &iova_copy); vfio_update_pgsize_bitmap(iommu); } break; } if (!vfio_iommu_resv_refresh(iommu, &iova_copy)) vfio_iommu_iova_insert_copy(iommu, &iova_copy); else vfio_iommu_iova_free(&iova_copy); detach_group_done: /* * Removal of a group without dirty tracking may allow the iommu scope * to be promoted. */ if (update_dirty_scope) { iommu->num_non_pinned_groups--; if (iommu->dirty_page_tracking) vfio_iommu_populate_bitmap_full(iommu); } mutex_unlock(&iommu->lock); } static void *vfio_iommu_type1_open(unsigned long arg) { struct vfio_iommu *iommu; iommu = kzalloc(sizeof(*iommu), GFP_KERNEL); if (!iommu) return ERR_PTR(-ENOMEM); switch (arg) { case VFIO_TYPE1_IOMMU: break; case VFIO_TYPE1_NESTING_IOMMU: iommu->nesting = true; fallthrough; case VFIO_TYPE1v2_IOMMU: iommu->v2 = true; break; default: kfree(iommu); return ERR_PTR(-EINVAL); } INIT_LIST_HEAD(&iommu->domain_list); INIT_LIST_HEAD(&iommu->iova_list); iommu->dma_list = RB_ROOT; iommu->dma_avail = dma_entry_limit; iommu->container_open = true; mutex_init(&iommu->lock); mutex_init(&iommu->device_list_lock); INIT_LIST_HEAD(&iommu->device_list); init_waitqueue_head(&iommu->vaddr_wait); iommu->pgsize_bitmap = PAGE_MASK; INIT_LIST_HEAD(&iommu->emulated_iommu_groups); return iommu; } static void vfio_release_domain(struct vfio_domain *domain) { struct vfio_iommu_group *group, *group_tmp; list_for_each_entry_safe(group, group_tmp, &domain->group_list, next) { iommu_detach_group(domain->domain, group->iommu_group); list_del(&group->next); kfree(group); } iommu_domain_free(domain->domain); } static void vfio_iommu_type1_release(void *iommu_data) { struct vfio_iommu *iommu = iommu_data; struct vfio_domain *domain, *domain_tmp; struct vfio_iommu_group *group, *next_group; list_for_each_entry_safe(group, next_group, &iommu->emulated_iommu_groups, next) { list_del(&group->next); kfree(group); } vfio_iommu_unmap_unpin_all(iommu); list_for_each_entry_safe(domain, domain_tmp, &iommu->domain_list, next) { vfio_release_domain(domain); list_del(&domain->next); kfree(domain); } vfio_iommu_iova_free(&iommu->iova_list); kfree(iommu); } static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu) { struct vfio_domain *domain; int ret = 1; mutex_lock(&iommu->lock); list_for_each_entry(domain, &iommu->domain_list, next) { if (!(domain->enforce_cache_coherency)) { ret = 0; break; } } mutex_unlock(&iommu->lock); return ret; } static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu, unsigned long arg) { switch (arg) { case VFIO_TYPE1_IOMMU: case VFIO_TYPE1v2_IOMMU: case VFIO_TYPE1_NESTING_IOMMU: case VFIO_UNMAP_ALL: case VFIO_UPDATE_VADDR: return 1; case VFIO_DMA_CC_IOMMU: if (!iommu) return 0; return vfio_domains_have_enforce_cache_coherency(iommu); default: return 0; } } static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps, struct vfio_iommu_type1_info_cap_iova_range *cap_iovas, size_t size) { struct vfio_info_cap_header *header; struct vfio_iommu_type1_info_cap_iova_range *iova_cap; header = vfio_info_cap_add(caps, size, VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, 1); if (IS_ERR(header)) return PTR_ERR(header); iova_cap = container_of(header, struct vfio_iommu_type1_info_cap_iova_range, header); iova_cap->nr_iovas = cap_iovas->nr_iovas; memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges, cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges)); return 0; } static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu, struct vfio_info_cap *caps) { struct vfio_iommu_type1_info_cap_iova_range *cap_iovas; struct vfio_iova *iova; size_t size; int iovas = 0, i = 0, ret; list_for_each_entry(iova, &iommu->iova_list, list) iovas++; if (!iovas) { /* * Return 0 as a container with a single mdev device * will have an empty list */ return 0; } size = struct_size(cap_iovas, iova_ranges, iovas); cap_iovas = kzalloc(size, GFP_KERNEL); if (!cap_iovas) return -ENOMEM; cap_iovas->nr_iovas = iovas; list_for_each_entry(iova, &iommu->iova_list, list) { cap_iovas->iova_ranges[i].start = iova->start; cap_iovas->iova_ranges[i].end = iova->end; i++; } ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size); kfree(cap_iovas); return ret; } static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu, struct vfio_info_cap *caps) { struct vfio_iommu_type1_info_cap_migration cap_mig; cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION; cap_mig.header.version = 1; cap_mig.flags = 0; /* support minimum pgsize */ cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap); cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX; return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig)); } static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu, struct vfio_info_cap *caps) { struct vfio_iommu_type1_info_dma_avail cap_dma_avail; cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL; cap_dma_avail.header.version = 1; cap_dma_avail.avail = iommu->dma_avail; return vfio_info_add_capability(caps, &cap_dma_avail.header, sizeof(cap_dma_avail)); } static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu, unsigned long arg) { struct vfio_iommu_type1_info info; unsigned long minsz; struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; unsigned long capsz; int ret; minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes); /* For backward compatibility, cannot require this */ capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; if (info.argsz >= capsz) { minsz = capsz; info.cap_offset = 0; /* output, no-recopy necessary */ } mutex_lock(&iommu->lock); info.flags = VFIO_IOMMU_INFO_PGSIZES; info.iova_pgsizes = iommu->pgsize_bitmap; ret = vfio_iommu_migration_build_caps(iommu, &caps); if (!ret) ret = vfio_iommu_dma_avail_build_caps(iommu, &caps); if (!ret) ret = vfio_iommu_iova_build_caps(iommu, &caps); mutex_unlock(&iommu->lock); if (ret) return ret; if (caps.size) { info.flags |= VFIO_IOMMU_INFO_CAPS; if (info.argsz < sizeof(info) + caps.size) { info.argsz = sizeof(info) + caps.size; } else { vfio_info_cap_shift(&caps, sizeof(info)); if (copy_to_user((void __user *)arg + sizeof(info), caps.buf, caps.size)) { kfree(caps.buf); return -EFAULT; } info.cap_offset = sizeof(info); } kfree(caps.buf); } return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu, unsigned long arg) { struct vfio_iommu_type1_dma_map map; unsigned long minsz; uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE | VFIO_DMA_MAP_FLAG_VADDR; minsz = offsetofend(struct vfio_iommu_type1_dma_map, size); if (copy_from_user(&map, (void __user *)arg, minsz)) return -EFAULT; if (map.argsz < minsz || map.flags & ~mask) return -EINVAL; return vfio_dma_do_map(iommu, &map); } static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu, unsigned long arg) { struct vfio_iommu_type1_dma_unmap unmap; struct vfio_bitmap bitmap = { 0 }; uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP | VFIO_DMA_UNMAP_FLAG_VADDR | VFIO_DMA_UNMAP_FLAG_ALL; unsigned long minsz; int ret; minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size); if (copy_from_user(&unmap, (void __user *)arg, minsz)) return -EFAULT; if (unmap.argsz < minsz || unmap.flags & ~mask) return -EINVAL; if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) && (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL | VFIO_DMA_UNMAP_FLAG_VADDR))) return -EINVAL; if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) { unsigned long pgshift; if (unmap.argsz < (minsz + sizeof(bitmap))) return -EINVAL; if (copy_from_user(&bitmap, (void __user *)(arg + minsz), sizeof(bitmap))) return -EFAULT; if (!access_ok((void __user *)bitmap.data, bitmap.size)) return -EINVAL; pgshift = __ffs(bitmap.pgsize); ret = verify_bitmap_size(unmap.size >> pgshift, bitmap.size); if (ret) return ret; } ret = vfio_dma_do_unmap(iommu, &unmap, &bitmap); if (ret) return ret; return copy_to_user((void __user *)arg, &unmap, minsz) ? -EFAULT : 0; } static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu, unsigned long arg) { struct vfio_iommu_type1_dirty_bitmap dirty; uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START | VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP | VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP; unsigned long minsz; int ret = 0; if (!iommu->v2) return -EACCES; minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags); if (copy_from_user(&dirty, (void __user *)arg, minsz)) return -EFAULT; if (dirty.argsz < minsz || dirty.flags & ~mask) return -EINVAL; /* only one flag should be set at a time */ if (__ffs(dirty.flags) != __fls(dirty.flags)) return -EINVAL; if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) { size_t pgsize; mutex_lock(&iommu->lock); pgsize = 1 << __ffs(iommu->pgsize_bitmap); if (!iommu->dirty_page_tracking) { ret = vfio_dma_bitmap_alloc_all(iommu, pgsize); if (!ret) iommu->dirty_page_tracking = true; } mutex_unlock(&iommu->lock); return ret; } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) { mutex_lock(&iommu->lock); if (iommu->dirty_page_tracking) { iommu->dirty_page_tracking = false; vfio_dma_bitmap_free_all(iommu); } mutex_unlock(&iommu->lock); return 0; } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) { struct vfio_iommu_type1_dirty_bitmap_get range; unsigned long pgshift; size_t data_size = dirty.argsz - minsz; size_t iommu_pgsize; if (!data_size || data_size < sizeof(range)) return -EINVAL; if (copy_from_user(&range, (void __user *)(arg + minsz), sizeof(range))) return -EFAULT; if (range.iova + range.size < range.iova) return -EINVAL; if (!access_ok((void __user *)range.bitmap.data, range.bitmap.size)) return -EINVAL; pgshift = __ffs(range.bitmap.pgsize); ret = verify_bitmap_size(range.size >> pgshift, range.bitmap.size); if (ret) return ret; mutex_lock(&iommu->lock); iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap); /* allow only smallest supported pgsize */ if (range.bitmap.pgsize != iommu_pgsize) { ret = -EINVAL; goto out_unlock; } if (range.iova & (iommu_pgsize - 1)) { ret = -EINVAL; goto out_unlock; } if (!range.size || range.size & (iommu_pgsize - 1)) { ret = -EINVAL; goto out_unlock; } if (iommu->dirty_page_tracking) ret = vfio_iova_dirty_bitmap(range.bitmap.data, iommu, range.iova, range.size, range.bitmap.pgsize); else ret = -EINVAL; out_unlock: mutex_unlock(&iommu->lock); return ret; } return -EINVAL; } static long vfio_iommu_type1_ioctl(void *iommu_data, unsigned int cmd, unsigned long arg) { struct vfio_iommu *iommu = iommu_data; switch (cmd) { case VFIO_CHECK_EXTENSION: return vfio_iommu_type1_check_extension(iommu, arg); case VFIO_IOMMU_GET_INFO: return vfio_iommu_type1_get_info(iommu, arg); case VFIO_IOMMU_MAP_DMA: return vfio_iommu_type1_map_dma(iommu, arg); case VFIO_IOMMU_UNMAP_DMA: return vfio_iommu_type1_unmap_dma(iommu, arg); case VFIO_IOMMU_DIRTY_PAGES: return vfio_iommu_type1_dirty_pages(iommu, arg); default: return -ENOTTY; } } static void vfio_iommu_type1_register_device(void *iommu_data, struct vfio_device *vdev) { struct vfio_iommu *iommu = iommu_data; if (!vdev->ops->dma_unmap) return; /* * list_empty(&iommu->device_list) is tested under the iommu->lock while * iteration for dma_unmap must be done under the device_list_lock. * Holding both locks here allows avoiding the device_list_lock in * several fast paths. See vfio_notify_dma_unmap() */ mutex_lock(&iommu->lock); mutex_lock(&iommu->device_list_lock); list_add(&vdev->iommu_entry, &iommu->device_list); mutex_unlock(&iommu->device_list_lock); mutex_unlock(&iommu->lock); } static void vfio_iommu_type1_unregister_device(void *iommu_data, struct vfio_device *vdev) { struct vfio_iommu *iommu = iommu_data; if (!vdev->ops->dma_unmap) return; mutex_lock(&iommu->lock); mutex_lock(&iommu->device_list_lock); list_del(&vdev->iommu_entry); mutex_unlock(&iommu->device_list_lock); mutex_unlock(&iommu->lock); } static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu, dma_addr_t user_iova, void *data, size_t count, bool write, size_t *copied) { struct mm_struct *mm; unsigned long vaddr; struct vfio_dma *dma; bool kthread = current->mm == NULL; size_t offset; int ret; *copied = 0; ret = vfio_find_dma_valid(iommu, user_iova, 1, &dma); if (ret < 0) return ret; if ((write && !(dma->prot & IOMMU_WRITE)) || !(dma->prot & IOMMU_READ)) return -EPERM; mm = get_task_mm(dma->task); if (!mm) return -EPERM; if (kthread) kthread_use_mm(mm); else if (current->mm != mm) goto out; offset = user_iova - dma->iova; if (count > dma->size - offset) count = dma->size - offset; vaddr = dma->vaddr + offset; if (write) { *copied = copy_to_user((void __user *)vaddr, data, count) ? 0 : count; if (*copied && iommu->dirty_page_tracking) { unsigned long pgshift = __ffs(iommu->pgsize_bitmap); /* * Bitmap populated with the smallest supported page * size */ bitmap_set(dma->bitmap, offset >> pgshift, ((offset + *copied - 1) >> pgshift) - (offset >> pgshift) + 1); } } else *copied = copy_from_user(data, (void __user *)vaddr, count) ? 0 : count; if (kthread) kthread_unuse_mm(mm); out: mmput(mm); return *copied ? 0 : -EFAULT; } static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova, void *data, size_t count, bool write) { struct vfio_iommu *iommu = iommu_data; int ret = 0; size_t done; mutex_lock(&iommu->lock); while (count > 0) { ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data, count, write, &done); if (ret) break; count -= done; data += done; user_iova += done; } mutex_unlock(&iommu->lock); return ret; } static struct iommu_domain * vfio_iommu_type1_group_iommu_domain(void *iommu_data, struct iommu_group *iommu_group) { struct iommu_domain *domain = ERR_PTR(-ENODEV); struct vfio_iommu *iommu = iommu_data; struct vfio_domain *d; if (!iommu || !iommu_group) return ERR_PTR(-EINVAL); mutex_lock(&iommu->lock); list_for_each_entry(d, &iommu->domain_list, next) { if (find_iommu_group(d, iommu_group)) { domain = d->domain; break; } } mutex_unlock(&iommu->lock); return domain; } static void vfio_iommu_type1_notify(void *iommu_data, enum vfio_iommu_notify_type event) { struct vfio_iommu *iommu = iommu_data; if (event != VFIO_IOMMU_CONTAINER_CLOSE) return; mutex_lock(&iommu->lock); iommu->container_open = false; mutex_unlock(&iommu->lock); wake_up_all(&iommu->vaddr_wait); } static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = { .name = "vfio-iommu-type1", .owner = THIS_MODULE, .open = vfio_iommu_type1_open, .release = vfio_iommu_type1_release, .ioctl = vfio_iommu_type1_ioctl, .attach_group = vfio_iommu_type1_attach_group, .detach_group = vfio_iommu_type1_detach_group, .pin_pages = vfio_iommu_type1_pin_pages, .unpin_pages = vfio_iommu_type1_unpin_pages, .register_device = vfio_iommu_type1_register_device, .unregister_device = vfio_iommu_type1_unregister_device, .dma_rw = vfio_iommu_type1_dma_rw, .group_iommu_domain = vfio_iommu_type1_group_iommu_domain, .notify = vfio_iommu_type1_notify, }; static int __init vfio_iommu_type1_init(void) { return vfio_register_iommu_driver(&vfio_iommu_driver_ops_type1); } static void __exit vfio_iommu_type1_cleanup(void) { vfio_unregister_iommu_driver(&vfio_iommu_driver_ops_type1); } module_init(vfio_iommu_type1_init); module_exit(vfio_iommu_type1_cleanup); MODULE_VERSION(DRIVER_VERSION); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1