Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Antonino A. Daplas | 14421 | 69.87% | 16 | 9.14% |
Ville Syrjälä | 1563 | 7.57% | 26 | 14.86% |
Linus Torvalds | 1197 | 5.80% | 6 | 3.43% |
James Simmons | 1126 | 5.46% | 17 | 9.71% |
Linus Torvalds (pre-git) | 966 | 4.68% | 28 | 16.00% |
Michael Hanselmann | 374 | 1.81% | 1 | 0.57% |
Vaibhav Gupta | 138 | 0.67% | 1 | 0.57% |
Luis R. Rodriguez | 111 | 0.54% | 4 | 2.29% |
Alexander Beregalov | 75 | 0.36% | 1 | 0.57% |
Mikulas Patocka | 63 | 0.31% | 4 | 2.29% |
Randy Dunlap | 60 | 0.29% | 5 | 2.86% |
Richard Purdie | 58 | 0.28% | 5 | 2.86% |
Arnd Bergmann | 54 | 0.26% | 2 | 1.14% |
Benjamin Collins | 47 | 0.23% | 1 | 0.57% |
Geert Uytterhoeven | 46 | 0.22% | 4 | 2.29% |
David S. Miller | 44 | 0.21% | 6 | 3.43% |
Amol Lad | 39 | 0.19% | 1 | 0.57% |
Matthew Garrett | 35 | 0.17% | 2 | 1.14% |
Andrew Morton | 32 | 0.16% | 1 | 0.57% |
Benjamin Herrenschmidt | 23 | 0.11% | 4 | 2.29% |
Thomas Zimmermann | 19 | 0.09% | 1 | 0.57% |
Roel Kluin | 16 | 0.08% | 1 | 0.57% |
Mathias Krause | 14 | 0.07% | 1 | 0.57% |
Joe Perches | 13 | 0.06% | 2 | 1.14% |
Pavel Machek | 11 | 0.05% | 2 | 1.14% |
Greg Kroah-Hartman | 10 | 0.05% | 1 | 0.57% |
Roman Zippel | 10 | 0.05% | 1 | 0.57% |
Sam Ravnborg | 8 | 0.04% | 1 | 0.57% |
Jani Nikula | 7 | 0.03% | 1 | 0.57% |
Dan Carpenter | 6 | 0.03% | 1 | 0.57% |
Torben Hohn | 5 | 0.02% | 1 | 0.57% |
Grant C. Likely | 4 | 0.02% | 1 | 0.57% |
Christoph Hellwig | 4 | 0.02% | 1 | 0.57% |
Vladis Dronov | 4 | 0.02% | 1 | 0.57% |
Alexander Kern | 4 | 0.02% | 1 | 0.57% |
Tobias Klauser | 3 | 0.01% | 1 | 0.57% |
Jason Yan | 2 | 0.01% | 1 | 0.57% |
Lucas De Marchi | 2 | 0.01% | 1 | 0.57% |
Olaf Hering | 2 | 0.01% | 1 | 0.57% |
Colin Ian King | 2 | 0.01% | 1 | 0.57% |
André Goddard Rosa | 2 | 0.01% | 1 | 0.57% |
Andres Salomon | 2 | 0.01% | 1 | 0.57% |
Yoann Padioleau | 2 | 0.01% | 1 | 0.57% |
Rusty Russell | 2 | 0.01% | 1 | 0.57% |
Julia Lawall | 1 | 0.00% | 1 | 0.57% |
Jan Engelhardt | 1 | 0.00% | 1 | 0.57% |
Daniel Vetter | 1 | 0.00% | 1 | 0.57% |
Wolfram Sang | 1 | 0.00% | 1 | 0.57% |
Thomas Gleixner | 1 | 0.00% | 1 | 0.57% |
Lionel Debroux | 1 | 0.00% | 1 | 0.57% |
Harvey Harrison | 1 | 0.00% | 1 | 0.57% |
Arvind Yadav | 1 | 0.00% | 1 | 0.57% |
Robert P. J. Day | 1 | 0.00% | 1 | 0.57% |
Bhumika Goyal | 1 | 0.00% | 1 | 0.57% |
Masanari Iida | 1 | 0.00% | 1 | 0.57% |
Krzysztof Helt | 1 | 0.00% | 1 | 0.57% |
Al Viro | 1 | 0.00% | 1 | 0.57% |
Konstantin Khlebnikov | 1 | 0.00% | 1 | 0.57% |
Total | 20640 | 175 |
/* * ATI Frame Buffer Device Driver Core * * Copyright (C) 2004 Alex Kern <alex.kern@gmx.de> * Copyright (C) 1997-2001 Geert Uytterhoeven * Copyright (C) 1998 Bernd Harries * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) * * This driver supports the following ATI graphics chips: * - ATI Mach64 * * To do: add support for * - ATI Rage128 (from aty128fb.c) * - ATI Radeon (from radeonfb.c) * * This driver is partly based on the PowerMac console driver: * * Copyright (C) 1996 Paul Mackerras * * and on the PowerMac ATI/mach64 display driver: * * Copyright (C) 1997 Michael AK Tesch * * with work by Jon Howell * Harry AC Eaton * Anthony Tong <atong@uiuc.edu> * * Generic LCD support written by Daniel Mantione, ported from 2.4.20 by Alex Kern * Many Thanks to Ville Syrjälä for patches and fixing nasting 16 bit color bug. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive for * more details. * * Many thanks to Nitya from ATI devrel for support and patience ! */ /****************************************************************************** TODO: - cursor support on all cards and all ramdacs. - cursor parameters controlable via ioctl()s. - guess PLL and MCLK based on the original PLL register values initialized by Open Firmware (if they are initialized). BIOS is done (Anyone with Mac to help with this?) ******************************************************************************/ #include <linux/aperture.h> #include <linux/compat.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/delay.h> #include <linux/compiler.h> #include <linux/console.h> #include <linux/fb.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/wait.h> #include <linux/backlight.h> #include <linux/reboot.h> #include <linux/dmi.h> #include <asm/io.h> #include <linux/uaccess.h> #include <video/mach64.h> #include "atyfb.h" #include "ati_ids.h" #ifdef __powerpc__ #include <asm/machdep.h> #include "../macmodes.h" #endif #ifdef __sparc__ #include <asm/fbio.h> #include <asm/oplib.h> #include <asm/prom.h> #endif #ifdef CONFIG_ADB_PMU #include <linux/adb.h> #include <linux/pmu.h> #endif #ifdef CONFIG_BOOTX_TEXT #include <asm/btext.h> #endif #ifdef CONFIG_PMAC_BACKLIGHT #include <asm/backlight.h> #endif /* * Debug flags. */ #undef DEBUG /*#define DEBUG*/ /* Make sure n * PAGE_SIZE is protected at end of Aperture for GUI-regs */ /* - must be large enough to catch all GUI-Regs */ /* - must be aligned to a PAGE boundary */ #define GUI_RESERVE (1 * PAGE_SIZE) /* FIXME: remove the FAIL definition */ #define FAIL(msg) do { \ if (!(var->activate & FB_ACTIVATE_TEST)) \ printk(KERN_CRIT "atyfb: " msg "\n"); \ return -EINVAL; \ } while (0) #define FAIL_MAX(msg, x, _max_) do { \ if (x > _max_) { \ if (!(var->activate & FB_ACTIVATE_TEST)) \ printk(KERN_CRIT "atyfb: " msg " %x(%x)\n", x, _max_); \ return -EINVAL; \ } \ } while (0) #ifdef DEBUG #define DPRINTK(fmt, args...) printk(KERN_DEBUG "atyfb: " fmt, ## args) #else #define DPRINTK(fmt, args...) no_printk(fmt, ##args) #endif #define PRINTKI(fmt, args...) printk(KERN_INFO "atyfb: " fmt, ## args) #define PRINTKE(fmt, args...) printk(KERN_ERR "atyfb: " fmt, ## args) #if defined(CONFIG_PMAC_BACKLIGHT) || defined(CONFIG_FB_ATY_GENERIC_LCD) || \ defined(CONFIG_FB_ATY_BACKLIGHT) || defined (CONFIG_PPC_PMAC) static const u32 lt_lcd_regs[] = { CNFG_PANEL_LG, LCD_GEN_CNTL_LG, DSTN_CONTROL_LG, HFB_PITCH_ADDR_LG, HORZ_STRETCHING_LG, VERT_STRETCHING_LG, 0, /* EXT_VERT_STRETCH */ LT_GIO_LG, POWER_MANAGEMENT_LG }; void aty_st_lcd(int index, u32 val, const struct atyfb_par *par) { if (M64_HAS(LT_LCD_REGS)) { aty_st_le32(lt_lcd_regs[index], val, par); } else { unsigned long temp; /* write addr byte */ temp = aty_ld_le32(LCD_INDEX, par); aty_st_le32(LCD_INDEX, (temp & ~LCD_INDEX_MASK) | index, par); /* write the register value */ aty_st_le32(LCD_DATA, val, par); } } u32 aty_ld_lcd(int index, const struct atyfb_par *par) { if (M64_HAS(LT_LCD_REGS)) { return aty_ld_le32(lt_lcd_regs[index], par); } else { unsigned long temp; /* write addr byte */ temp = aty_ld_le32(LCD_INDEX, par); aty_st_le32(LCD_INDEX, (temp & ~LCD_INDEX_MASK) | index, par); /* read the register value */ return aty_ld_le32(LCD_DATA, par); } } #else /* defined(CONFIG_PMAC_BACKLIGHT) || defined(CONFIG_FB_ATY_BACKLIGHT) || defined(CONFIG_FB_ATY_GENERIC_LCD) || defined(CONFIG_PPC_PMAC) */ void aty_st_lcd(int index, u32 val, const struct atyfb_par *par) { } u32 aty_ld_lcd(int index, const struct atyfb_par *par) { return 0; } #endif /* defined(CONFIG_PMAC_BACKLIGHT) || defined(CONFIG_FB_ATY_BACKLIGHT) || defined (CONFIG_FB_ATY_GENERIC_LCD) || defined(CONFIG_PPC_PMAC) */ #ifdef CONFIG_FB_ATY_GENERIC_LCD /* * ATIReduceRatio -- * * Reduce a fraction by factoring out the largest common divider of the * fraction's numerator and denominator. */ static void ATIReduceRatio(int *Numerator, int *Denominator) { int Multiplier, Divider, Remainder; Multiplier = *Numerator; Divider = *Denominator; while ((Remainder = Multiplier % Divider)) { Multiplier = Divider; Divider = Remainder; } *Numerator /= Divider; *Denominator /= Divider; } #endif /* * The Hardware parameters for each card */ struct pci_mmap_map { unsigned long voff; unsigned long poff; unsigned long size; unsigned long prot_flag; unsigned long prot_mask; }; static const struct fb_fix_screeninfo atyfb_fix = { .id = "ATY Mach64", .type = FB_TYPE_PACKED_PIXELS, .visual = FB_VISUAL_PSEUDOCOLOR, .xpanstep = 8, .ypanstep = 1, }; /* * Frame buffer device API */ static int atyfb_open(struct fb_info *info, int user); static int atyfb_release(struct fb_info *info, int user); static int atyfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info); static int atyfb_set_par(struct fb_info *info); static int atyfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int transp, struct fb_info *info); static int atyfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info); static int atyfb_blank(int blank, struct fb_info *info); static int atyfb_ioctl(struct fb_info *info, u_int cmd, u_long arg); #ifdef CONFIG_COMPAT static int atyfb_compat_ioctl(struct fb_info *info, u_int cmd, u_long arg) { return atyfb_ioctl(info, cmd, (u_long)compat_ptr(arg)); } #endif #ifdef __sparc__ static int atyfb_mmap(struct fb_info *info, struct vm_area_struct *vma); #endif static int atyfb_sync(struct fb_info *info); /* * Internal routines */ static int aty_init(struct fb_info *info); static void aty_get_crtc(const struct atyfb_par *par, struct crtc *crtc); static void aty_set_crtc(const struct atyfb_par *par, const struct crtc *crtc); static int aty_var_to_crtc(const struct fb_info *info, const struct fb_var_screeninfo *var, struct crtc *crtc); static int aty_crtc_to_var(const struct crtc *crtc, struct fb_var_screeninfo *var); static void set_off_pitch(struct atyfb_par *par, const struct fb_info *info); #ifdef CONFIG_PPC static int read_aty_sense(const struct atyfb_par *par); #endif static DEFINE_MUTEX(reboot_lock); static struct fb_info *reboot_info; /* * Interface used by the world */ static struct fb_var_screeninfo default_var = { /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */ 640, 480, 640, 480, 0, 0, 8, 0, {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0}, 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2, 0, FB_VMODE_NONINTERLACED }; static const struct fb_videomode defmode = { /* 640x480 @ 60 Hz, 31.5 kHz hsync */ NULL, 60, 640, 480, 39721, 40, 24, 32, 11, 96, 2, 0, FB_VMODE_NONINTERLACED }; static struct fb_ops atyfb_ops = { .owner = THIS_MODULE, .fb_open = atyfb_open, .fb_release = atyfb_release, .fb_check_var = atyfb_check_var, .fb_set_par = atyfb_set_par, .fb_setcolreg = atyfb_setcolreg, .fb_pan_display = atyfb_pan_display, .fb_blank = atyfb_blank, .fb_ioctl = atyfb_ioctl, #ifdef CONFIG_COMPAT .fb_compat_ioctl = atyfb_compat_ioctl, #endif .fb_fillrect = atyfb_fillrect, .fb_copyarea = atyfb_copyarea, .fb_imageblit = atyfb_imageblit, #ifdef __sparc__ .fb_mmap = atyfb_mmap, #endif .fb_sync = atyfb_sync, }; static bool noaccel; static bool nomtrr; static int vram; static int pll; static int mclk; static int xclk; static int comp_sync = -1; static char *mode; static int backlight = IS_BUILTIN(CONFIG_PMAC_BACKLIGHT); #ifdef CONFIG_PPC static int default_vmode = VMODE_CHOOSE; static int default_cmode = CMODE_CHOOSE; module_param_named(vmode, default_vmode, int, 0); MODULE_PARM_DESC(vmode, "int: video mode for mac"); module_param_named(cmode, default_cmode, int, 0); MODULE_PARM_DESC(cmode, "int: color mode for mac"); #endif #ifdef CONFIG_ATARI static unsigned int mach64_count = 0; static unsigned long phys_vmembase[FB_MAX] = { 0, }; static unsigned long phys_size[FB_MAX] = { 0, }; static unsigned long phys_guiregbase[FB_MAX] = { 0, }; #endif /* top -> down is an evolution of mach64 chipset, any corrections? */ #define ATI_CHIP_88800GX (M64F_GX) #define ATI_CHIP_88800CX (M64F_GX) #define ATI_CHIP_264CT (M64F_CT | M64F_INTEGRATED | M64F_CT_BUS | M64F_MAGIC_FIFO) #define ATI_CHIP_264ET (M64F_CT | M64F_INTEGRATED | M64F_CT_BUS | M64F_MAGIC_FIFO) #define ATI_CHIP_264VT (M64F_VT | M64F_INTEGRATED | M64F_VT_BUS | M64F_MAGIC_FIFO) #define ATI_CHIP_264GT (M64F_GT | M64F_INTEGRATED | M64F_MAGIC_FIFO | M64F_EXTRA_BRIGHT) #define ATI_CHIP_264VTB (M64F_VT | M64F_INTEGRATED | M64F_VT_BUS | M64F_GTB_DSP) #define ATI_CHIP_264VT3 (M64F_VT | M64F_INTEGRATED | M64F_VT_BUS | M64F_GTB_DSP | M64F_SDRAM_MAGIC_PLL) #define ATI_CHIP_264VT4 (M64F_VT | M64F_INTEGRATED | M64F_GTB_DSP) /* FIXME what is this chip? */ #define ATI_CHIP_264LT (M64F_GT | M64F_INTEGRATED | M64F_GTB_DSP) /* make sets shorter */ #define ATI_MODERN_SET (M64F_GT | M64F_INTEGRATED | M64F_GTB_DSP | M64F_EXTRA_BRIGHT) #define ATI_CHIP_264GTB (ATI_MODERN_SET | M64F_SDRAM_MAGIC_PLL) /*#define ATI_CHIP_264GTDVD ?*/ #define ATI_CHIP_264LTG (ATI_MODERN_SET | M64F_SDRAM_MAGIC_PLL) #define ATI_CHIP_264GT2C (ATI_MODERN_SET | M64F_SDRAM_MAGIC_PLL | M64F_HW_TRIPLE) #define ATI_CHIP_264GTPRO (ATI_MODERN_SET | M64F_SDRAM_MAGIC_PLL | M64F_HW_TRIPLE | M64F_FIFO_32 | M64F_RESET_3D) #define ATI_CHIP_264LTPRO (ATI_MODERN_SET | M64F_HW_TRIPLE | M64F_FIFO_32 | M64F_RESET_3D) #define ATI_CHIP_264XL (ATI_MODERN_SET | M64F_HW_TRIPLE | M64F_FIFO_32 | M64F_RESET_3D | M64F_XL_DLL | M64F_MFB_FORCE_4 | M64F_XL_MEM) #define ATI_CHIP_MOBILITY (ATI_MODERN_SET | M64F_HW_TRIPLE | M64F_FIFO_32 | M64F_RESET_3D | M64F_XL_DLL | M64F_MFB_FORCE_4 | M64F_XL_MEM | M64F_MOBIL_BUS) static struct { u16 pci_id; const char *name; int pll, mclk, xclk, ecp_max; u32 features; } aty_chips[] = { #ifdef CONFIG_FB_ATY_GX /* Mach64 GX */ { PCI_CHIP_MACH64GX, "ATI888GX00 (Mach64 GX)", 135, 50, 50, 0, ATI_CHIP_88800GX }, { PCI_CHIP_MACH64CX, "ATI888CX00 (Mach64 CX)", 135, 50, 50, 0, ATI_CHIP_88800CX }, #endif /* CONFIG_FB_ATY_GX */ #ifdef CONFIG_FB_ATY_CT { PCI_CHIP_MACH64CT, "ATI264CT (Mach64 CT)", 135, 60, 60, 0, ATI_CHIP_264CT }, { PCI_CHIP_MACH64ET, "ATI264ET (Mach64 ET)", 135, 60, 60, 0, ATI_CHIP_264ET }, /* FIXME what is this chip? */ { PCI_CHIP_MACH64LT, "ATI264LT (Mach64 LT)", 135, 63, 63, 0, ATI_CHIP_264LT }, { PCI_CHIP_MACH64VT, "ATI264VT (Mach64 VT)", 170, 67, 67, 80, ATI_CHIP_264VT }, { PCI_CHIP_MACH64GT, "3D RAGE (Mach64 GT)", 135, 63, 63, 80, ATI_CHIP_264GT }, { PCI_CHIP_MACH64VU, "ATI264VT3 (Mach64 VU)", 200, 67, 67, 80, ATI_CHIP_264VT3 }, { PCI_CHIP_MACH64GU, "3D RAGE II+ (Mach64 GU)", 200, 67, 67, 100, ATI_CHIP_264GTB }, { PCI_CHIP_MACH64LG, "3D RAGE LT (Mach64 LG)", 230, 63, 63, 100, ATI_CHIP_264LTG | M64F_LT_LCD_REGS | M64F_G3_PB_1024x768 }, { PCI_CHIP_MACH64VV, "ATI264VT4 (Mach64 VV)", 230, 83, 83, 100, ATI_CHIP_264VT4 }, { PCI_CHIP_MACH64GV, "3D RAGE IIC (Mach64 GV, PCI)", 230, 83, 83, 100, ATI_CHIP_264GT2C }, { PCI_CHIP_MACH64GW, "3D RAGE IIC (Mach64 GW, AGP)", 230, 83, 83, 100, ATI_CHIP_264GT2C }, { PCI_CHIP_MACH64GY, "3D RAGE IIC (Mach64 GY, PCI)", 230, 83, 83, 100, ATI_CHIP_264GT2C }, { PCI_CHIP_MACH64GZ, "3D RAGE IIC (Mach64 GZ, AGP)", 230, 83, 83, 100, ATI_CHIP_264GT2C }, { PCI_CHIP_MACH64GB, "3D RAGE PRO (Mach64 GB, BGA, AGP)", 230, 100, 100, 125, ATI_CHIP_264GTPRO }, { PCI_CHIP_MACH64GD, "3D RAGE PRO (Mach64 GD, BGA, AGP 1x)", 230, 100, 100, 125, ATI_CHIP_264GTPRO }, { PCI_CHIP_MACH64GI, "3D RAGE PRO (Mach64 GI, BGA, PCI)", 230, 100, 100, 125, ATI_CHIP_264GTPRO | M64F_MAGIC_VRAM_SIZE }, { PCI_CHIP_MACH64GP, "3D RAGE PRO (Mach64 GP, PQFP, PCI)", 230, 100, 100, 125, ATI_CHIP_264GTPRO }, { PCI_CHIP_MACH64GQ, "3D RAGE PRO (Mach64 GQ, PQFP, PCI, limited 3D)", 230, 100, 100, 125, ATI_CHIP_264GTPRO }, { PCI_CHIP_MACH64LB, "3D RAGE LT PRO (Mach64 LB, AGP)", 236, 75, 100, 135, ATI_CHIP_264LTPRO }, { PCI_CHIP_MACH64LD, "3D RAGE LT PRO (Mach64 LD, AGP)", 230, 100, 100, 135, ATI_CHIP_264LTPRO }, { PCI_CHIP_MACH64LI, "3D RAGE LT PRO (Mach64 LI, PCI)", 230, 100, 100, 135, ATI_CHIP_264LTPRO | M64F_G3_PB_1_1 | M64F_G3_PB_1024x768 }, { PCI_CHIP_MACH64LP, "3D RAGE LT PRO (Mach64 LP, PCI)", 230, 100, 100, 135, ATI_CHIP_264LTPRO | M64F_G3_PB_1024x768 }, { PCI_CHIP_MACH64LQ, "3D RAGE LT PRO (Mach64 LQ, PCI)", 230, 100, 100, 135, ATI_CHIP_264LTPRO }, { PCI_CHIP_MACH64GM, "3D RAGE XL (Mach64 GM, AGP 2x)", 230, 83, 63, 135, ATI_CHIP_264XL }, { PCI_CHIP_MACH64GN, "3D RAGE XC (Mach64 GN, AGP 2x)", 230, 83, 63, 135, ATI_CHIP_264XL }, { PCI_CHIP_MACH64GO, "3D RAGE XL (Mach64 GO, PCI-66)", 230, 83, 63, 135, ATI_CHIP_264XL }, { PCI_CHIP_MACH64GL, "3D RAGE XC (Mach64 GL, PCI-66)", 230, 83, 63, 135, ATI_CHIP_264XL }, { PCI_CHIP_MACH64GR, "3D RAGE XL (Mach64 GR, PCI-33)", 230, 83, 63, 135, ATI_CHIP_264XL | M64F_SDRAM_MAGIC_PLL }, { PCI_CHIP_MACH64GS, "3D RAGE XC (Mach64 GS, PCI-33)", 230, 83, 63, 135, ATI_CHIP_264XL }, { PCI_CHIP_MACH64LM, "3D RAGE Mobility P/M (Mach64 LM, AGP 2x)", 230, 83, 125, 135, ATI_CHIP_MOBILITY }, { PCI_CHIP_MACH64LN, "3D RAGE Mobility L (Mach64 LN, AGP 2x)", 230, 83, 125, 135, ATI_CHIP_MOBILITY }, { PCI_CHIP_MACH64LR, "3D RAGE Mobility P/M (Mach64 LR, PCI)", 230, 83, 125, 135, ATI_CHIP_MOBILITY }, { PCI_CHIP_MACH64LS, "3D RAGE Mobility L (Mach64 LS, PCI)", 230, 83, 125, 135, ATI_CHIP_MOBILITY }, #endif /* CONFIG_FB_ATY_CT */ }; /* * Last page of 8 MB (4 MB on ISA) aperture is MMIO, * unless the auxiliary register aperture is used. */ static void aty_fudge_framebuffer_len(struct fb_info *info) { struct atyfb_par *par = (struct atyfb_par *) info->par; if (!par->aux_start && (info->fix.smem_len == 0x800000 || (par->bus_type == ISA && info->fix.smem_len == 0x400000))) info->fix.smem_len -= GUI_RESERVE; } static int correct_chipset(struct atyfb_par *par) { u8 rev; u16 type; u32 chip_id; const char *name; int i; for (i = (int)ARRAY_SIZE(aty_chips) - 1; i >= 0; i--) if (par->pci_id == aty_chips[i].pci_id) break; if (i < 0) return -ENODEV; name = aty_chips[i].name; par->pll_limits.pll_max = aty_chips[i].pll; par->pll_limits.mclk = aty_chips[i].mclk; par->pll_limits.xclk = aty_chips[i].xclk; par->pll_limits.ecp_max = aty_chips[i].ecp_max; par->features = aty_chips[i].features; chip_id = aty_ld_le32(CNFG_CHIP_ID, par); type = chip_id & CFG_CHIP_TYPE; rev = (chip_id & CFG_CHIP_REV) >> 24; switch (par->pci_id) { #ifdef CONFIG_FB_ATY_GX case PCI_CHIP_MACH64GX: if (type != 0x00d7) return -ENODEV; break; case PCI_CHIP_MACH64CX: if (type != 0x0057) return -ENODEV; break; #endif #ifdef CONFIG_FB_ATY_CT case PCI_CHIP_MACH64VT: switch (rev & 0x07) { case 0x00: switch (rev & 0xc0) { case 0x00: name = "ATI264VT (A3) (Mach64 VT)"; par->pll_limits.pll_max = 170; par->pll_limits.mclk = 67; par->pll_limits.xclk = 67; par->pll_limits.ecp_max = 80; par->features = ATI_CHIP_264VT; break; case 0x40: name = "ATI264VT2 (A4) (Mach64 VT)"; par->pll_limits.pll_max = 200; par->pll_limits.mclk = 67; par->pll_limits.xclk = 67; par->pll_limits.ecp_max = 80; par->features = ATI_CHIP_264VT | M64F_MAGIC_POSTDIV; break; } break; case 0x01: name = "ATI264VT3 (B1) (Mach64 VT)"; par->pll_limits.pll_max = 200; par->pll_limits.mclk = 67; par->pll_limits.xclk = 67; par->pll_limits.ecp_max = 80; par->features = ATI_CHIP_264VTB; break; case 0x02: name = "ATI264VT3 (B2) (Mach64 VT)"; par->pll_limits.pll_max = 200; par->pll_limits.mclk = 67; par->pll_limits.xclk = 67; par->pll_limits.ecp_max = 80; par->features = ATI_CHIP_264VT3; break; } break; case PCI_CHIP_MACH64GT: switch (rev & 0x07) { case 0x01: name = "3D RAGE II (Mach64 GT)"; par->pll_limits.pll_max = 170; par->pll_limits.mclk = 67; par->pll_limits.xclk = 67; par->pll_limits.ecp_max = 80; par->features = ATI_CHIP_264GTB; break; case 0x02: name = "3D RAGE II+ (Mach64 GT)"; par->pll_limits.pll_max = 200; par->pll_limits.mclk = 67; par->pll_limits.xclk = 67; par->pll_limits.ecp_max = 100; par->features = ATI_CHIP_264GTB; break; } break; #endif } PRINTKI("%s [0x%04x rev 0x%02x]\n", name, type, rev); return 0; } static char ram_dram[] __maybe_unused = "DRAM"; static char ram_resv[] __maybe_unused = "RESV"; #ifdef CONFIG_FB_ATY_GX static char ram_vram[] = "VRAM"; #endif /* CONFIG_FB_ATY_GX */ #ifdef CONFIG_FB_ATY_CT static char ram_edo[] = "EDO"; static char ram_sdram[] = "SDRAM (1:1)"; static char ram_sgram[] = "SGRAM (1:1)"; static char ram_sdram32[] = "SDRAM (2:1) (32-bit)"; static char ram_wram[] = "WRAM"; static char ram_off[] = "OFF"; #endif /* CONFIG_FB_ATY_CT */ #ifdef CONFIG_FB_ATY_GX static char *aty_gx_ram[8] = { ram_dram, ram_vram, ram_vram, ram_dram, ram_dram, ram_vram, ram_vram, ram_resv }; #endif /* CONFIG_FB_ATY_GX */ #ifdef CONFIG_FB_ATY_CT static char *aty_ct_ram[8] = { ram_off, ram_dram, ram_edo, ram_edo, ram_sdram, ram_sgram, ram_wram, ram_resv }; static char *aty_xl_ram[8] = { ram_off, ram_dram, ram_edo, ram_edo, ram_sdram, ram_sgram, ram_sdram32, ram_resv }; #endif /* CONFIG_FB_ATY_CT */ static u32 atyfb_get_pixclock(struct fb_var_screeninfo *var, struct atyfb_par *par) { u32 pixclock = var->pixclock; #ifdef CONFIG_FB_ATY_GENERIC_LCD u32 lcd_on_off; par->pll.ct.xres = 0; if (par->lcd_table != 0) { lcd_on_off = aty_ld_lcd(LCD_GEN_CNTL, par); if (lcd_on_off & LCD_ON) { par->pll.ct.xres = var->xres; pixclock = par->lcd_pixclock; } } #endif return pixclock; } #if defined(CONFIG_PPC) /* * Apple monitor sense */ static int read_aty_sense(const struct atyfb_par *par) { int sense, i; aty_st_le32(GP_IO, 0x31003100, par); /* drive outputs high */ __delay(200); aty_st_le32(GP_IO, 0, par); /* turn off outputs */ __delay(2000); i = aty_ld_le32(GP_IO, par); /* get primary sense value */ sense = ((i & 0x3000) >> 3) | (i & 0x100); /* drive each sense line low in turn and collect the other 2 */ aty_st_le32(GP_IO, 0x20000000, par); /* drive A low */ __delay(2000); i = aty_ld_le32(GP_IO, par); sense |= ((i & 0x1000) >> 7) | ((i & 0x100) >> 4); aty_st_le32(GP_IO, 0x20002000, par); /* drive A high again */ __delay(200); aty_st_le32(GP_IO, 0x10000000, par); /* drive B low */ __delay(2000); i = aty_ld_le32(GP_IO, par); sense |= ((i & 0x2000) >> 10) | ((i & 0x100) >> 6); aty_st_le32(GP_IO, 0x10001000, par); /* drive B high again */ __delay(200); aty_st_le32(GP_IO, 0x01000000, par); /* drive C low */ __delay(2000); sense |= (aty_ld_le32(GP_IO, par) & 0x3000) >> 12; aty_st_le32(GP_IO, 0, par); /* turn off outputs */ return sense; } #endif /* defined(CONFIG_PPC) */ /* ------------------------------------------------------------------------- */ /* * CRTC programming */ static void aty_get_crtc(const struct atyfb_par *par, struct crtc *crtc) { #ifdef CONFIG_FB_ATY_GENERIC_LCD if (par->lcd_table != 0) { if (!M64_HAS(LT_LCD_REGS)) { crtc->lcd_index = aty_ld_le32(LCD_INDEX, par); aty_st_le32(LCD_INDEX, crtc->lcd_index, par); } crtc->lcd_config_panel = aty_ld_lcd(CNFG_PANEL, par); crtc->lcd_gen_cntl = aty_ld_lcd(LCD_GEN_CNTL, par); /* switch to non shadow registers */ aty_st_lcd(LCD_GEN_CNTL, crtc->lcd_gen_cntl & ~(CRTC_RW_SELECT | SHADOW_EN | SHADOW_RW_EN), par); /* save stretching */ crtc->horz_stretching = aty_ld_lcd(HORZ_STRETCHING, par); crtc->vert_stretching = aty_ld_lcd(VERT_STRETCHING, par); if (!M64_HAS(LT_LCD_REGS)) crtc->ext_vert_stretch = aty_ld_lcd(EXT_VERT_STRETCH, par); } #endif crtc->h_tot_disp = aty_ld_le32(CRTC_H_TOTAL_DISP, par); crtc->h_sync_strt_wid = aty_ld_le32(CRTC_H_SYNC_STRT_WID, par); crtc->v_tot_disp = aty_ld_le32(CRTC_V_TOTAL_DISP, par); crtc->v_sync_strt_wid = aty_ld_le32(CRTC_V_SYNC_STRT_WID, par); crtc->vline_crnt_vline = aty_ld_le32(CRTC_VLINE_CRNT_VLINE, par); crtc->off_pitch = aty_ld_le32(CRTC_OFF_PITCH, par); crtc->gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par); #ifdef CONFIG_FB_ATY_GENERIC_LCD if (par->lcd_table != 0) { /* switch to shadow registers */ aty_st_lcd(LCD_GEN_CNTL, (crtc->lcd_gen_cntl & ~CRTC_RW_SELECT) | SHADOW_EN | SHADOW_RW_EN, par); crtc->shadow_h_tot_disp = aty_ld_le32(CRTC_H_TOTAL_DISP, par); crtc->shadow_h_sync_strt_wid = aty_ld_le32(CRTC_H_SYNC_STRT_WID, par); crtc->shadow_v_tot_disp = aty_ld_le32(CRTC_V_TOTAL_DISP, par); crtc->shadow_v_sync_strt_wid = aty_ld_le32(CRTC_V_SYNC_STRT_WID, par); aty_st_le32(LCD_GEN_CNTL, crtc->lcd_gen_cntl, par); } #endif /* CONFIG_FB_ATY_GENERIC_LCD */ } static void aty_set_crtc(const struct atyfb_par *par, const struct crtc *crtc) { #ifdef CONFIG_FB_ATY_GENERIC_LCD if (par->lcd_table != 0) { /* stop CRTC */ aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl & ~(CRTC_EXT_DISP_EN | CRTC_EN), par); /* update non-shadow registers first */ aty_st_lcd(CNFG_PANEL, crtc->lcd_config_panel, par); aty_st_lcd(LCD_GEN_CNTL, crtc->lcd_gen_cntl & ~(CRTC_RW_SELECT | SHADOW_EN | SHADOW_RW_EN), par); /* temporarily disable stretching */ aty_st_lcd(HORZ_STRETCHING, crtc->horz_stretching & ~(HORZ_STRETCH_MODE | HORZ_STRETCH_EN), par); aty_st_lcd(VERT_STRETCHING, crtc->vert_stretching & ~(VERT_STRETCH_RATIO1 | VERT_STRETCH_RATIO2 | VERT_STRETCH_USE0 | VERT_STRETCH_EN), par); } #endif /* turn off CRT */ aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl & ~CRTC_EN, par); DPRINTK("setting up CRTC\n"); DPRINTK("set primary CRT to %ix%i %c%c composite %c\n", ((((crtc->h_tot_disp >> 16) & 0xff) + 1) << 3), (((crtc->v_tot_disp >> 16) & 0x7ff) + 1), (crtc->h_sync_strt_wid & 0x200000) ? 'N' : 'P', (crtc->v_sync_strt_wid & 0x200000) ? 'N' : 'P', (crtc->gen_cntl & CRTC_CSYNC_EN) ? 'P' : 'N'); DPRINTK("CRTC_H_TOTAL_DISP: %x\n", crtc->h_tot_disp); DPRINTK("CRTC_H_SYNC_STRT_WID: %x\n", crtc->h_sync_strt_wid); DPRINTK("CRTC_V_TOTAL_DISP: %x\n", crtc->v_tot_disp); DPRINTK("CRTC_V_SYNC_STRT_WID: %x\n", crtc->v_sync_strt_wid); DPRINTK("CRTC_OFF_PITCH: %x\n", crtc->off_pitch); DPRINTK("CRTC_VLINE_CRNT_VLINE: %x\n", crtc->vline_crnt_vline); DPRINTK("CRTC_GEN_CNTL: %x\n", crtc->gen_cntl); aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_tot_disp, par); aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid, par); aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_tot_disp, par); aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid, par); aty_st_le32(CRTC_OFF_PITCH, crtc->off_pitch, par); aty_st_le32(CRTC_VLINE_CRNT_VLINE, crtc->vline_crnt_vline, par); aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl, par); #if 0 FIXME if (par->accel_flags & FB_ACCELF_TEXT) aty_init_engine(par, info); #endif #ifdef CONFIG_FB_ATY_GENERIC_LCD /* after setting the CRTC registers we should set the LCD registers. */ if (par->lcd_table != 0) { /* switch to shadow registers */ aty_st_lcd(LCD_GEN_CNTL, (crtc->lcd_gen_cntl & ~CRTC_RW_SELECT) | SHADOW_EN | SHADOW_RW_EN, par); DPRINTK("set shadow CRT to %ix%i %c%c\n", ((((crtc->shadow_h_tot_disp >> 16) & 0xff) + 1) << 3), (((crtc->shadow_v_tot_disp >> 16) & 0x7ff) + 1), (crtc->shadow_h_sync_strt_wid & 0x200000) ? 'N' : 'P', (crtc->shadow_v_sync_strt_wid & 0x200000) ? 'N' : 'P'); DPRINTK("SHADOW CRTC_H_TOTAL_DISP: %x\n", crtc->shadow_h_tot_disp); DPRINTK("SHADOW CRTC_H_SYNC_STRT_WID: %x\n", crtc->shadow_h_sync_strt_wid); DPRINTK("SHADOW CRTC_V_TOTAL_DISP: %x\n", crtc->shadow_v_tot_disp); DPRINTK("SHADOW CRTC_V_SYNC_STRT_WID: %x\n", crtc->shadow_v_sync_strt_wid); aty_st_le32(CRTC_H_TOTAL_DISP, crtc->shadow_h_tot_disp, par); aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->shadow_h_sync_strt_wid, par); aty_st_le32(CRTC_V_TOTAL_DISP, crtc->shadow_v_tot_disp, par); aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->shadow_v_sync_strt_wid, par); /* restore CRTC selection & shadow state and enable stretching */ DPRINTK("LCD_GEN_CNTL: %x\n", crtc->lcd_gen_cntl); DPRINTK("HORZ_STRETCHING: %x\n", crtc->horz_stretching); DPRINTK("VERT_STRETCHING: %x\n", crtc->vert_stretching); if (!M64_HAS(LT_LCD_REGS)) DPRINTK("EXT_VERT_STRETCH: %x\n", crtc->ext_vert_stretch); aty_st_lcd(LCD_GEN_CNTL, crtc->lcd_gen_cntl, par); aty_st_lcd(HORZ_STRETCHING, crtc->horz_stretching, par); aty_st_lcd(VERT_STRETCHING, crtc->vert_stretching, par); if (!M64_HAS(LT_LCD_REGS)) { aty_st_lcd(EXT_VERT_STRETCH, crtc->ext_vert_stretch, par); aty_ld_le32(LCD_INDEX, par); aty_st_le32(LCD_INDEX, crtc->lcd_index, par); } } #endif /* CONFIG_FB_ATY_GENERIC_LCD */ } static u32 calc_line_length(struct atyfb_par *par, u32 vxres, u32 bpp) { u32 line_length = vxres * bpp / 8; if (par->ram_type == SGRAM || (!M64_HAS(XL_MEM) && par->ram_type == WRAM)) line_length = (line_length + 63) & ~63; return line_length; } static int aty_var_to_crtc(const struct fb_info *info, const struct fb_var_screeninfo *var, struct crtc *crtc) { struct atyfb_par *par = (struct atyfb_par *) info->par; u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp; u32 sync, vmode; u32 h_total, h_disp, h_sync_strt, h_sync_end, h_sync_dly, h_sync_wid, h_sync_pol; u32 v_total, v_disp, v_sync_strt, v_sync_end, v_sync_wid, v_sync_pol, c_sync; u32 pix_width, dp_pix_width, dp_chain_mask; u32 line_length; /* input */ xres = (var->xres + 7) & ~7; yres = var->yres; vxres = (var->xres_virtual + 7) & ~7; vyres = var->yres_virtual; xoffset = (var->xoffset + 7) & ~7; yoffset = var->yoffset; bpp = var->bits_per_pixel; if (bpp == 16) bpp = (var->green.length == 5) ? 15 : 16; sync = var->sync; vmode = var->vmode; /* convert (and round up) and validate */ if (vxres < xres + xoffset) vxres = xres + xoffset; h_disp = xres; if (vyres < yres + yoffset) vyres = yres + yoffset; v_disp = yres; if (bpp <= 8) { bpp = 8; pix_width = CRTC_PIX_WIDTH_8BPP; dp_pix_width = HOST_8BPP | SRC_8BPP | DST_8BPP | BYTE_ORDER_LSB_TO_MSB; dp_chain_mask = DP_CHAIN_8BPP; } else if (bpp <= 15) { bpp = 16; pix_width = CRTC_PIX_WIDTH_15BPP; dp_pix_width = HOST_15BPP | SRC_15BPP | DST_15BPP | BYTE_ORDER_LSB_TO_MSB; dp_chain_mask = DP_CHAIN_15BPP; } else if (bpp <= 16) { bpp = 16; pix_width = CRTC_PIX_WIDTH_16BPP; dp_pix_width = HOST_16BPP | SRC_16BPP | DST_16BPP | BYTE_ORDER_LSB_TO_MSB; dp_chain_mask = DP_CHAIN_16BPP; } else if (bpp <= 24 && M64_HAS(INTEGRATED)) { bpp = 24; pix_width = CRTC_PIX_WIDTH_24BPP; dp_pix_width = HOST_8BPP | SRC_8BPP | DST_8BPP | BYTE_ORDER_LSB_TO_MSB; dp_chain_mask = DP_CHAIN_24BPP; } else if (bpp <= 32) { bpp = 32; pix_width = CRTC_PIX_WIDTH_32BPP; dp_pix_width = HOST_32BPP | SRC_32BPP | DST_32BPP | BYTE_ORDER_LSB_TO_MSB; dp_chain_mask = DP_CHAIN_32BPP; } else FAIL("invalid bpp"); line_length = calc_line_length(par, vxres, bpp); if (vyres * line_length > info->fix.smem_len) FAIL("not enough video RAM"); h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1; v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1; if ((xres > 1920) || (yres > 1200)) { FAIL("MACH64 chips are designed for max 1920x1200\n" "select another resolution."); } h_sync_strt = h_disp + var->right_margin; h_sync_end = h_sync_strt + var->hsync_len; h_sync_dly = var->right_margin & 7; h_total = h_sync_end + h_sync_dly + var->left_margin; v_sync_strt = v_disp + var->lower_margin; v_sync_end = v_sync_strt + var->vsync_len; v_total = v_sync_end + var->upper_margin; #ifdef CONFIG_FB_ATY_GENERIC_LCD if (par->lcd_table != 0) { if (!M64_HAS(LT_LCD_REGS)) { u32 lcd_index = aty_ld_le32(LCD_INDEX, par); crtc->lcd_index = lcd_index & ~(LCD_INDEX_MASK | LCD_DISPLAY_DIS | LCD_SRC_SEL | CRTC2_DISPLAY_DIS); aty_st_le32(LCD_INDEX, lcd_index, par); } if (!M64_HAS(MOBIL_BUS)) crtc->lcd_index |= CRTC2_DISPLAY_DIS; crtc->lcd_config_panel = aty_ld_lcd(CNFG_PANEL, par) | 0x4000; crtc->lcd_gen_cntl = aty_ld_lcd(LCD_GEN_CNTL, par) & ~CRTC_RW_SELECT; crtc->lcd_gen_cntl &= ~(HORZ_DIVBY2_EN | DIS_HOR_CRT_DIVBY2 | TVCLK_PM_EN | /*VCLK_DAC_PM_EN | USE_SHADOWED_VEND |*/ USE_SHADOWED_ROWCUR | SHADOW_EN | SHADOW_RW_EN); crtc->lcd_gen_cntl |= DONT_SHADOW_VPAR | LOCK_8DOT; if ((crtc->lcd_gen_cntl & LCD_ON) && ((xres > par->lcd_width) || (yres > par->lcd_height))) { /* * We cannot display the mode on the LCD. If the CRT is * enabled we can turn off the LCD. * If the CRT is off, it isn't a good idea to switch it * on; we don't know if one is connected. So it's better * to fail then. */ if (crtc->lcd_gen_cntl & CRT_ON) { if (!(var->activate & FB_ACTIVATE_TEST)) PRINTKI("Disable LCD panel, because video mode does not fit.\n"); crtc->lcd_gen_cntl &= ~LCD_ON; /*aty_st_lcd(LCD_GEN_CNTL, crtc->lcd_gen_cntl, par);*/ } else { if (!(var->activate & FB_ACTIVATE_TEST)) PRINTKE("Video mode exceeds size of LCD panel.\nConnect this computer to a conventional monitor if you really need this mode.\n"); return -EINVAL; } } } if ((par->lcd_table != 0) && (crtc->lcd_gen_cntl & LCD_ON)) { int VScan = 1; /* bpp -> bytespp, 1,4 -> 0; 8 -> 2; 15,16 -> 1; 24 -> 6; 32 -> 5 const u8 DFP_h_sync_dly_LT[] = { 0, 2, 1, 6, 5 }; const u8 ADD_to_strt_wid_and_dly_LT_DAC[] = { 0, 5, 6, 9, 9, 12, 12 }; */ vmode &= ~(FB_VMODE_DOUBLE | FB_VMODE_INTERLACED); /* * This is horror! When we simulate, say 640x480 on an 800x600 * LCD monitor, the CRTC should be programmed 800x600 values for * the non visible part, but 640x480 for the visible part. * This code has been tested on a laptop with it's 1400x1050 LCD * monitor and a conventional monitor both switched on. * Tested modes: 1280x1024, 1152x864, 1024x768, 800x600, * works with little glitches also with DOUBLESCAN modes */ if (yres < par->lcd_height) { VScan = par->lcd_height / yres; if (VScan > 1) { VScan = 2; vmode |= FB_VMODE_DOUBLE; } } h_sync_strt = h_disp + par->lcd_right_margin; h_sync_end = h_sync_strt + par->lcd_hsync_len; h_sync_dly = /*DFP_h_sync_dly[ ( bpp + 1 ) / 3 ]; */par->lcd_hsync_dly; h_total = h_disp + par->lcd_hblank_len; v_sync_strt = v_disp + par->lcd_lower_margin / VScan; v_sync_end = v_sync_strt + par->lcd_vsync_len / VScan; v_total = v_disp + par->lcd_vblank_len / VScan; } #endif /* CONFIG_FB_ATY_GENERIC_LCD */ h_disp = (h_disp >> 3) - 1; h_sync_strt = (h_sync_strt >> 3) - 1; h_sync_end = (h_sync_end >> 3) - 1; h_total = (h_total >> 3) - 1; h_sync_wid = h_sync_end - h_sync_strt; FAIL_MAX("h_disp too large", h_disp, 0xff); FAIL_MAX("h_sync_strt too large", h_sync_strt, 0x1ff); /*FAIL_MAX("h_sync_wid too large", h_sync_wid, 0x1f);*/ if (h_sync_wid > 0x1f) h_sync_wid = 0x1f; FAIL_MAX("h_total too large", h_total, 0x1ff); if (vmode & FB_VMODE_DOUBLE) { v_disp <<= 1; v_sync_strt <<= 1; v_sync_end <<= 1; v_total <<= 1; } v_disp--; v_sync_strt--; v_sync_end--; v_total--; v_sync_wid = v_sync_end - v_sync_strt; FAIL_MAX("v_disp too large", v_disp, 0x7ff); FAIL_MAX("v_sync_stsrt too large", v_sync_strt, 0x7ff); /*FAIL_MAX("v_sync_wid too large", v_sync_wid, 0x1f);*/ if (v_sync_wid > 0x1f) v_sync_wid = 0x1f; FAIL_MAX("v_total too large", v_total, 0x7ff); c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? CRTC_CSYNC_EN : 0; /* output */ crtc->vxres = vxres; crtc->vyres = vyres; crtc->xoffset = xoffset; crtc->yoffset = yoffset; crtc->bpp = bpp; crtc->off_pitch = ((yoffset * line_length + xoffset * bpp / 8) / 8) | ((line_length / bpp) << 22); crtc->vline_crnt_vline = 0; crtc->h_tot_disp = h_total | (h_disp << 16); crtc->h_sync_strt_wid = (h_sync_strt & 0xff) | (h_sync_dly << 8) | ((h_sync_strt & 0x100) << 4) | (h_sync_wid << 16) | (h_sync_pol << 21); crtc->v_tot_disp = v_total | (v_disp << 16); crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) | (v_sync_pol << 21); /* crtc->gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par) & CRTC_PRESERVED_MASK; */ crtc->gen_cntl = CRTC_EXT_DISP_EN | CRTC_EN | pix_width | c_sync; crtc->gen_cntl |= CRTC_VGA_LINEAR; /* Enable doublescan mode if requested */ if (vmode & FB_VMODE_DOUBLE) crtc->gen_cntl |= CRTC_DBL_SCAN_EN; /* Enable interlaced mode if requested */ if (vmode & FB_VMODE_INTERLACED) crtc->gen_cntl |= CRTC_INTERLACE_EN; #ifdef CONFIG_FB_ATY_GENERIC_LCD if (par->lcd_table != 0) { u32 vdisplay = yres; if (vmode & FB_VMODE_DOUBLE) vdisplay <<= 1; crtc->gen_cntl &= ~(CRTC2_EN | CRTC2_PIX_WIDTH); crtc->lcd_gen_cntl &= ~(HORZ_DIVBY2_EN | DIS_HOR_CRT_DIVBY2 | /*TVCLK_PM_EN | VCLK_DAC_PM_EN |*/ USE_SHADOWED_VEND | USE_SHADOWED_ROWCUR | SHADOW_EN | SHADOW_RW_EN); crtc->lcd_gen_cntl |= DONT_SHADOW_VPAR/* | LOCK_8DOT*/; /* MOBILITY M1 tested, FIXME: LT */ crtc->horz_stretching = aty_ld_lcd(HORZ_STRETCHING, par); if (!M64_HAS(LT_LCD_REGS)) crtc->ext_vert_stretch = aty_ld_lcd(EXT_VERT_STRETCH, par) & ~(AUTO_VERT_RATIO | VERT_STRETCH_MODE | VERT_STRETCH_RATIO3); crtc->horz_stretching &= ~(HORZ_STRETCH_RATIO | HORZ_STRETCH_LOOP | AUTO_HORZ_RATIO | HORZ_STRETCH_MODE | HORZ_STRETCH_EN); if (xres < par->lcd_width && crtc->lcd_gen_cntl & LCD_ON) { do { /* * The horizontal blender misbehaves when * HDisplay is less than a certain threshold * (440 for a 1024-wide panel). It doesn't * stretch such modes enough. Use pixel * replication instead of blending to stretch * modes that can be made to exactly fit the * panel width. The undocumented "NoLCDBlend" * option allows the pixel-replicated mode to * be slightly wider or narrower than the * panel width. It also causes a mode that is * exactly half as wide as the panel to be * pixel-replicated, rather than blended. */ int HDisplay = xres & ~7; int nStretch = par->lcd_width / HDisplay; int Remainder = par->lcd_width % HDisplay; if ((!Remainder && ((nStretch > 2))) || (((HDisplay * 16) / par->lcd_width) < 7)) { static const char StretchLoops[] = { 10, 12, 13, 15, 16 }; int horz_stretch_loop = -1, BestRemainder; int Numerator = HDisplay, Denominator = par->lcd_width; int Index = 5; ATIReduceRatio(&Numerator, &Denominator); BestRemainder = (Numerator * 16) / Denominator; while (--Index >= 0) { Remainder = ((Denominator - Numerator) * StretchLoops[Index]) % Denominator; if (Remainder < BestRemainder) { horz_stretch_loop = Index; if (!(BestRemainder = Remainder)) break; } } if ((horz_stretch_loop >= 0) && !BestRemainder) { int horz_stretch_ratio = 0, Accumulator = 0; int reuse_previous = 1; Index = StretchLoops[horz_stretch_loop]; while (--Index >= 0) { if (Accumulator > 0) horz_stretch_ratio |= reuse_previous; else Accumulator += Denominator; Accumulator -= Numerator; reuse_previous <<= 1; } crtc->horz_stretching |= (HORZ_STRETCH_EN | ((horz_stretch_loop & HORZ_STRETCH_LOOP) << 16) | (horz_stretch_ratio & HORZ_STRETCH_RATIO)); break; /* Out of the do { ... } while (0) */ } } crtc->horz_stretching |= (HORZ_STRETCH_MODE | HORZ_STRETCH_EN | (((HDisplay * (HORZ_STRETCH_BLEND + 1)) / par->lcd_width) & HORZ_STRETCH_BLEND)); } while (0); } if (vdisplay < par->lcd_height && crtc->lcd_gen_cntl & LCD_ON) { crtc->vert_stretching = (VERT_STRETCH_USE0 | VERT_STRETCH_EN | (((vdisplay * (VERT_STRETCH_RATIO0 + 1)) / par->lcd_height) & VERT_STRETCH_RATIO0)); if (!M64_HAS(LT_LCD_REGS) && xres <= (M64_HAS(MOBIL_BUS) ? 1024 : 800)) crtc->ext_vert_stretch |= VERT_STRETCH_MODE; } else { /* * Don't use vertical blending if the mode is too wide * or not vertically stretched. */ crtc->vert_stretching = 0; } /* copy to shadow crtc */ crtc->shadow_h_tot_disp = crtc->h_tot_disp; crtc->shadow_h_sync_strt_wid = crtc->h_sync_strt_wid; crtc->shadow_v_tot_disp = crtc->v_tot_disp; crtc->shadow_v_sync_strt_wid = crtc->v_sync_strt_wid; } #endif /* CONFIG_FB_ATY_GENERIC_LCD */ if (M64_HAS(MAGIC_FIFO)) { /* FIXME: display FIFO low watermark values */ crtc->gen_cntl |= (aty_ld_le32(CRTC_GEN_CNTL, par) & CRTC_FIFO_LWM); } crtc->dp_pix_width = dp_pix_width; crtc->dp_chain_mask = dp_chain_mask; return 0; } static int aty_crtc_to_var(const struct crtc *crtc, struct fb_var_screeninfo *var) { u32 xres, yres, bpp, left, right, upper, lower, hslen, vslen, sync; u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol; u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync; u32 pix_width; u32 double_scan, interlace; /* input */ h_total = crtc->h_tot_disp & 0x1ff; h_disp = (crtc->h_tot_disp >> 16) & 0xff; h_sync_strt = (crtc->h_sync_strt_wid & 0xff) | ((crtc->h_sync_strt_wid >> 4) & 0x100); h_sync_dly = (crtc->h_sync_strt_wid >> 8) & 0x7; h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x1f; h_sync_pol = (crtc->h_sync_strt_wid >> 21) & 0x1; v_total = crtc->v_tot_disp & 0x7ff; v_disp = (crtc->v_tot_disp >> 16) & 0x7ff; v_sync_strt = crtc->v_sync_strt_wid & 0x7ff; v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f; v_sync_pol = (crtc->v_sync_strt_wid >> 21) & 0x1; c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0; pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK; double_scan = crtc->gen_cntl & CRTC_DBL_SCAN_EN; interlace = crtc->gen_cntl & CRTC_INTERLACE_EN; /* convert */ xres = (h_disp + 1) * 8; yres = v_disp + 1; left = (h_total - h_sync_strt - h_sync_wid) * 8 - h_sync_dly; right = (h_sync_strt - h_disp) * 8 + h_sync_dly; hslen = h_sync_wid * 8; upper = v_total - v_sync_strt - v_sync_wid; lower = v_sync_strt - v_disp; vslen = v_sync_wid; sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) | (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) | (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0); switch (pix_width) { case CRTC_PIX_WIDTH_8BPP: bpp = 8; var->red.offset = 0; var->red.length = 8; var->green.offset = 0; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->transp.offset = 0; var->transp.length = 0; break; case CRTC_PIX_WIDTH_15BPP: /* RGB 555 */ bpp = 16; var->red.offset = 10; var->red.length = 5; var->green.offset = 5; var->green.length = 5; var->blue.offset = 0; var->blue.length = 5; var->transp.offset = 0; var->transp.length = 0; break; case CRTC_PIX_WIDTH_16BPP: /* RGB 565 */ bpp = 16; var->red.offset = 11; var->red.length = 5; var->green.offset = 5; var->green.length = 6; var->blue.offset = 0; var->blue.length = 5; var->transp.offset = 0; var->transp.length = 0; break; case CRTC_PIX_WIDTH_24BPP: /* RGB 888 */ bpp = 24; var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->transp.offset = 0; var->transp.length = 0; break; case CRTC_PIX_WIDTH_32BPP: /* ARGB 8888 */ bpp = 32; var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->transp.offset = 24; var->transp.length = 8; break; default: PRINTKE("Invalid pixel width\n"); return -EINVAL; } /* output */ var->xres = xres; var->yres = yres; var->xres_virtual = crtc->vxres; var->yres_virtual = crtc->vyres; var->bits_per_pixel = bpp; var->left_margin = left; var->right_margin = right; var->upper_margin = upper; var->lower_margin = lower; var->hsync_len = hslen; var->vsync_len = vslen; var->sync = sync; var->vmode = FB_VMODE_NONINTERLACED; /* * In double scan mode, the vertical parameters are doubled, * so we need to halve them to get the right values. * In interlaced mode the values are already correct, * so no correction is necessary. */ if (interlace) var->vmode = FB_VMODE_INTERLACED; if (double_scan) { var->vmode = FB_VMODE_DOUBLE; var->yres >>= 1; var->upper_margin >>= 1; var->lower_margin >>= 1; var->vsync_len >>= 1; } return 0; } /* ------------------------------------------------------------------------- */ static int atyfb_set_par(struct fb_info *info) { struct atyfb_par *par = (struct atyfb_par *) info->par; struct fb_var_screeninfo *var = &info->var; u32 tmp, pixclock; int err; #ifdef DEBUG struct fb_var_screeninfo debug; u32 pixclock_in_ps; #endif if (par->asleep) return 0; err = aty_var_to_crtc(info, var, &par->crtc); if (err) return err; pixclock = atyfb_get_pixclock(var, par); if (pixclock == 0) { PRINTKE("Invalid pixclock\n"); return -EINVAL; } else { err = par->pll_ops->var_to_pll(info, pixclock, var->bits_per_pixel, &par->pll); if (err) return err; } par->accel_flags = var->accel_flags; /* hack */ if (var->accel_flags) { atyfb_ops.fb_sync = atyfb_sync; info->flags &= ~FBINFO_HWACCEL_DISABLED; } else { atyfb_ops.fb_sync = NULL; info->flags |= FBINFO_HWACCEL_DISABLED; } if (par->blitter_may_be_busy) wait_for_idle(par); aty_set_crtc(par, &par->crtc); par->dac_ops->set_dac(info, &par->pll, var->bits_per_pixel, par->accel_flags); par->pll_ops->set_pll(info, &par->pll); #ifdef DEBUG if (par->pll_ops && par->pll_ops->pll_to_var) pixclock_in_ps = par->pll_ops->pll_to_var(info, &par->pll); else pixclock_in_ps = 0; if (0 == pixclock_in_ps) { PRINTKE("ALERT ops->pll_to_var get 0\n"); pixclock_in_ps = pixclock; } memset(&debug, 0, sizeof(debug)); if (!aty_crtc_to_var(&par->crtc, &debug)) { u32 hSync, vRefresh; u32 h_disp, h_sync_strt, h_sync_end, h_total; u32 v_disp, v_sync_strt, v_sync_end, v_total; h_disp = debug.xres; h_sync_strt = h_disp + debug.right_margin; h_sync_end = h_sync_strt + debug.hsync_len; h_total = h_sync_end + debug.left_margin; v_disp = debug.yres; v_sync_strt = v_disp + debug.lower_margin; v_sync_end = v_sync_strt + debug.vsync_len; v_total = v_sync_end + debug.upper_margin; hSync = 1000000000 / (pixclock_in_ps * h_total); vRefresh = (hSync * 1000) / v_total; if (par->crtc.gen_cntl & CRTC_INTERLACE_EN) vRefresh *= 2; if (par->crtc.gen_cntl & CRTC_DBL_SCAN_EN) vRefresh /= 2; DPRINTK("atyfb_set_par\n"); DPRINTK(" Set Visible Mode to %ix%i-%i\n", var->xres, var->yres, var->bits_per_pixel); DPRINTK(" Virtual resolution %ix%i, " "pixclock_in_ps %i (calculated %i)\n", var->xres_virtual, var->yres_virtual, pixclock, pixclock_in_ps); DPRINTK(" Dot clock: %i MHz\n", 1000000 / pixclock_in_ps); DPRINTK(" Horizontal sync: %i kHz\n", hSync); DPRINTK(" Vertical refresh: %i Hz\n", vRefresh); DPRINTK(" x style: %i.%03i %i %i %i %i %i %i %i %i\n", 1000000 / pixclock_in_ps, 1000000 % pixclock_in_ps, h_disp, h_sync_strt, h_sync_end, h_total, v_disp, v_sync_strt, v_sync_end, v_total); DPRINTK(" fb style: %i %i %i %i %i %i %i %i %i\n", pixclock_in_ps, debug.left_margin, h_disp, debug.right_margin, debug.hsync_len, debug.upper_margin, v_disp, debug.lower_margin, debug.vsync_len); } #endif /* DEBUG */ if (!M64_HAS(INTEGRATED)) { /* Don't forget MEM_CNTL */ tmp = aty_ld_le32(MEM_CNTL, par) & 0xf0ffffff; switch (var->bits_per_pixel) { case 8: tmp |= 0x02000000; break; case 16: tmp |= 0x03000000; break; case 32: tmp |= 0x06000000; break; } aty_st_le32(MEM_CNTL, tmp, par); } else { tmp = aty_ld_le32(MEM_CNTL, par) & 0xf00fffff; if (!M64_HAS(MAGIC_POSTDIV)) tmp |= par->mem_refresh_rate << 20; switch (var->bits_per_pixel) { case 8: case 24: tmp |= 0x00000000; break; case 16: tmp |= 0x04000000; break; case 32: tmp |= 0x08000000; break; } if (M64_HAS(CT_BUS)) { aty_st_le32(DAC_CNTL, 0x87010184, par); aty_st_le32(BUS_CNTL, 0x680000f9, par); } else if (M64_HAS(VT_BUS)) { aty_st_le32(DAC_CNTL, 0x87010184, par); aty_st_le32(BUS_CNTL, 0x680000f9, par); } else if (M64_HAS(MOBIL_BUS)) { aty_st_le32(DAC_CNTL, 0x80010102, par); aty_st_le32(BUS_CNTL, 0x7b33a040 | (par->aux_start ? BUS_APER_REG_DIS : 0), par); } else { /* GT */ aty_st_le32(DAC_CNTL, 0x86010102, par); aty_st_le32(BUS_CNTL, 0x7b23a040 | (par->aux_start ? BUS_APER_REG_DIS : 0), par); aty_st_le32(EXT_MEM_CNTL, aty_ld_le32(EXT_MEM_CNTL, par) | 0x5000001, par); } aty_st_le32(MEM_CNTL, tmp, par); } aty_st_8(DAC_MASK, 0xff, par); info->fix.line_length = calc_line_length(par, var->xres_virtual, var->bits_per_pixel); info->fix.visual = var->bits_per_pixel <= 8 ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_DIRECTCOLOR; /* Initialize the graphics engine */ if (par->accel_flags & FB_ACCELF_TEXT) aty_init_engine(par, info); #ifdef CONFIG_BOOTX_TEXT btext_update_display(info->fix.smem_start, (((par->crtc.h_tot_disp >> 16) & 0xff) + 1) * 8, ((par->crtc.v_tot_disp >> 16) & 0x7ff) + 1, var->bits_per_pixel, par->crtc.vxres * var->bits_per_pixel / 8); #endif /* CONFIG_BOOTX_TEXT */ #ifdef DEBUG { /* dump non shadow CRTC, pll, LCD registers */ int i; u32 base; /* CRTC registers */ base = 0x2000; printk("debug atyfb: Mach64 non-shadow register values:"); for (i = 0; i < 256; i = i+4) { if (i % 16 == 0) { pr_cont("\n"); printk("debug atyfb: 0x%04X: ", base + i); } pr_cont(" %08X", aty_ld_le32(i, par)); } pr_cont("\n\n"); #ifdef CONFIG_FB_ATY_CT /* PLL registers */ base = 0x00; printk("debug atyfb: Mach64 PLL register values:"); for (i = 0; i < 64; i++) { if (i % 16 == 0) { pr_cont("\n"); printk("debug atyfb: 0x%02X: ", base + i); } if (i % 4 == 0) pr_cont(" "); pr_cont("%02X", aty_ld_pll_ct(i, par)); } pr_cont("\n\n"); #endif /* CONFIG_FB_ATY_CT */ #ifdef CONFIG_FB_ATY_GENERIC_LCD if (par->lcd_table != 0) { /* LCD registers */ base = 0x00; printk("debug atyfb: LCD register values:"); if (M64_HAS(LT_LCD_REGS)) { for (i = 0; i <= POWER_MANAGEMENT; i++) { if (i == EXT_VERT_STRETCH) continue; pr_cont("\ndebug atyfb: 0x%04X: ", lt_lcd_regs[i]); pr_cont(" %08X", aty_ld_lcd(i, par)); } } else { for (i = 0; i < 64; i++) { if (i % 4 == 0) pr_cont("\ndebug atyfb: 0x%02X: ", base + i); pr_cont(" %08X", aty_ld_lcd(i, par)); } } pr_cont("\n\n"); } #endif /* CONFIG_FB_ATY_GENERIC_LCD */ } #endif /* DEBUG */ return 0; } static int atyfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { struct atyfb_par *par = (struct atyfb_par *) info->par; int err; struct crtc crtc; union aty_pll pll; u32 pixclock; memcpy(&pll, &par->pll, sizeof(pll)); err = aty_var_to_crtc(info, var, &crtc); if (err) return err; pixclock = atyfb_get_pixclock(var, par); if (pixclock == 0) { if (!(var->activate & FB_ACTIVATE_TEST)) PRINTKE("Invalid pixclock\n"); return -EINVAL; } else { err = par->pll_ops->var_to_pll(info, pixclock, var->bits_per_pixel, &pll); if (err) return err; } if (var->accel_flags & FB_ACCELF_TEXT) info->var.accel_flags = FB_ACCELF_TEXT; else info->var.accel_flags = 0; aty_crtc_to_var(&crtc, var); var->pixclock = par->pll_ops->pll_to_var(info, &pll); return 0; } static void set_off_pitch(struct atyfb_par *par, const struct fb_info *info) { u32 xoffset = info->var.xoffset; u32 yoffset = info->var.yoffset; u32 line_length = info->fix.line_length; u32 bpp = info->var.bits_per_pixel; par->crtc.off_pitch = ((yoffset * line_length + xoffset * bpp / 8) / 8) | ((line_length / bpp) << 22); } /* * Open/Release the frame buffer device */ static int atyfb_open(struct fb_info *info, int user) { struct atyfb_par *par = (struct atyfb_par *) info->par; if (user) { par->open++; #ifdef __sparc__ par->mmaped = 0; #endif } return 0; } static irqreturn_t aty_irq(int irq, void *dev_id) { struct atyfb_par *par = dev_id; int handled = 0; u32 int_cntl; spin_lock(&par->int_lock); int_cntl = aty_ld_le32(CRTC_INT_CNTL, par); if (int_cntl & CRTC_VBLANK_INT) { /* clear interrupt */ aty_st_le32(CRTC_INT_CNTL, (int_cntl & CRTC_INT_EN_MASK) | CRTC_VBLANK_INT_AK, par); par->vblank.count++; if (par->vblank.pan_display) { par->vblank.pan_display = 0; aty_st_le32(CRTC_OFF_PITCH, par->crtc.off_pitch, par); } wake_up_interruptible(&par->vblank.wait); handled = 1; } spin_unlock(&par->int_lock); return IRQ_RETVAL(handled); } static int aty_enable_irq(struct atyfb_par *par, int reenable) { u32 int_cntl; if (!test_and_set_bit(0, &par->irq_flags)) { if (request_irq(par->irq, aty_irq, IRQF_SHARED, "atyfb", par)) { clear_bit(0, &par->irq_flags); return -EINVAL; } spin_lock_irq(&par->int_lock); int_cntl = aty_ld_le32(CRTC_INT_CNTL, par) & CRTC_INT_EN_MASK; /* clear interrupt */ aty_st_le32(CRTC_INT_CNTL, int_cntl | CRTC_VBLANK_INT_AK, par); /* enable interrupt */ aty_st_le32(CRTC_INT_CNTL, int_cntl | CRTC_VBLANK_INT_EN, par); spin_unlock_irq(&par->int_lock); } else if (reenable) { spin_lock_irq(&par->int_lock); int_cntl = aty_ld_le32(CRTC_INT_CNTL, par) & CRTC_INT_EN_MASK; if (!(int_cntl & CRTC_VBLANK_INT_EN)) { printk("atyfb: someone disabled IRQ [%08x]\n", int_cntl); /* re-enable interrupt */ aty_st_le32(CRTC_INT_CNTL, int_cntl | CRTC_VBLANK_INT_EN, par); } spin_unlock_irq(&par->int_lock); } return 0; } static int aty_disable_irq(struct atyfb_par *par) { u32 int_cntl; if (test_and_clear_bit(0, &par->irq_flags)) { if (par->vblank.pan_display) { par->vblank.pan_display = 0; aty_st_le32(CRTC_OFF_PITCH, par->crtc.off_pitch, par); } spin_lock_irq(&par->int_lock); int_cntl = aty_ld_le32(CRTC_INT_CNTL, par) & CRTC_INT_EN_MASK; /* disable interrupt */ aty_st_le32(CRTC_INT_CNTL, int_cntl & ~CRTC_VBLANK_INT_EN, par); spin_unlock_irq(&par->int_lock); free_irq(par->irq, par); } return 0; } static int atyfb_release(struct fb_info *info, int user) { struct atyfb_par *par = (struct atyfb_par *) info->par; #ifdef __sparc__ int was_mmaped; #endif if (!user) return 0; par->open--; mdelay(1); wait_for_idle(par); if (par->open) return 0; #ifdef __sparc__ was_mmaped = par->mmaped; par->mmaped = 0; if (was_mmaped) { struct fb_var_screeninfo var; /* * Now reset the default display config, we have * no idea what the program(s) which mmap'd the * chip did to the configuration, nor whether it * restored it correctly. */ var = default_var; if (noaccel) var.accel_flags &= ~FB_ACCELF_TEXT; else var.accel_flags |= FB_ACCELF_TEXT; if (var.yres == var.yres_virtual) { u32 videoram = (info->fix.smem_len - (PAGE_SIZE << 2)); var.yres_virtual = ((videoram * 8) / var.bits_per_pixel) / var.xres_virtual; if (var.yres_virtual < var.yres) var.yres_virtual = var.yres; } } #endif aty_disable_irq(par); return 0; } /* * Pan or Wrap the Display * * This call looks only at xoffset, yoffset and the FB_VMODE_YWRAP flag */ static int atyfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) { struct atyfb_par *par = (struct atyfb_par *) info->par; u32 xres, yres, xoffset, yoffset; xres = (((par->crtc.h_tot_disp >> 16) & 0xff) + 1) * 8; yres = ((par->crtc.v_tot_disp >> 16) & 0x7ff) + 1; if (par->crtc.gen_cntl & CRTC_DBL_SCAN_EN) yres >>= 1; xoffset = (var->xoffset + 7) & ~7; yoffset = var->yoffset; if (xoffset + xres > par->crtc.vxres || yoffset + yres > par->crtc.vyres) return -EINVAL; info->var.xoffset = xoffset; info->var.yoffset = yoffset; if (par->asleep) return 0; set_off_pitch(par, info); if ((var->activate & FB_ACTIVATE_VBL) && !aty_enable_irq(par, 0)) { par->vblank.pan_display = 1; } else { par->vblank.pan_display = 0; aty_st_le32(CRTC_OFF_PITCH, par->crtc.off_pitch, par); } return 0; } static int aty_waitforvblank(struct atyfb_par *par, u32 crtc) { struct aty_interrupt *vbl; unsigned int count; int ret; switch (crtc) { case 0: vbl = &par->vblank; break; default: return -ENODEV; } ret = aty_enable_irq(par, 0); if (ret) return ret; count = vbl->count; ret = wait_event_interruptible_timeout(vbl->wait, count != vbl->count, HZ/10); if (ret < 0) return ret; if (ret == 0) { aty_enable_irq(par, 1); return -ETIMEDOUT; } return 0; } #ifdef DEBUG #define ATYIO_CLKR 0x41545900 /* ATY\00 */ #define ATYIO_CLKW 0x41545901 /* ATY\01 */ struct atyclk { u32 ref_clk_per; u8 pll_ref_div; u8 mclk_fb_div; u8 mclk_post_div; /* 1,2,3,4,8 */ u8 mclk_fb_mult; /* 2 or 4 */ u8 xclk_post_div; /* 1,2,3,4,8 */ u8 vclk_fb_div; u8 vclk_post_div; /* 1,2,3,4,6,8,12 */ u32 dsp_xclks_per_row; /* 0-16383 */ u32 dsp_loop_latency; /* 0-15 */ u32 dsp_precision; /* 0-7 */ u32 dsp_on; /* 0-2047 */ u32 dsp_off; /* 0-2047 */ }; #define ATYIO_FEATR 0x41545902 /* ATY\02 */ #define ATYIO_FEATW 0x41545903 /* ATY\03 */ #endif static int atyfb_ioctl(struct fb_info *info, u_int cmd, u_long arg) { struct atyfb_par *par = (struct atyfb_par *) info->par; #ifdef __sparc__ struct fbtype fbtyp; #endif switch (cmd) { #ifdef __sparc__ case FBIOGTYPE: fbtyp.fb_type = FBTYPE_PCI_GENERIC; fbtyp.fb_width = par->crtc.vxres; fbtyp.fb_height = par->crtc.vyres; fbtyp.fb_depth = info->var.bits_per_pixel; fbtyp.fb_cmsize = info->cmap.len; fbtyp.fb_size = info->fix.smem_len; if (copy_to_user((struct fbtype __user *) arg, &fbtyp, sizeof(fbtyp))) return -EFAULT; break; #endif /* __sparc__ */ case FBIO_WAITFORVSYNC: { u32 crtc; if (get_user(crtc, (__u32 __user *) arg)) return -EFAULT; return aty_waitforvblank(par, crtc); } #if defined(DEBUG) && defined(CONFIG_FB_ATY_CT) case ATYIO_CLKR: if (M64_HAS(INTEGRATED)) { struct atyclk clk = { 0 }; union aty_pll *pll = &par->pll; u32 dsp_config = pll->ct.dsp_config; u32 dsp_on_off = pll->ct.dsp_on_off; clk.ref_clk_per = par->ref_clk_per; clk.pll_ref_div = pll->ct.pll_ref_div; clk.mclk_fb_div = pll->ct.mclk_fb_div; clk.mclk_post_div = pll->ct.mclk_post_div_real; clk.mclk_fb_mult = pll->ct.mclk_fb_mult; clk.xclk_post_div = pll->ct.xclk_post_div_real; clk.vclk_fb_div = pll->ct.vclk_fb_div; clk.vclk_post_div = pll->ct.vclk_post_div_real; clk.dsp_xclks_per_row = dsp_config & 0x3fff; clk.dsp_loop_latency = (dsp_config >> 16) & 0xf; clk.dsp_precision = (dsp_config >> 20) & 7; clk.dsp_off = dsp_on_off & 0x7ff; clk.dsp_on = (dsp_on_off >> 16) & 0x7ff; if (copy_to_user((struct atyclk __user *) arg, &clk, sizeof(clk))) return -EFAULT; } else return -EINVAL; break; case ATYIO_CLKW: if (M64_HAS(INTEGRATED)) { struct atyclk clk; union aty_pll *pll = &par->pll; if (copy_from_user(&clk, (struct atyclk __user *) arg, sizeof(clk))) return -EFAULT; par->ref_clk_per = clk.ref_clk_per; pll->ct.pll_ref_div = clk.pll_ref_div; pll->ct.mclk_fb_div = clk.mclk_fb_div; pll->ct.mclk_post_div_real = clk.mclk_post_div; pll->ct.mclk_fb_mult = clk.mclk_fb_mult; pll->ct.xclk_post_div_real = clk.xclk_post_div; pll->ct.vclk_fb_div = clk.vclk_fb_div; pll->ct.vclk_post_div_real = clk.vclk_post_div; pll->ct.dsp_config = (clk.dsp_xclks_per_row & 0x3fff) | ((clk.dsp_loop_latency & 0xf) << 16) | ((clk.dsp_precision & 7) << 20); pll->ct.dsp_on_off = (clk.dsp_off & 0x7ff) | ((clk.dsp_on & 0x7ff) << 16); /*aty_calc_pll_ct(info, &pll->ct);*/ aty_set_pll_ct(info, pll); } else return -EINVAL; break; case ATYIO_FEATR: if (get_user(par->features, (u32 __user *) arg)) return -EFAULT; break; case ATYIO_FEATW: if (put_user(par->features, (u32 __user *) arg)) return -EFAULT; break; #endif /* DEBUG && CONFIG_FB_ATY_CT */ default: return -EINVAL; } return 0; } static int atyfb_sync(struct fb_info *info) { struct atyfb_par *par = (struct atyfb_par *) info->par; if (par->blitter_may_be_busy) wait_for_idle(par); return 0; } #ifdef __sparc__ static int atyfb_mmap(struct fb_info *info, struct vm_area_struct *vma) { struct atyfb_par *par = (struct atyfb_par *) info->par; unsigned int size, page, map_size = 0; unsigned long map_offset = 0; unsigned long off; int i; if (!par->mmap_map) return -ENXIO; if (vma->vm_pgoff > (~0UL >> PAGE_SHIFT)) return -EINVAL; off = vma->vm_pgoff << PAGE_SHIFT; size = vma->vm_end - vma->vm_start; /* VM_IO | VM_DONTEXPAND | VM_DONTDUMP are set by remap_pfn_range() */ if (((vma->vm_pgoff == 0) && (size == info->fix.smem_len)) || ((off == info->fix.smem_len) && (size == PAGE_SIZE))) off += 0x8000000000000000UL; vma->vm_pgoff = off >> PAGE_SHIFT; /* propagate off changes */ /* Each page, see which map applies */ for (page = 0; page < size;) { map_size = 0; for (i = 0; par->mmap_map[i].size; i++) { unsigned long start = par->mmap_map[i].voff; unsigned long end = start + par->mmap_map[i].size; unsigned long offset = off + page; if (start > offset) continue; if (offset >= end) continue; map_size = par->mmap_map[i].size - (offset - start); map_offset = par->mmap_map[i].poff + (offset - start); break; } if (!map_size) { page += PAGE_SIZE; continue; } if (page + map_size > size) map_size = size - page; pgprot_val(vma->vm_page_prot) &= ~(par->mmap_map[i].prot_mask); pgprot_val(vma->vm_page_prot) |= par->mmap_map[i].prot_flag; if (remap_pfn_range(vma, vma->vm_start + page, map_offset >> PAGE_SHIFT, map_size, vma->vm_page_prot)) return -EAGAIN; page += map_size; } if (!map_size) return -EINVAL; if (!par->mmaped) par->mmaped = 1; return 0; } #endif /* __sparc__ */ #if defined(CONFIG_PCI) #ifdef CONFIG_PPC_PMAC /* Power management routines. Those are used for PowerBook sleep. */ static int aty_power_mgmt(int sleep, struct atyfb_par *par) { u32 pm; int timeout; pm = aty_ld_lcd(POWER_MANAGEMENT, par); pm = (pm & ~PWR_MGT_MODE_MASK) | PWR_MGT_MODE_REG; aty_st_lcd(POWER_MANAGEMENT, pm, par); pm = aty_ld_lcd(POWER_MANAGEMENT, par); timeout = 2000; if (sleep) { /* Sleep */ pm &= ~PWR_MGT_ON; aty_st_lcd(POWER_MANAGEMENT, pm, par); pm = aty_ld_lcd(POWER_MANAGEMENT, par); udelay(10); pm &= ~(PWR_BLON | AUTO_PWR_UP); pm |= SUSPEND_NOW; aty_st_lcd(POWER_MANAGEMENT, pm, par); pm = aty_ld_lcd(POWER_MANAGEMENT, par); udelay(10); pm |= PWR_MGT_ON; aty_st_lcd(POWER_MANAGEMENT, pm, par); do { pm = aty_ld_lcd(POWER_MANAGEMENT, par); mdelay(1); if ((--timeout) == 0) break; } while ((pm & PWR_MGT_STATUS_MASK) != PWR_MGT_STATUS_SUSPEND); } else { /* Wakeup */ pm &= ~PWR_MGT_ON; aty_st_lcd(POWER_MANAGEMENT, pm, par); pm = aty_ld_lcd(POWER_MANAGEMENT, par); udelay(10); pm &= ~SUSPEND_NOW; pm |= (PWR_BLON | AUTO_PWR_UP); aty_st_lcd(POWER_MANAGEMENT, pm, par); pm = aty_ld_lcd(POWER_MANAGEMENT, par); udelay(10); pm |= PWR_MGT_ON; aty_st_lcd(POWER_MANAGEMENT, pm, par); do { pm = aty_ld_lcd(POWER_MANAGEMENT, par); mdelay(1); if ((--timeout) == 0) break; } while ((pm & PWR_MGT_STATUS_MASK) != 0); } mdelay(500); return timeout ? 0 : -EIO; } #endif /* CONFIG_PPC_PMAC */ static int atyfb_pci_suspend_late(struct device *dev, pm_message_t state) { struct pci_dev *pdev = to_pci_dev(dev); struct fb_info *info = pci_get_drvdata(pdev); struct atyfb_par *par = (struct atyfb_par *) info->par; if (state.event == pdev->dev.power.power_state.event) return 0; console_lock(); fb_set_suspend(info, 1); /* Idle & reset engine */ wait_for_idle(par); aty_reset_engine(par); /* Blank display and LCD */ atyfb_blank(FB_BLANK_POWERDOWN, info); par->asleep = 1; par->lock_blank = 1; /* * Because we may change PCI D state ourselves, we need to * first save the config space content so the core can * restore it properly on resume. */ #ifdef CONFIG_PPC_PMAC /* Set chip to "suspend" mode */ if (machine_is(powermac) && aty_power_mgmt(1, par)) { par->asleep = 0; par->lock_blank = 0; atyfb_blank(FB_BLANK_UNBLANK, info); fb_set_suspend(info, 0); console_unlock(); return -EIO; } #endif console_unlock(); pdev->dev.power.power_state = state; return 0; } static int __maybe_unused atyfb_pci_suspend(struct device *dev) { return atyfb_pci_suspend_late(dev, PMSG_SUSPEND); } static int __maybe_unused atyfb_pci_hibernate(struct device *dev) { return atyfb_pci_suspend_late(dev, PMSG_HIBERNATE); } static int __maybe_unused atyfb_pci_freeze(struct device *dev) { return atyfb_pci_suspend_late(dev, PMSG_FREEZE); } static void aty_resume_chip(struct fb_info *info) { struct atyfb_par *par = info->par; aty_st_le32(MEM_CNTL, par->mem_cntl, par); if (par->pll_ops->resume_pll) par->pll_ops->resume_pll(info, &par->pll); if (par->aux_start) aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL, par) | BUS_APER_REG_DIS, par); } static int __maybe_unused atyfb_pci_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct fb_info *info = pci_get_drvdata(pdev); struct atyfb_par *par = (struct atyfb_par *) info->par; if (pdev->dev.power.power_state.event == PM_EVENT_ON) return 0; console_lock(); /* * PCI state will have been restored by the core, so * we should be in D0 now with our config space fully * restored */ #ifdef CONFIG_PPC_PMAC if (machine_is(powermac) && pdev->dev.power.power_state.event == PM_EVENT_SUSPEND) aty_power_mgmt(0, par); #endif aty_resume_chip(info); par->asleep = 0; /* Restore display */ atyfb_set_par(info); /* Refresh */ fb_set_suspend(info, 0); /* Unblank */ par->lock_blank = 0; atyfb_blank(FB_BLANK_UNBLANK, info); console_unlock(); pdev->dev.power.power_state = PMSG_ON; return 0; } static const struct dev_pm_ops atyfb_pci_pm_ops = { #ifdef CONFIG_PM_SLEEP .suspend = atyfb_pci_suspend, .resume = atyfb_pci_resume, .freeze = atyfb_pci_freeze, .thaw = atyfb_pci_resume, .poweroff = atyfb_pci_hibernate, .restore = atyfb_pci_resume, #endif /* CONFIG_PM_SLEEP */ }; #endif /* defined(CONFIG_PCI) */ /* Backlight */ #ifdef CONFIG_FB_ATY_BACKLIGHT #define MAX_LEVEL 0xFF static int aty_bl_get_level_brightness(struct atyfb_par *par, int level) { struct fb_info *info = pci_get_drvdata(par->pdev); int atylevel; /* Get and convert the value */ /* No locking of bl_curve since we read a single value */ atylevel = info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL; if (atylevel < 0) atylevel = 0; else if (atylevel > MAX_LEVEL) atylevel = MAX_LEVEL; return atylevel; } static int aty_bl_update_status(struct backlight_device *bd) { struct atyfb_par *par = bl_get_data(bd); unsigned int reg = aty_ld_lcd(LCD_MISC_CNTL, par); int level; if (bd->props.power != FB_BLANK_UNBLANK || bd->props.fb_blank != FB_BLANK_UNBLANK) level = 0; else level = bd->props.brightness; reg |= (BLMOD_EN | BIASMOD_EN); if (level > 0) { reg &= ~BIAS_MOD_LEVEL_MASK; reg |= (aty_bl_get_level_brightness(par, level) << BIAS_MOD_LEVEL_SHIFT); } else { reg &= ~BIAS_MOD_LEVEL_MASK; reg |= (aty_bl_get_level_brightness(par, 0) << BIAS_MOD_LEVEL_SHIFT); } aty_st_lcd(LCD_MISC_CNTL, reg, par); return 0; } static const struct backlight_ops aty_bl_data = { .update_status = aty_bl_update_status, }; static void aty_bl_init(struct atyfb_par *par) { struct backlight_properties props; struct fb_info *info = pci_get_drvdata(par->pdev); struct backlight_device *bd; char name[12]; #ifdef CONFIG_PMAC_BACKLIGHT if (!pmac_has_backlight_type("ati")) return; #endif snprintf(name, sizeof(name), "atybl%d", info->node); memset(&props, 0, sizeof(struct backlight_properties)); props.type = BACKLIGHT_RAW; props.max_brightness = FB_BACKLIGHT_LEVELS - 1; bd = backlight_device_register(name, info->dev, par, &aty_bl_data, &props); if (IS_ERR(bd)) { info->bl_dev = NULL; printk(KERN_WARNING "aty: Backlight registration failed\n"); goto error; } info->bl_dev = bd; fb_bl_default_curve(info, 0, 0x3F * FB_BACKLIGHT_MAX / MAX_LEVEL, 0xFF * FB_BACKLIGHT_MAX / MAX_LEVEL); bd->props.brightness = bd->props.max_brightness; bd->props.power = FB_BLANK_UNBLANK; backlight_update_status(bd); printk("aty: Backlight initialized (%s)\n", name); return; error: return; } #ifdef CONFIG_PCI static void aty_bl_exit(struct backlight_device *bd) { backlight_device_unregister(bd); printk("aty: Backlight unloaded\n"); } #endif /* CONFIG_PCI */ #endif /* CONFIG_FB_ATY_BACKLIGHT */ static void aty_calc_mem_refresh(struct atyfb_par *par, int xclk) { static const int ragepro_tbl[] = { 44, 50, 55, 66, 75, 80, 100 }; static const int ragexl_tbl[] = { 50, 66, 75, 83, 90, 95, 100, 105, 110, 115, 120, 125, 133, 143, 166 }; const int *refresh_tbl; int i, size; if (M64_HAS(XL_MEM)) { refresh_tbl = ragexl_tbl; size = ARRAY_SIZE(ragexl_tbl); } else { refresh_tbl = ragepro_tbl; size = ARRAY_SIZE(ragepro_tbl); } for (i = 0; i < size; i++) { if (xclk < refresh_tbl[i]) break; } par->mem_refresh_rate = i; } /* * Initialisation */ static struct fb_info *fb_list = NULL; #if defined(__i386__) && defined(CONFIG_FB_ATY_GENERIC_LCD) static int atyfb_get_timings_from_lcd(struct atyfb_par *par, struct fb_var_screeninfo *var) { int ret = -EINVAL; if (par->lcd_table != 0 && (aty_ld_lcd(LCD_GEN_CNTL, par) & LCD_ON)) { *var = default_var; var->xres = var->xres_virtual = par->lcd_hdisp; var->right_margin = par->lcd_right_margin; var->left_margin = par->lcd_hblank_len - (par->lcd_right_margin + par->lcd_hsync_dly + par->lcd_hsync_len); var->hsync_len = par->lcd_hsync_len + par->lcd_hsync_dly; var->yres = var->yres_virtual = par->lcd_vdisp; var->lower_margin = par->lcd_lower_margin; var->upper_margin = par->lcd_vblank_len - (par->lcd_lower_margin + par->lcd_vsync_len); var->vsync_len = par->lcd_vsync_len; var->pixclock = par->lcd_pixclock; ret = 0; } return ret; } #endif /* defined(__i386__) && defined(CONFIG_FB_ATY_GENERIC_LCD) */ static int aty_init(struct fb_info *info) { struct atyfb_par *par = (struct atyfb_par *) info->par; const char *ramname = NULL, *xtal; int gtb_memsize, has_var = 0; struct fb_var_screeninfo var; int ret; #ifdef CONFIG_ATARI u8 dac_type; #endif init_waitqueue_head(&par->vblank.wait); spin_lock_init(&par->int_lock); #ifdef CONFIG_FB_ATY_GX if (!M64_HAS(INTEGRATED)) { u32 stat0; u8 dac_subtype, clk_type; stat0 = aty_ld_le32(CNFG_STAT0, par); par->bus_type = (stat0 >> 0) & 0x07; par->ram_type = (stat0 >> 3) & 0x07; ramname = aty_gx_ram[par->ram_type]; /* FIXME: clockchip/RAMDAC probing? */ #ifdef CONFIG_ATARI clk_type = CLK_ATI18818_1; dac_type = (stat0 >> 9) & 0x07; if (dac_type == 0x07) dac_subtype = DAC_ATT20C408; else dac_subtype = (aty_ld_8(SCRATCH_REG1 + 1, par) & 0xF0) | dac_type; #else dac_subtype = DAC_IBMRGB514; clk_type = CLK_IBMRGB514; #endif switch (dac_subtype) { case DAC_IBMRGB514: par->dac_ops = &aty_dac_ibm514; break; #ifdef CONFIG_ATARI case DAC_ATI68860_B: case DAC_ATI68860_C: par->dac_ops = &aty_dac_ati68860b; break; case DAC_ATT20C408: case DAC_ATT21C498: par->dac_ops = &aty_dac_att21c498; break; #endif default: PRINTKI("aty_init: DAC type not implemented yet!\n"); par->dac_ops = &aty_dac_unsupported; break; } switch (clk_type) { #ifdef CONFIG_ATARI case CLK_ATI18818_1: par->pll_ops = &aty_pll_ati18818_1; break; #else case CLK_IBMRGB514: par->pll_ops = &aty_pll_ibm514; break; #endif default: PRINTKI("aty_init: CLK type not implemented yet!"); par->pll_ops = &aty_pll_unsupported; break; } } #endif /* CONFIG_FB_ATY_GX */ #ifdef CONFIG_FB_ATY_CT if (M64_HAS(INTEGRATED)) { par->dac_ops = &aty_dac_ct; par->pll_ops = &aty_pll_ct; par->bus_type = PCI; par->ram_type = (aty_ld_le32(CNFG_STAT0, par) & 0x07); if (M64_HAS(XL_MEM)) ramname = aty_xl_ram[par->ram_type]; else ramname = aty_ct_ram[par->ram_type]; /* for many chips, the mclk is 67 MHz for SDRAM, 63 MHz otherwise */ if (par->pll_limits.mclk == 67 && par->ram_type < SDRAM) par->pll_limits.mclk = 63; /* Mobility + 32bit memory interface need halved XCLK. */ if (M64_HAS(MOBIL_BUS) && par->ram_type == SDRAM32) par->pll_limits.xclk = (par->pll_limits.xclk + 1) >> 1; } #endif #ifdef CONFIG_PPC_PMAC /* * The Apple iBook1 uses non-standard memory frequencies. * We detect it and set the frequency manually. */ if (of_machine_is_compatible("PowerBook2,1")) { par->pll_limits.mclk = 70; par->pll_limits.xclk = 53; } #endif /* Allow command line to override clocks. */ if (pll) par->pll_limits.pll_max = pll; if (mclk) par->pll_limits.mclk = mclk; if (xclk) par->pll_limits.xclk = xclk; aty_calc_mem_refresh(par, par->pll_limits.xclk); par->pll_per = 1000000/par->pll_limits.pll_max; par->mclk_per = 1000000/par->pll_limits.mclk; par->xclk_per = 1000000/par->pll_limits.xclk; par->ref_clk_per = 1000000000000ULL / 14318180; xtal = "14.31818"; #ifdef CONFIG_FB_ATY_CT if (M64_HAS(GTB_DSP)) { u8 pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par); if (pll_ref_div) { int diff1, diff2; diff1 = 510 * 14 / pll_ref_div - par->pll_limits.pll_max; diff2 = 510 * 29 / pll_ref_div - par->pll_limits.pll_max; if (diff1 < 0) diff1 = -diff1; if (diff2 < 0) diff2 = -diff2; if (diff2 < diff1) { par->ref_clk_per = 1000000000000ULL / 29498928; xtal = "29.498928"; } } } #endif /* CONFIG_FB_ATY_CT */ /* save previous video mode */ aty_get_crtc(par, &par->saved_crtc); if (par->pll_ops->get_pll) par->pll_ops->get_pll(info, &par->saved_pll); par->mem_cntl = aty_ld_le32(MEM_CNTL, par); gtb_memsize = M64_HAS(GTB_DSP); if (gtb_memsize) /* 0xF used instead of MEM_SIZE_ALIAS */ switch (par->mem_cntl & 0xF) { case MEM_SIZE_512K: info->fix.smem_len = 0x80000; break; case MEM_SIZE_1M: info->fix.smem_len = 0x100000; break; case MEM_SIZE_2M_GTB: info->fix.smem_len = 0x200000; break; case MEM_SIZE_4M_GTB: info->fix.smem_len = 0x400000; break; case MEM_SIZE_6M_GTB: info->fix.smem_len = 0x600000; break; case MEM_SIZE_8M_GTB: info->fix.smem_len = 0x800000; break; default: info->fix.smem_len = 0x80000; } else switch (par->mem_cntl & MEM_SIZE_ALIAS) { case MEM_SIZE_512K: info->fix.smem_len = 0x80000; break; case MEM_SIZE_1M: info->fix.smem_len = 0x100000; break; case MEM_SIZE_2M: info->fix.smem_len = 0x200000; break; case MEM_SIZE_4M: info->fix.smem_len = 0x400000; break; case MEM_SIZE_6M: info->fix.smem_len = 0x600000; break; case MEM_SIZE_8M: info->fix.smem_len = 0x800000; break; default: info->fix.smem_len = 0x80000; } if (M64_HAS(MAGIC_VRAM_SIZE)) { if (aty_ld_le32(CNFG_STAT1, par) & 0x40000000) info->fix.smem_len += 0x400000; } if (vram) { info->fix.smem_len = vram * 1024; par->mem_cntl &= ~(gtb_memsize ? 0xF : MEM_SIZE_ALIAS); if (info->fix.smem_len <= 0x80000) par->mem_cntl |= MEM_SIZE_512K; else if (info->fix.smem_len <= 0x100000) par->mem_cntl |= MEM_SIZE_1M; else if (info->fix.smem_len <= 0x200000) par->mem_cntl |= gtb_memsize ? MEM_SIZE_2M_GTB : MEM_SIZE_2M; else if (info->fix.smem_len <= 0x400000) par->mem_cntl |= gtb_memsize ? MEM_SIZE_4M_GTB : MEM_SIZE_4M; else if (info->fix.smem_len <= 0x600000) par->mem_cntl |= gtb_memsize ? MEM_SIZE_6M_GTB : MEM_SIZE_6M; else par->mem_cntl |= gtb_memsize ? MEM_SIZE_8M_GTB : MEM_SIZE_8M; aty_st_le32(MEM_CNTL, par->mem_cntl, par); } /* * Reg Block 0 (CT-compatible block) is at mmio_start * Reg Block 1 (multimedia extensions) is at mmio_start - 0x400 */ if (M64_HAS(GX)) { info->fix.mmio_len = 0x400; info->fix.accel = FB_ACCEL_ATI_MACH64GX; } else if (M64_HAS(CT)) { info->fix.mmio_len = 0x400; info->fix.accel = FB_ACCEL_ATI_MACH64CT; } else if (M64_HAS(VT)) { info->fix.mmio_start -= 0x400; info->fix.mmio_len = 0x800; info->fix.accel = FB_ACCEL_ATI_MACH64VT; } else {/* GT */ info->fix.mmio_start -= 0x400; info->fix.mmio_len = 0x800; info->fix.accel = FB_ACCEL_ATI_MACH64GT; } PRINTKI("%d%c %s, %s MHz XTAL, %d MHz PLL, %d Mhz MCLK, %d MHz XCLK\n", info->fix.smem_len == 0x80000 ? 512 : (info->fix.smem_len>>20), info->fix.smem_len == 0x80000 ? 'K' : 'M', ramname, xtal, par->pll_limits.pll_max, par->pll_limits.mclk, par->pll_limits.xclk); #if defined(DEBUG) && defined(CONFIG_FB_ATY_CT) if (M64_HAS(INTEGRATED)) { int i; printk("debug atyfb: BUS_CNTL DAC_CNTL MEM_CNTL " "EXT_MEM_CNTL CRTC_GEN_CNTL DSP_CONFIG " "DSP_ON_OFF CLOCK_CNTL\n" "debug atyfb: %08x %08x %08x " "%08x %08x %08x " "%08x %08x\n" "debug atyfb: PLL", aty_ld_le32(BUS_CNTL, par), aty_ld_le32(DAC_CNTL, par), aty_ld_le32(MEM_CNTL, par), aty_ld_le32(EXT_MEM_CNTL, par), aty_ld_le32(CRTC_GEN_CNTL, par), aty_ld_le32(DSP_CONFIG, par), aty_ld_le32(DSP_ON_OFF, par), aty_ld_le32(CLOCK_CNTL, par)); for (i = 0; i < 40; i++) pr_cont(" %02x", aty_ld_pll_ct(i, par)); pr_cont("\n"); } #endif if (par->pll_ops->init_pll) par->pll_ops->init_pll(info, &par->pll); if (par->pll_ops->resume_pll) par->pll_ops->resume_pll(info, &par->pll); aty_fudge_framebuffer_len(info); /* * Disable register access through the linear aperture * if the auxiliary aperture is used so we can access * the full 8 MB of video RAM on 8 MB boards. */ if (par->aux_start) aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL, par) | BUS_APER_REG_DIS, par); if (!nomtrr) /* * Only the ioremap_wc()'d area will get WC here * since ioremap_uc() was used on the entire PCI BAR. */ par->wc_cookie = arch_phys_wc_add(par->res_start, par->res_size); info->fbops = &atyfb_ops; info->pseudo_palette = par->pseudo_palette; info->flags = FBINFO_DEFAULT | FBINFO_HWACCEL_IMAGEBLIT | FBINFO_HWACCEL_FILLRECT | FBINFO_HWACCEL_COPYAREA | FBINFO_HWACCEL_YPAN | FBINFO_READS_FAST; #ifdef CONFIG_PMAC_BACKLIGHT if (M64_HAS(G3_PB_1_1) && of_machine_is_compatible("PowerBook1,1")) { /* * these bits let the 101 powerbook * wake up from sleep -- paulus */ aty_st_lcd(POWER_MANAGEMENT, aty_ld_lcd(POWER_MANAGEMENT, par) | USE_F32KHZ | TRISTATE_MEM_EN, par); } else #endif if (M64_HAS(MOBIL_BUS) && backlight) { #ifdef CONFIG_FB_ATY_BACKLIGHT aty_bl_init(par); #endif } memset(&var, 0, sizeof(var)); #ifdef CONFIG_PPC if (machine_is(powermac)) { /* * FIXME: The NVRAM stuff should be put in a Mac-specific file, * as it applies to all Mac video cards */ if (mode) { if (mac_find_mode(&var, info, mode, 8)) has_var = 1; } else { if (default_vmode == VMODE_CHOOSE) { int sense; if (M64_HAS(G3_PB_1024x768)) /* G3 PowerBook with 1024x768 LCD */ default_vmode = VMODE_1024_768_60; else if (of_machine_is_compatible("iMac")) default_vmode = VMODE_1024_768_75; else if (of_machine_is_compatible("PowerBook2,1")) /* iBook with 800x600 LCD */ default_vmode = VMODE_800_600_60; else default_vmode = VMODE_640_480_67; sense = read_aty_sense(par); PRINTKI("monitor sense=%x, mode %d\n", sense, mac_map_monitor_sense(sense)); } if (default_vmode <= 0 || default_vmode > VMODE_MAX) default_vmode = VMODE_640_480_60; if (default_cmode < CMODE_8 || default_cmode > CMODE_32) default_cmode = CMODE_8; if (!mac_vmode_to_var(default_vmode, default_cmode, &var)) has_var = 1; } } #endif /* !CONFIG_PPC */ #if defined(__i386__) && defined(CONFIG_FB_ATY_GENERIC_LCD) if (!atyfb_get_timings_from_lcd(par, &var)) has_var = 1; #endif if (mode && fb_find_mode(&var, info, mode, NULL, 0, &defmode, 8)) has_var = 1; if (!has_var) var = default_var; if (noaccel) var.accel_flags &= ~FB_ACCELF_TEXT; else var.accel_flags |= FB_ACCELF_TEXT; if (comp_sync != -1) { if (!comp_sync) var.sync &= ~FB_SYNC_COMP_HIGH_ACT; else var.sync |= FB_SYNC_COMP_HIGH_ACT; } if (var.yres == var.yres_virtual) { u32 videoram = (info->fix.smem_len - (PAGE_SIZE << 2)); var.yres_virtual = ((videoram * 8) / var.bits_per_pixel) / var.xres_virtual; if (var.yres_virtual < var.yres) var.yres_virtual = var.yres; } ret = atyfb_check_var(&var, info); if (ret) { PRINTKE("can't set default video mode\n"); goto aty_init_exit; } #ifdef CONFIG_FB_ATY_CT if (!noaccel && M64_HAS(INTEGRATED)) aty_init_cursor(info, &atyfb_ops); #endif /* CONFIG_FB_ATY_CT */ info->var = var; ret = fb_alloc_cmap(&info->cmap, 256, 0); if (ret < 0) goto aty_init_exit; ret = register_framebuffer(info); if (ret < 0) { fb_dealloc_cmap(&info->cmap); goto aty_init_exit; } fb_list = info; PRINTKI("fb%d: %s frame buffer device on %s\n", info->node, info->fix.id, par->bus_type == ISA ? "ISA" : "PCI"); return 0; aty_init_exit: /* restore video mode */ aty_set_crtc(par, &par->saved_crtc); par->pll_ops->set_pll(info, &par->saved_pll); arch_phys_wc_del(par->wc_cookie); return ret; } #if defined(CONFIG_ATARI) && !defined(MODULE) static int store_video_par(char *video_str, unsigned char m64_num) { char *p; unsigned long vmembase, size, guiregbase; PRINTKI("store_video_par() '%s' \n", video_str); if (!(p = strsep(&video_str, ";")) || !*p) goto mach64_invalid; vmembase = simple_strtoul(p, NULL, 0); if (!(p = strsep(&video_str, ";")) || !*p) goto mach64_invalid; size = simple_strtoul(p, NULL, 0); if (!(p = strsep(&video_str, ";")) || !*p) goto mach64_invalid; guiregbase = simple_strtoul(p, NULL, 0); phys_vmembase[m64_num] = vmembase; phys_size[m64_num] = size; phys_guiregbase[m64_num] = guiregbase; PRINTKI("stored them all: $%08lX $%08lX $%08lX \n", vmembase, size, guiregbase); return 0; mach64_invalid: phys_vmembase[m64_num] = 0; return -1; } #endif /* CONFIG_ATARI && !MODULE */ /* * Blank the display. */ static int atyfb_blank(int blank, struct fb_info *info) { struct atyfb_par *par = (struct atyfb_par *) info->par; u32 gen_cntl; if (par->lock_blank || par->asleep) return 0; #ifdef CONFIG_FB_ATY_GENERIC_LCD if (par->lcd_table && blank > FB_BLANK_NORMAL && (aty_ld_lcd(LCD_GEN_CNTL, par) & LCD_ON)) { u32 pm = aty_ld_lcd(POWER_MANAGEMENT, par); pm &= ~PWR_BLON; aty_st_lcd(POWER_MANAGEMENT, pm, par); } #endif gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par); gen_cntl &= ~0x400004c; switch (blank) { case FB_BLANK_UNBLANK: break; case FB_BLANK_NORMAL: gen_cntl |= 0x4000040; break; case FB_BLANK_VSYNC_SUSPEND: gen_cntl |= 0x4000048; break; case FB_BLANK_HSYNC_SUSPEND: gen_cntl |= 0x4000044; break; case FB_BLANK_POWERDOWN: gen_cntl |= 0x400004c; break; } aty_st_le32(CRTC_GEN_CNTL, gen_cntl, par); #ifdef CONFIG_FB_ATY_GENERIC_LCD if (par->lcd_table && blank <= FB_BLANK_NORMAL && (aty_ld_lcd(LCD_GEN_CNTL, par) & LCD_ON)) { u32 pm = aty_ld_lcd(POWER_MANAGEMENT, par); pm |= PWR_BLON; aty_st_lcd(POWER_MANAGEMENT, pm, par); } #endif return 0; } static void aty_st_pal(u_int regno, u_int red, u_int green, u_int blue, const struct atyfb_par *par) { aty_st_8(DAC_W_INDEX, regno, par); aty_st_8(DAC_DATA, red, par); aty_st_8(DAC_DATA, green, par); aty_st_8(DAC_DATA, blue, par); } /* * Set a single color register. The values supplied are already * rounded down to the hardware's capabilities (according to the * entries in the var structure). Return != 0 for invalid regno. * !! 4 & 8 = PSEUDO, > 8 = DIRECTCOLOR */ static int atyfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int transp, struct fb_info *info) { struct atyfb_par *par = (struct atyfb_par *) info->par; int i, depth; u32 *pal = info->pseudo_palette; depth = info->var.bits_per_pixel; if (depth == 16) depth = (info->var.green.length == 5) ? 15 : 16; if (par->asleep) return 0; if (regno > 255 || (depth == 16 && regno > 63) || (depth == 15 && regno > 31)) return 1; red >>= 8; green >>= 8; blue >>= 8; par->palette[regno].red = red; par->palette[regno].green = green; par->palette[regno].blue = blue; if (regno < 16) { switch (depth) { case 15: pal[regno] = (regno << 10) | (regno << 5) | regno; break; case 16: pal[regno] = (regno << 11) | (regno << 5) | regno; break; case 24: pal[regno] = (regno << 16) | (regno << 8) | regno; break; case 32: i = (regno << 8) | regno; pal[regno] = (i << 16) | i; break; } } i = aty_ld_8(DAC_CNTL, par) & 0xfc; if (M64_HAS(EXTRA_BRIGHT)) i |= 0x2; /* DAC_CNTL | 0x2 turns off the extra brightness for gt */ aty_st_8(DAC_CNTL, i, par); aty_st_8(DAC_MASK, 0xff, par); if (M64_HAS(INTEGRATED)) { if (depth == 16) { if (regno < 32) aty_st_pal(regno << 3, red, par->palette[regno << 1].green, blue, par); red = par->palette[regno >> 1].red; blue = par->palette[regno >> 1].blue; regno <<= 2; } else if (depth == 15) { regno <<= 3; for (i = 0; i < 8; i++) aty_st_pal(regno + i, red, green, blue, par); } } aty_st_pal(regno, red, green, blue, par); return 0; } #ifdef CONFIG_PCI #ifdef __sparc__ static int atyfb_setup_sparc(struct pci_dev *pdev, struct fb_info *info, unsigned long addr) { struct atyfb_par *par = info->par; struct device_node *dp; u32 mem, chip_id; int i, j, ret; /* * Map memory-mapped registers. */ par->ati_regbase = (void *)addr + 0x7ffc00UL; info->fix.mmio_start = addr + 0x7ffc00UL; /* * Map in big-endian aperture. */ info->screen_base = (char *) (addr + 0x800000UL); info->fix.smem_start = addr + 0x800000UL; /* * Figure mmap addresses from PCI config space. * Split Framebuffer in big- and little-endian halfs. */ for (i = 0; i < 6 && pdev->resource[i].start; i++) /* nothing */ ; j = i + 4; par->mmap_map = kcalloc(j, sizeof(*par->mmap_map), GFP_ATOMIC); if (!par->mmap_map) { PRINTKE("atyfb_setup_sparc() can't alloc mmap_map\n"); return -ENOMEM; } for (i = 0, j = 2; i < 6 && pdev->resource[i].start; i++) { struct resource *rp = &pdev->resource[i]; int io, breg = PCI_BASE_ADDRESS_0 + (i << 2); unsigned long base; u32 size, pbase; base = rp->start; io = (rp->flags & IORESOURCE_IO); size = rp->end - base + 1; pci_read_config_dword(pdev, breg, &pbase); if (io) size &= ~1; /* * Map the framebuffer a second time, this time without * the braindead _PAGE_IE setting. This is used by the * fixed Xserver, but we need to maintain the old mapping * to stay compatible with older ones... */ if (base == addr) { par->mmap_map[j].voff = (pbase + 0x10000000) & PAGE_MASK; par->mmap_map[j].poff = base & PAGE_MASK; par->mmap_map[j].size = (size + ~PAGE_MASK) & PAGE_MASK; par->mmap_map[j].prot_mask = _PAGE_CACHE; par->mmap_map[j].prot_flag = _PAGE_E; j++; } /* * Here comes the old framebuffer mapping with _PAGE_IE * set for the big endian half of the framebuffer... */ if (base == addr) { par->mmap_map[j].voff = (pbase + 0x800000) & PAGE_MASK; par->mmap_map[j].poff = (base + 0x800000) & PAGE_MASK; par->mmap_map[j].size = 0x800000; par->mmap_map[j].prot_mask = _PAGE_CACHE; par->mmap_map[j].prot_flag = _PAGE_E | _PAGE_IE; size -= 0x800000; j++; } par->mmap_map[j].voff = pbase & PAGE_MASK; par->mmap_map[j].poff = base & PAGE_MASK; par->mmap_map[j].size = (size + ~PAGE_MASK) & PAGE_MASK; par->mmap_map[j].prot_mask = _PAGE_CACHE; par->mmap_map[j].prot_flag = _PAGE_E; j++; } ret = correct_chipset(par); if (ret) return ret; if (IS_XL(pdev->device)) { /* * Fix PROMs idea of MEM_CNTL settings... */ mem = aty_ld_le32(MEM_CNTL, par); chip_id = aty_ld_le32(CNFG_CHIP_ID, par); if (((chip_id & CFG_CHIP_TYPE) == VT_CHIP_ID) && !((chip_id >> 24) & 1)) { switch (mem & 0x0f) { case 3: mem = (mem & ~(0x0f)) | 2; break; case 7: mem = (mem & ~(0x0f)) | 3; break; case 9: mem = (mem & ~(0x0f)) | 4; break; case 11: mem = (mem & ~(0x0f)) | 5; break; default: break; } if ((aty_ld_le32(CNFG_STAT0, par) & 7) >= SDRAM) mem &= ~(0x00700000); } mem &= ~(0xcf80e000); /* Turn off all undocumented bits. */ aty_st_le32(MEM_CNTL, mem, par); } dp = pci_device_to_OF_node(pdev); if (dp == of_console_device) { struct fb_var_screeninfo *var = &default_var; unsigned int N, P, Q, M, T, R; struct crtc crtc; u8 pll_regs[16]; u8 clock_cntl; crtc.vxres = of_getintprop_default(dp, "width", 1024); crtc.vyres = of_getintprop_default(dp, "height", 768); var->bits_per_pixel = of_getintprop_default(dp, "depth", 8); var->xoffset = var->yoffset = 0; crtc.h_tot_disp = aty_ld_le32(CRTC_H_TOTAL_DISP, par); crtc.h_sync_strt_wid = aty_ld_le32(CRTC_H_SYNC_STRT_WID, par); crtc.v_tot_disp = aty_ld_le32(CRTC_V_TOTAL_DISP, par); crtc.v_sync_strt_wid = aty_ld_le32(CRTC_V_SYNC_STRT_WID, par); crtc.gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par); aty_crtc_to_var(&crtc, var); /* * Read the PLL to figure actual Refresh Rate. */ clock_cntl = aty_ld_8(CLOCK_CNTL, par); /* DPRINTK("CLOCK_CNTL %02x\n", clock_cntl); */ for (i = 0; i < 16; i++) pll_regs[i] = aty_ld_pll_ct(i, par); /* * PLL Reference Divider M: */ M = pll_regs[PLL_REF_DIV]; /* * PLL Feedback Divider N (Dependent on CLOCK_CNTL): */ N = pll_regs[VCLK0_FB_DIV + (clock_cntl & 3)]; /* * PLL Post Divider P (Dependent on CLOCK_CNTL): */ P = aty_postdividers[((pll_regs[VCLK_POST_DIV] >> ((clock_cntl & 3) << 1)) & 3) | ((pll_regs[PLL_EXT_CNTL] >> (2 + (clock_cntl & 3))) & 4)]; /* * PLL Divider Q: */ Q = N / P; /* * Target Frequency: * * T * M * Q = ------- * 2 * R * * where R is XTALIN (= 14318 or 29498 kHz). */ if (IS_XL(pdev->device)) R = 29498; else R = 14318; T = 2 * Q * R / M; default_var.pixclock = 1000000000 / T; } return 0; } #else /* __sparc__ */ #ifdef __i386__ #ifdef CONFIG_FB_ATY_GENERIC_LCD static void aty_init_lcd(struct atyfb_par *par, u32 bios_base) { u32 driv_inf_tab, sig; u16 lcd_ofs; /* * To support an LCD panel, we should know it's dimensions and * it's desired pixel clock. * There are two ways to do it: * - Check the startup video mode and calculate the panel * size from it. This is unreliable. * - Read it from the driver information table in the video BIOS. */ /* Address of driver information table is at offset 0x78. */ driv_inf_tab = bios_base + *((u16 *)(bios_base+0x78)); /* Check for the driver information table signature. */ sig = *(u32 *)driv_inf_tab; if ((sig == 0x54504c24) || /* Rage LT pro */ (sig == 0x544d5224) || /* Rage mobility */ (sig == 0x54435824) || /* Rage XC */ (sig == 0x544c5824)) { /* Rage XL */ PRINTKI("BIOS contains driver information table.\n"); lcd_ofs = *(u16 *)(driv_inf_tab + 10); par->lcd_table = 0; if (lcd_ofs != 0) par->lcd_table = bios_base + lcd_ofs; } if (par->lcd_table != 0) { char model[24]; char strbuf[16]; char refresh_rates_buf[100]; int id, tech, f, i, m, default_refresh_rate; char *txtcolour; char *txtmonitor; char *txtdual; char *txtformat; u16 width, height, panel_type, refresh_rates; u16 *lcdmodeptr; u32 format; u8 lcd_refresh_rates[16] = { 50, 56, 60, 67, 70, 72, 75, 76, 85, 90, 100, 120, 140, 150, 160, 200 }; /* * The most important information is the panel size at * offset 25 and 27, but there's some other nice information * which we print to the screen. */ id = *(u8 *)par->lcd_table; strncpy(model, (char *)par->lcd_table+1, 24); model[23] = 0; width = par->lcd_width = *(u16 *)(par->lcd_table+25); height = par->lcd_height = *(u16 *)(par->lcd_table+27); panel_type = *(u16 *)(par->lcd_table+29); if (panel_type & 1) txtcolour = "colour"; else txtcolour = "monochrome"; if (panel_type & 2) txtdual = "dual (split) "; else txtdual = ""; tech = (panel_type >> 2) & 63; switch (tech) { case 0: txtmonitor = "passive matrix"; break; case 1: txtmonitor = "active matrix"; break; case 2: txtmonitor = "active addressed STN"; break; case 3: txtmonitor = "EL"; break; case 4: txtmonitor = "plasma"; break; default: txtmonitor = "unknown"; } format = *(u32 *)(par->lcd_table+57); if (tech == 0 || tech == 2) { switch (format & 7) { case 0: txtformat = "12 bit interface"; break; case 1: txtformat = "16 bit interface"; break; case 2: txtformat = "24 bit interface"; break; default: txtformat = "unknown format"; } } else { switch (format & 7) { case 0: txtformat = "8 colours"; break; case 1: txtformat = "512 colours"; break; case 2: txtformat = "4096 colours"; break; case 4: txtformat = "262144 colours (LT mode)"; break; case 5: txtformat = "16777216 colours"; break; case 6: txtformat = "262144 colours (FDPI-2 mode)"; break; default: txtformat = "unknown format"; } } PRINTKI("%s%s %s monitor detected: %s\n", txtdual, txtcolour, txtmonitor, model); PRINTKI(" id=%d, %dx%d pixels, %s\n", id, width, height, txtformat); refresh_rates_buf[0] = 0; refresh_rates = *(u16 *)(par->lcd_table+62); m = 1; f = 0; for (i = 0; i < 16; i++) { if (refresh_rates & m) { if (f == 0) { sprintf(strbuf, "%d", lcd_refresh_rates[i]); f++; } else { sprintf(strbuf, ",%d", lcd_refresh_rates[i]); } strcat(refresh_rates_buf, strbuf); } m = m << 1; } default_refresh_rate = (*(u8 *)(par->lcd_table+61) & 0xf0) >> 4; PRINTKI(" supports refresh rates [%s], default %d Hz\n", refresh_rates_buf, lcd_refresh_rates[default_refresh_rate]); par->lcd_refreshrate = lcd_refresh_rates[default_refresh_rate]; /* * We now need to determine the crtc parameters for the * LCD monitor. This is tricky, because they are not stored * individually in the BIOS. Instead, the BIOS contains a * table of display modes that work for this monitor. * * The idea is that we search for a mode of the same dimensions * as the dimensions of the LCD monitor. Say our LCD monitor * is 800x600 pixels, we search for a 800x600 monitor. * The CRTC parameters we find here are the ones that we need * to use to simulate other resolutions on the LCD screen. */ lcdmodeptr = (u16 *)(par->lcd_table + 64); while (*lcdmodeptr != 0) { u32 modeptr; u16 mwidth, mheight, lcd_hsync_start, lcd_vsync_start; modeptr = bios_base + *lcdmodeptr; mwidth = *((u16 *)(modeptr+0)); mheight = *((u16 *)(modeptr+2)); if (mwidth == width && mheight == height) { par->lcd_pixclock = 100000000 / *((u16 *)(modeptr+9)); par->lcd_htotal = *((u16 *)(modeptr+17)) & 511; par->lcd_hdisp = *((u16 *)(modeptr+19)) & 511; lcd_hsync_start = *((u16 *)(modeptr+21)) & 511; par->lcd_hsync_dly = (*((u16 *)(modeptr+21)) >> 9) & 7; par->lcd_hsync_len = *((u8 *)(modeptr+23)) & 63; par->lcd_vtotal = *((u16 *)(modeptr+24)) & 2047; par->lcd_vdisp = *((u16 *)(modeptr+26)) & 2047; lcd_vsync_start = *((u16 *)(modeptr+28)) & 2047; par->lcd_vsync_len = (*((u16 *)(modeptr+28)) >> 11) & 31; par->lcd_htotal = (par->lcd_htotal + 1) * 8; par->lcd_hdisp = (par->lcd_hdisp + 1) * 8; lcd_hsync_start = (lcd_hsync_start + 1) * 8; par->lcd_hsync_len = par->lcd_hsync_len * 8; par->lcd_vtotal++; par->lcd_vdisp++; lcd_vsync_start++; par->lcd_right_margin = lcd_hsync_start - par->lcd_hdisp; par->lcd_lower_margin = lcd_vsync_start - par->lcd_vdisp; par->lcd_hblank_len = par->lcd_htotal - par->lcd_hdisp; par->lcd_vblank_len = par->lcd_vtotal - par->lcd_vdisp; break; } lcdmodeptr++; } if (*lcdmodeptr == 0) { PRINTKE("LCD monitor CRTC parameters not found!!!\n"); /* To do: Switch to CRT if possible. */ } else { PRINTKI(" LCD CRTC parameters: %d.%d %d %d %d %d %d %d %d %d\n", 1000000 / par->lcd_pixclock, 1000000 % par->lcd_pixclock, par->lcd_hdisp, par->lcd_hdisp + par->lcd_right_margin, par->lcd_hdisp + par->lcd_right_margin + par->lcd_hsync_dly + par->lcd_hsync_len, par->lcd_htotal, par->lcd_vdisp, par->lcd_vdisp + par->lcd_lower_margin, par->lcd_vdisp + par->lcd_lower_margin + par->lcd_vsync_len, par->lcd_vtotal); PRINTKI(" : %d %d %d %d %d %d %d %d %d\n", par->lcd_pixclock, par->lcd_hblank_len - (par->lcd_right_margin + par->lcd_hsync_dly + par->lcd_hsync_len), par->lcd_hdisp, par->lcd_right_margin, par->lcd_hsync_len, par->lcd_vblank_len - (par->lcd_lower_margin + par->lcd_vsync_len), par->lcd_vdisp, par->lcd_lower_margin, par->lcd_vsync_len); } } } #endif /* CONFIG_FB_ATY_GENERIC_LCD */ static int init_from_bios(struct atyfb_par *par) { u32 bios_base, rom_addr; int ret; rom_addr = 0xc0000 + ((aty_ld_le32(SCRATCH_REG1, par) & 0x7f) << 11); bios_base = (unsigned long)ioremap(rom_addr, 0x10000); /* The BIOS starts with 0xaa55. */ if (*((u16 *)bios_base) == 0xaa55) { u8 *bios_ptr; u16 rom_table_offset, freq_table_offset; PLL_BLOCK_MACH64 pll_block; PRINTKI("Mach64 BIOS is located at %x, mapped at %x.\n", rom_addr, bios_base); /* check for frequncy table */ bios_ptr = (u8*)bios_base; rom_table_offset = (u16)(bios_ptr[0x48] | (bios_ptr[0x49] << 8)); freq_table_offset = bios_ptr[rom_table_offset + 16] | (bios_ptr[rom_table_offset + 17] << 8); memcpy(&pll_block, bios_ptr + freq_table_offset, sizeof(PLL_BLOCK_MACH64)); PRINTKI("BIOS frequency table:\n"); PRINTKI("PCLK_min_freq %d, PCLK_max_freq %d, ref_freq %d, ref_divider %d\n", pll_block.PCLK_min_freq, pll_block.PCLK_max_freq, pll_block.ref_freq, pll_block.ref_divider); PRINTKI("MCLK_pwd %d, MCLK_max_freq %d, XCLK_max_freq %d, SCLK_freq %d\n", pll_block.MCLK_pwd, pll_block.MCLK_max_freq, pll_block.XCLK_max_freq, pll_block.SCLK_freq); par->pll_limits.pll_min = pll_block.PCLK_min_freq/100; par->pll_limits.pll_max = pll_block.PCLK_max_freq/100; par->pll_limits.ref_clk = pll_block.ref_freq/100; par->pll_limits.ref_div = pll_block.ref_divider; par->pll_limits.sclk = pll_block.SCLK_freq/100; par->pll_limits.mclk = pll_block.MCLK_max_freq/100; par->pll_limits.mclk_pm = pll_block.MCLK_pwd/100; par->pll_limits.xclk = pll_block.XCLK_max_freq/100; #ifdef CONFIG_FB_ATY_GENERIC_LCD aty_init_lcd(par, bios_base); #endif ret = 0; } else { PRINTKE("no BIOS frequency table found, use parameters\n"); ret = -ENXIO; } iounmap((void __iomem *)bios_base); return ret; } #endif /* __i386__ */ static int atyfb_setup_generic(struct pci_dev *pdev, struct fb_info *info, unsigned long addr) { struct atyfb_par *par = info->par; u16 tmp; unsigned long raddr; struct resource *rrp; int ret = 0; raddr = addr + 0x7ff000UL; rrp = &pdev->resource[2]; if ((rrp->flags & IORESOURCE_MEM) && request_mem_region(rrp->start, resource_size(rrp), "atyfb")) { par->aux_start = rrp->start; par->aux_size = resource_size(rrp); raddr = rrp->start; PRINTKI("using auxiliary register aperture\n"); } info->fix.mmio_start = raddr; /* * By using strong UC we force the MTRR to never have an * effect on the MMIO region on both non-PAT and PAT systems. */ par->ati_regbase = ioremap_uc(info->fix.mmio_start, 0x1000); if (par->ati_regbase == NULL) return -ENOMEM; info->fix.mmio_start += par->aux_start ? 0x400 : 0xc00; par->ati_regbase += par->aux_start ? 0x400 : 0xc00; /* * Enable memory-space accesses using config-space * command register. */ pci_read_config_word(pdev, PCI_COMMAND, &tmp); if (!(tmp & PCI_COMMAND_MEMORY)) { tmp |= PCI_COMMAND_MEMORY; pci_write_config_word(pdev, PCI_COMMAND, tmp); } #ifdef __BIG_ENDIAN /* Use the big-endian aperture */ addr += 0x800000; #endif /* Map in frame buffer */ info->fix.smem_start = addr; /* * The framebuffer is not always 8 MiB, that's just the size of the * PCI BAR. We temporarily abuse smem_len here to store the size * of the BAR. aty_init() will later correct it to match the actual * framebuffer size. * * On devices that don't have the auxiliary register aperture, the * registers are housed at the top end of the framebuffer PCI BAR. * aty_fudge_framebuffer_len() is used to reduce smem_len to not * overlap with the registers. */ info->fix.smem_len = 0x800000; aty_fudge_framebuffer_len(info); info->screen_base = ioremap_wc(info->fix.smem_start, info->fix.smem_len); if (info->screen_base == NULL) { ret = -ENOMEM; goto atyfb_setup_generic_fail; } ret = correct_chipset(par); if (ret) goto atyfb_setup_generic_fail; #ifdef __i386__ ret = init_from_bios(par); if (ret) goto atyfb_setup_generic_fail; #endif if (!(aty_ld_le32(CRTC_GEN_CNTL, par) & CRTC_EXT_DISP_EN)) par->clk_wr_offset = (inb(R_GENMO) & 0x0CU) >> 2; else par->clk_wr_offset = aty_ld_8(CLOCK_CNTL, par) & 0x03U; /* according to ATI, we should use clock 3 for acelerated mode */ par->clk_wr_offset = 3; return 0; atyfb_setup_generic_fail: iounmap(par->ati_regbase); par->ati_regbase = NULL; if (info->screen_base) { iounmap(info->screen_base); info->screen_base = NULL; } return ret; } #endif /* !__sparc__ */ static int atyfb_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { unsigned long addr, res_start, res_size; struct fb_info *info; struct resource *rp; struct atyfb_par *par; int rc; rc = aperture_remove_conflicting_pci_devices(pdev, "atyfb"); if (rc) return rc; /* Enable device in PCI config */ if (pci_enable_device(pdev)) { PRINTKE("Cannot enable PCI device\n"); return -ENXIO; } /* Find which resource to use */ rp = &pdev->resource[0]; if (rp->flags & IORESOURCE_IO) rp = &pdev->resource[1]; addr = rp->start; if (!addr) return -ENXIO; /* Reserve space */ res_start = rp->start; res_size = resource_size(rp); if (!request_mem_region(res_start, res_size, "atyfb")) return -EBUSY; /* Allocate framebuffer */ info = framebuffer_alloc(sizeof(struct atyfb_par), &pdev->dev); if (!info) return -ENOMEM; par = info->par; par->bus_type = PCI; info->fix = atyfb_fix; info->device = &pdev->dev; par->pci_id = pdev->device; par->res_start = res_start; par->res_size = res_size; par->irq = pdev->irq; par->pdev = pdev; /* Setup "info" structure */ #ifdef __sparc__ rc = atyfb_setup_sparc(pdev, info, addr); #else rc = atyfb_setup_generic(pdev, info, addr); #endif if (rc) goto err_release_mem; pci_set_drvdata(pdev, info); /* Init chip & register framebuffer */ rc = aty_init(info); if (rc) goto err_release_io; #ifdef __sparc__ /* * Add /dev/fb mmap values. */ par->mmap_map[0].voff = 0x8000000000000000UL; par->mmap_map[0].poff = (unsigned long) info->screen_base & PAGE_MASK; par->mmap_map[0].size = info->fix.smem_len; par->mmap_map[0].prot_mask = _PAGE_CACHE; par->mmap_map[0].prot_flag = _PAGE_E; par->mmap_map[1].voff = par->mmap_map[0].voff + info->fix.smem_len; par->mmap_map[1].poff = (long)par->ati_regbase & PAGE_MASK; par->mmap_map[1].size = PAGE_SIZE; par->mmap_map[1].prot_mask = _PAGE_CACHE; par->mmap_map[1].prot_flag = _PAGE_E; #endif /* __sparc__ */ mutex_lock(&reboot_lock); if (!reboot_info) reboot_info = info; mutex_unlock(&reboot_lock); return 0; err_release_io: #ifdef __sparc__ kfree(par->mmap_map); #else if (par->ati_regbase) iounmap(par->ati_regbase); if (info->screen_base) iounmap(info->screen_base); #endif err_release_mem: if (par->aux_start) release_mem_region(par->aux_start, par->aux_size); release_mem_region(par->res_start, par->res_size); framebuffer_release(info); return rc; } #endif /* CONFIG_PCI */ #ifdef CONFIG_ATARI static int __init atyfb_atari_probe(void) { struct atyfb_par *par; struct fb_info *info; int m64_num; u32 clock_r; int num_found = 0; for (m64_num = 0; m64_num < mach64_count; m64_num++) { if (!phys_vmembase[m64_num] || !phys_size[m64_num] || !phys_guiregbase[m64_num]) { PRINTKI("phys_*[%d] parameters not set => " "returning early. \n", m64_num); continue; } info = framebuffer_alloc(sizeof(struct atyfb_par), NULL); if (!info) return -ENOMEM; par = info->par; info->fix = atyfb_fix; par->irq = (unsigned int) -1; /* something invalid */ /* * Map the video memory (physical address given) * to somewhere in the kernel address space. */ info->screen_base = ioremap_wc(phys_vmembase[m64_num], phys_size[m64_num]); info->fix.smem_start = (unsigned long)info->screen_base; /* Fake! */ par->ati_regbase = ioremap(phys_guiregbase[m64_num], 0x10000) + 0xFC00ul; info->fix.mmio_start = (unsigned long)par->ati_regbase; /* Fake! */ aty_st_le32(CLOCK_CNTL, 0x12345678, par); clock_r = aty_ld_le32(CLOCK_CNTL, par); switch (clock_r & 0x003F) { case 0x12: par->clk_wr_offset = 3; /* */ break; case 0x34: par->clk_wr_offset = 2; /* Medusa ST-IO ISA Adapter etc. */ break; case 0x16: par->clk_wr_offset = 1; /* */ break; case 0x38: par->clk_wr_offset = 0; /* Panther 1 ISA Adapter (Gerald) */ break; } /* Fake pci_id for correct_chipset() */ switch (aty_ld_le32(CNFG_CHIP_ID, par) & CFG_CHIP_TYPE) { case 0x00d7: par->pci_id = PCI_CHIP_MACH64GX; break; case 0x0057: par->pci_id = PCI_CHIP_MACH64CX; break; default: break; } if (correct_chipset(par) || aty_init(info)) { iounmap(info->screen_base); iounmap(par->ati_regbase); framebuffer_release(info); } else { num_found++; } } return num_found ? 0 : -ENXIO; } #endif /* CONFIG_ATARI */ #ifdef CONFIG_PCI static void atyfb_remove(struct fb_info *info) { struct atyfb_par *par = (struct atyfb_par *) info->par; /* restore video mode */ aty_set_crtc(par, &par->saved_crtc); par->pll_ops->set_pll(info, &par->saved_pll); unregister_framebuffer(info); #ifdef CONFIG_FB_ATY_BACKLIGHT if (M64_HAS(MOBIL_BUS)) aty_bl_exit(info->bl_dev); #endif arch_phys_wc_del(par->wc_cookie); #ifndef __sparc__ if (par->ati_regbase) iounmap(par->ati_regbase); if (info->screen_base) iounmap(info->screen_base); #ifdef __BIG_ENDIAN if (info->sprite.addr) iounmap(info->sprite.addr); #endif #endif #ifdef __sparc__ kfree(par->mmap_map); #endif if (par->aux_start) release_mem_region(par->aux_start, par->aux_size); if (par->res_start) release_mem_region(par->res_start, par->res_size); framebuffer_release(info); } static void atyfb_pci_remove(struct pci_dev *pdev) { struct fb_info *info = pci_get_drvdata(pdev); mutex_lock(&reboot_lock); if (reboot_info == info) reboot_info = NULL; mutex_unlock(&reboot_lock); atyfb_remove(info); } static const struct pci_device_id atyfb_pci_tbl[] = { #ifdef CONFIG_FB_ATY_GX { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GX) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64CX) }, #endif /* CONFIG_FB_ATY_GX */ #ifdef CONFIG_FB_ATY_CT { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64CT) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64ET) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64LT) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64VT) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GT) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64VU) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GU) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64LG) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64VV) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GV) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GW) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GY) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GZ) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GB) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GD) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GI) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GP) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GQ) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64LB) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64LD) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64LI) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64LP) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64LQ) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GM) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GN) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GO) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GL) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GR) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64GS) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64LM) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64LN) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64LR) }, { PCI_DEVICE(PCI_VENDOR_ID_ATI, PCI_CHIP_MACH64LS) }, #endif /* CONFIG_FB_ATY_CT */ { } }; MODULE_DEVICE_TABLE(pci, atyfb_pci_tbl); static struct pci_driver atyfb_driver = { .name = "atyfb", .id_table = atyfb_pci_tbl, .probe = atyfb_pci_probe, .remove = atyfb_pci_remove, .driver.pm = &atyfb_pci_pm_ops, }; #endif /* CONFIG_PCI */ #ifndef MODULE static int __init atyfb_setup(char *options) { char *this_opt; if (!options || !*options) return 0; while ((this_opt = strsep(&options, ",")) != NULL) { if (!strncmp(this_opt, "noaccel", 7)) { noaccel = true; } else if (!strncmp(this_opt, "nomtrr", 6)) { nomtrr = true; } else if (!strncmp(this_opt, "vram:", 5)) vram = simple_strtoul(this_opt + 5, NULL, 0); else if (!strncmp(this_opt, "pll:", 4)) pll = simple_strtoul(this_opt + 4, NULL, 0); else if (!strncmp(this_opt, "mclk:", 5)) mclk = simple_strtoul(this_opt + 5, NULL, 0); else if (!strncmp(this_opt, "xclk:", 5)) xclk = simple_strtoul(this_opt+5, NULL, 0); else if (!strncmp(this_opt, "comp_sync:", 10)) comp_sync = simple_strtoul(this_opt+10, NULL, 0); else if (!strncmp(this_opt, "backlight:", 10)) backlight = simple_strtoul(this_opt+10, NULL, 0); #ifdef CONFIG_PPC else if (!strncmp(this_opt, "vmode:", 6)) { unsigned int vmode = simple_strtoul(this_opt + 6, NULL, 0); if (vmode > 0 && vmode <= VMODE_MAX) default_vmode = vmode; } else if (!strncmp(this_opt, "cmode:", 6)) { unsigned int cmode = simple_strtoul(this_opt + 6, NULL, 0); switch (cmode) { case 0: case 8: default_cmode = CMODE_8; break; case 15: case 16: default_cmode = CMODE_16; break; case 24: case 32: default_cmode = CMODE_32; break; } } #endif #ifdef CONFIG_ATARI /* * Why do we need this silly Mach64 argument? * We are already here because of mach64= so its redundant. */ else if (MACH_IS_ATARI && (!strncmp(this_opt, "Mach64:", 7))) { static unsigned char m64_num; static char mach64_str[80]; strscpy(mach64_str, this_opt + 7, sizeof(mach64_str)); if (!store_video_par(mach64_str, m64_num)) { m64_num++; mach64_count = m64_num; } } #endif else mode = this_opt; } return 0; } #endif /* MODULE */ static int atyfb_reboot_notify(struct notifier_block *nb, unsigned long code, void *unused) { struct atyfb_par *par; if (code != SYS_RESTART) return NOTIFY_DONE; mutex_lock(&reboot_lock); if (!reboot_info) goto out; lock_fb_info(reboot_info); par = reboot_info->par; /* * HP OmniBook 500's BIOS doesn't like the state of the * hardware after atyfb has been used. Restore the hardware * to the original state to allow successful reboots. */ aty_set_crtc(par, &par->saved_crtc); par->pll_ops->set_pll(reboot_info, &par->saved_pll); unlock_fb_info(reboot_info); out: mutex_unlock(&reboot_lock); return NOTIFY_DONE; } static struct notifier_block atyfb_reboot_notifier = { .notifier_call = atyfb_reboot_notify, }; static const struct dmi_system_id atyfb_reboot_ids[] __initconst = { { .ident = "HP OmniBook 500", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME, "HP OmniBook PC"), DMI_MATCH(DMI_PRODUCT_VERSION, "HP OmniBook 500 FA"), }, }, { } }; static bool registered_notifier = false; static int __init atyfb_init(void) { int err1 = 1, err2 = 1; #ifndef MODULE char *option = NULL; if (fb_get_options("atyfb", &option)) return -ENODEV; atyfb_setup(option); #endif #ifdef CONFIG_PCI err1 = pci_register_driver(&atyfb_driver); #endif #ifdef CONFIG_ATARI err2 = atyfb_atari_probe(); #endif if (err1 && err2) return -ENODEV; if (dmi_check_system(atyfb_reboot_ids)) { register_reboot_notifier(&atyfb_reboot_notifier); registered_notifier = true; } return 0; } static void __exit atyfb_exit(void) { if (registered_notifier) unregister_reboot_notifier(&atyfb_reboot_notifier); #ifdef CONFIG_PCI pci_unregister_driver(&atyfb_driver); #endif } module_init(atyfb_init); module_exit(atyfb_exit); MODULE_DESCRIPTION("FBDev driver for ATI Mach64 cards"); MODULE_LICENSE("GPL"); module_param(noaccel, bool, 0); MODULE_PARM_DESC(noaccel, "bool: disable acceleration"); module_param(vram, int, 0); MODULE_PARM_DESC(vram, "int: override size of video ram"); module_param(pll, int, 0); MODULE_PARM_DESC(pll, "int: override video clock"); module_param(mclk, int, 0); MODULE_PARM_DESC(mclk, "int: override memory clock"); module_param(xclk, int, 0); MODULE_PARM_DESC(xclk, "int: override accelerated engine clock"); module_param(comp_sync, int, 0); MODULE_PARM_DESC(comp_sync, "Set composite sync signal to low (0) or high (1)"); module_param(mode, charp, 0); MODULE_PARM_DESC(mode, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" "); module_param(nomtrr, bool, 0); MODULE_PARM_DESC(nomtrr, "bool: disable use of MTRR registers");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1