Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andra Paraschiv | 5529 | 94.35% | 10 | 71.43% |
Longpeng( Mike) | 290 | 4.95% | 3 | 21.43% |
Mathias Krause | 41 | 0.70% | 1 | 7.14% |
Total | 5860 | 14 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2020-2021 Amazon.com, Inc. or its affiliates. All Rights Reserved. */ /** * DOC: Enclave lifetime management driver for Nitro Enclaves (NE). * Nitro is a hypervisor that has been developed by Amazon. */ #include <linux/anon_inodes.h> #include <linux/capability.h> #include <linux/cpu.h> #include <linux/device.h> #include <linux/file.h> #include <linux/hugetlb.h> #include <linux/limits.h> #include <linux/list.h> #include <linux/miscdevice.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/nitro_enclaves.h> #include <linux/pci.h> #include <linux/poll.h> #include <linux/range.h> #include <linux/slab.h> #include <linux/types.h> #include <uapi/linux/vm_sockets.h> #include "ne_misc_dev.h" #include "ne_pci_dev.h" /** * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma * separated. The NE CPU pool includes CPUs from a single NUMA * node. */ #define NE_CPUS_SIZE (512) /** * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF) * image in enclave memory. */ #define NE_EIF_LOAD_OFFSET (8 * 1024UL * 1024UL) /** * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched * with. */ #define NE_MIN_ENCLAVE_MEM_SIZE (64 * 1024UL * 1024UL) /** * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region. */ #define NE_MIN_MEM_REGION_SIZE (2 * 1024UL * 1024UL) /** * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM. */ #define NE_PARENT_VM_CID (3) static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg); static const struct file_operations ne_fops = { .owner = THIS_MODULE, .llseek = noop_llseek, .unlocked_ioctl = ne_ioctl, }; static struct miscdevice ne_misc_dev = { .minor = MISC_DYNAMIC_MINOR, .name = "nitro_enclaves", .fops = &ne_fops, .mode = 0660, }; struct ne_devs ne_devs = { .ne_misc_dev = &ne_misc_dev, }; /* * TODO: Update logic to create new sysfs entries instead of using * a kernel parameter e.g. if multiple sysfs files needed. */ static int ne_set_kernel_param(const char *val, const struct kernel_param *kp); static const struct kernel_param_ops ne_cpu_pool_ops = { .get = param_get_string, .set = ne_set_kernel_param, }; static char ne_cpus[NE_CPUS_SIZE]; static struct kparam_string ne_cpus_arg = { .maxlen = sizeof(ne_cpus), .string = ne_cpus, }; module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644); /* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */ MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves"); /** * struct ne_cpu_pool - CPU pool used for Nitro Enclaves. * @avail_threads_per_core: Available full CPU cores to be dedicated to * enclave(s). The cpumasks from the array, indexed * by core id, contain all the threads from the * available cores, that are not set for created * enclave(s). The full CPU cores are part of the * NE CPU pool. * @mutex: Mutex for the access to the NE CPU pool. * @nr_parent_vm_cores : The size of the available threads per core array. * The total number of CPU cores available on the * primary / parent VM. * @nr_threads_per_core: The number of threads that a full CPU core has. * @numa_node: NUMA node of the CPUs in the pool. */ struct ne_cpu_pool { cpumask_var_t *avail_threads_per_core; struct mutex mutex; unsigned int nr_parent_vm_cores; unsigned int nr_threads_per_core; int numa_node; }; static struct ne_cpu_pool ne_cpu_pool; /** * struct ne_phys_contig_mem_regions - Contiguous physical memory regions. * @num: The number of regions that currently has. * @regions: The array of physical memory regions. */ struct ne_phys_contig_mem_regions { unsigned long num; struct range *regions; }; /** * ne_check_enclaves_created() - Verify if at least one enclave has been created. * @void: No parameters provided. * * Context: Process context. * Return: * * True if at least one enclave is created. * * False otherwise. */ static bool ne_check_enclaves_created(void) { struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; bool ret = false; if (!ne_pci_dev) return ret; mutex_lock(&ne_pci_dev->enclaves_list_mutex); if (!list_empty(&ne_pci_dev->enclaves_list)) ret = true; mutex_unlock(&ne_pci_dev->enclaves_list_mutex); return ret; } /** * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such * as not sharing CPU cores with the primary / parent VM * or not using CPU 0, which should remain available for * the primary / parent VM. Offline the CPUs from the * pool after the checks passed. * @ne_cpu_list: The CPU list used for setting NE CPU pool. * * Context: Process context. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_setup_cpu_pool(const char *ne_cpu_list) { int core_id = -1; unsigned int cpu = 0; cpumask_var_t cpu_pool; unsigned int cpu_sibling = 0; unsigned int i = 0; int numa_node = -1; int rc = -EINVAL; if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL)) return -ENOMEM; mutex_lock(&ne_cpu_pool.mutex); rc = cpulist_parse(ne_cpu_list, cpu_pool); if (rc < 0) { pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc); goto free_pool_cpumask; } cpu = cpumask_any(cpu_pool); if (cpu >= nr_cpu_ids) { pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name); rc = -EINVAL; goto free_pool_cpumask; } /* * Check if the CPUs are online, to further get info about them * e.g. numa node, core id, siblings. */ for_each_cpu(cpu, cpu_pool) if (cpu_is_offline(cpu)) { pr_err("%s: CPU %d is offline, has to be online to get its metadata\n", ne_misc_dev.name, cpu); rc = -EINVAL; goto free_pool_cpumask; } /* * Check if the CPUs from the NE CPU pool are from the same NUMA node. */ for_each_cpu(cpu, cpu_pool) if (numa_node < 0) { numa_node = cpu_to_node(cpu); if (numa_node < 0) { pr_err("%s: Invalid NUMA node %d\n", ne_misc_dev.name, numa_node); rc = -EINVAL; goto free_pool_cpumask; } } else { if (numa_node != cpu_to_node(cpu)) { pr_err("%s: CPUs with different NUMA nodes\n", ne_misc_dev.name); rc = -EINVAL; goto free_pool_cpumask; } } /* * Check if CPU 0 and its siblings are included in the provided CPU pool * They should remain available for the primary / parent VM. */ if (cpumask_test_cpu(0, cpu_pool)) { pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name); rc = -EINVAL; goto free_pool_cpumask; } for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) { if (cpumask_test_cpu(cpu_sibling, cpu_pool)) { pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n", ne_misc_dev.name, cpu_sibling); rc = -EINVAL; goto free_pool_cpumask; } } /* * Check if CPU siblings are included in the provided CPU pool. The * expectation is that full CPU cores are made available in the CPU pool * for enclaves. */ for_each_cpu(cpu, cpu_pool) { for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) { if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) { pr_err("%s: CPU %d is not in CPU pool\n", ne_misc_dev.name, cpu_sibling); rc = -EINVAL; goto free_pool_cpumask; } } } /* Calculate the number of threads from a full CPU core. */ cpu = cpumask_any(cpu_pool); for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) ne_cpu_pool.nr_threads_per_core++; ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core; ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores, sizeof(*ne_cpu_pool.avail_threads_per_core), GFP_KERNEL); if (!ne_cpu_pool.avail_threads_per_core) { rc = -ENOMEM; goto free_pool_cpumask; } for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) { rc = -ENOMEM; goto free_cores_cpumask; } /* * Split the NE CPU pool in threads per core to keep the CPU topology * after offlining the CPUs. */ for_each_cpu(cpu, cpu_pool) { core_id = topology_core_id(cpu); if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) { pr_err("%s: Invalid core id %d for CPU %d\n", ne_misc_dev.name, core_id, cpu); rc = -EINVAL; goto clear_cpumask; } cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]); } /* * CPUs that are given to enclave(s) should not be considered online * by Linux anymore, as the hypervisor will degrade them to floating. * The physical CPUs (full cores) are carved out of the primary / parent * VM and given to the enclave VM. The same number of vCPUs would run * on less pCPUs for the primary / parent VM. * * We offline them here, to not degrade performance and expose correct * topology to Linux and user space. */ for_each_cpu(cpu, cpu_pool) { rc = remove_cpu(cpu); if (rc != 0) { pr_err("%s: CPU %d is not offlined [rc=%d]\n", ne_misc_dev.name, cpu, rc); goto online_cpus; } } free_cpumask_var(cpu_pool); ne_cpu_pool.numa_node = numa_node; mutex_unlock(&ne_cpu_pool.mutex); return 0; online_cpus: for_each_cpu(cpu, cpu_pool) add_cpu(cpu); clear_cpumask: for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]); free_cores_cpumask: for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]); kfree(ne_cpu_pool.avail_threads_per_core); free_pool_cpumask: free_cpumask_var(cpu_pool); ne_cpu_pool.nr_parent_vm_cores = 0; ne_cpu_pool.nr_threads_per_core = 0; ne_cpu_pool.numa_node = -1; mutex_unlock(&ne_cpu_pool.mutex); return rc; } /** * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the * CPU pool. * @void: No parameters provided. * * Context: Process context. */ static void ne_teardown_cpu_pool(void) { unsigned int cpu = 0; unsigned int i = 0; int rc = -EINVAL; mutex_lock(&ne_cpu_pool.mutex); if (!ne_cpu_pool.nr_parent_vm_cores) { mutex_unlock(&ne_cpu_pool.mutex); return; } for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) { for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) { rc = add_cpu(cpu); if (rc != 0) pr_err("%s: CPU %d is not onlined [rc=%d]\n", ne_misc_dev.name, cpu, rc); } cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]); free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]); } kfree(ne_cpu_pool.avail_threads_per_core); ne_cpu_pool.nr_parent_vm_cores = 0; ne_cpu_pool.nr_threads_per_core = 0; ne_cpu_pool.numa_node = -1; mutex_unlock(&ne_cpu_pool.mutex); } /** * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter. * @val: NE CPU pool string value. * @kp : NE kernel parameter associated with the NE CPU pool. * * Context: Process context. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_set_kernel_param(const char *val, const struct kernel_param *kp) { char error_val[] = ""; int rc = -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (ne_check_enclaves_created()) { pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name); return -EPERM; } ne_teardown_cpu_pool(); rc = ne_setup_cpu_pool(val); if (rc < 0) { pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc); param_set_copystring(error_val, kp); return rc; } rc = param_set_copystring(val, kp); if (rc < 0) { pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc); ne_teardown_cpu_pool(); param_set_copystring(error_val, kp); return rc; } return 0; } /** * ne_donated_cpu() - Check if the provided CPU is already used by the enclave. * @ne_enclave : Private data associated with the current enclave. * @cpu: CPU to check if already used. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * True if the provided CPU is already used by the enclave. * * False otherwise. */ static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu) { if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) return true; return false; } /** * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the * NE CPU pool. * @void: No parameters provided. * * Context: Process context. This function is called with the ne_enclave and * ne_cpu_pool mutexes held. * Return: * * Core id. * * -1 if no CPU core available in the pool. */ static int ne_get_unused_core_from_cpu_pool(void) { int core_id = -1; unsigned int i = 0; for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) { core_id = i; break; } return core_id; } /** * ne_set_enclave_threads_per_core() - Set the threads of the provided core in * the enclave data structure. * @ne_enclave : Private data associated with the current enclave. * @core_id: Core id to get its threads from the NE CPU pool. * @vcpu_id: vCPU id part of the provided core. * * Context: Process context. This function is called with the ne_enclave and * ne_cpu_pool mutexes held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave, int core_id, u32 vcpu_id) { unsigned int cpu = 0; if (core_id < 0 && vcpu_id == 0) { dev_err_ratelimited(ne_misc_dev.this_device, "No CPUs available in NE CPU pool\n"); return -NE_ERR_NO_CPUS_AVAIL_IN_POOL; } if (core_id < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "CPU %d is not in NE CPU pool\n", vcpu_id); return -NE_ERR_VCPU_NOT_IN_CPU_POOL; } if (core_id >= ne_enclave->nr_parent_vm_cores) { dev_err_ratelimited(ne_misc_dev.this_device, "Invalid core id %d - ne_enclave\n", core_id); return -NE_ERR_VCPU_INVALID_CPU_CORE; } for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]) cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]); cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]); return 0; } /** * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the * remaining sibling(s) of a CPU core or the first * sibling of a new CPU core. * @ne_enclave : Private data associated with the current enclave. * @vcpu_id: vCPU to get from the NE CPU pool. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id) { int core_id = -1; unsigned int cpu = 0; unsigned int i = 0; int rc = -EINVAL; /* * If previously allocated a thread of a core to this enclave, first * check remaining sibling(s) for new CPU allocations, so that full * CPU cores are used for the enclave. */ for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) for_each_cpu(cpu, ne_enclave->threads_per_core[i]) if (!ne_donated_cpu(ne_enclave, cpu)) { *vcpu_id = cpu; return 0; } mutex_lock(&ne_cpu_pool.mutex); /* * If no remaining siblings, get a core from the NE CPU pool and keep * track of all the threads in the enclave threads per core data structure. */ core_id = ne_get_unused_core_from_cpu_pool(); rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id); if (rc < 0) goto unlock_mutex; *vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]); rc = 0; unlock_mutex: mutex_unlock(&ne_cpu_pool.mutex); return rc; } /** * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the * core associated with the provided vCPU. * @vcpu_id: Provided vCPU id to get its associated core id. * * Context: Process context. This function is called with the ne_enclave and * ne_cpu_pool mutexes held. * Return: * * Core id. * * -1 if the provided vCPU is not in the pool. */ static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id) { int core_id = -1; unsigned int i = 0; for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) { core_id = i; break; } return core_id; } /** * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs * from the pool. * @ne_enclave : Private data associated with the current enclave. * @vcpu_id: ID of the vCPU to check if available in the NE CPU pool. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id) { int core_id = -1; unsigned int i = 0; int rc = -EINVAL; if (ne_donated_cpu(ne_enclave, vcpu_id)) { dev_err_ratelimited(ne_misc_dev.this_device, "CPU %d already used\n", vcpu_id); return -NE_ERR_VCPU_ALREADY_USED; } /* * If previously allocated a thread of a core to this enclave, but not * the full core, first check remaining sibling(s). */ for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i])) return 0; mutex_lock(&ne_cpu_pool.mutex); /* * If no remaining siblings, get from the NE CPU pool the core * associated with the vCPU and keep track of all the threads in the * enclave threads per core data structure. */ core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id); rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id); if (rc < 0) goto unlock_mutex; rc = 0; unlock_mutex: mutex_unlock(&ne_cpu_pool.mutex); return rc; } /** * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current * enclave. * @ne_enclave : Private data associated with the current enclave. * @vcpu_id: ID of the CPU to be associated with the given slot, * apic id on x86. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id) { struct ne_pci_dev_cmd_reply cmd_reply = {}; struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; int rc = -EINVAL; struct slot_add_vcpu_req slot_add_vcpu_req = {}; if (ne_enclave->mm != current->mm) return -EIO; slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid; slot_add_vcpu_req.vcpu_id = vcpu_id; rc = ne_do_request(pdev, SLOT_ADD_VCPU, &slot_add_vcpu_req, sizeof(slot_add_vcpu_req), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in slot add vCPU [rc=%d]\n", rc); return rc; } cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids); ne_enclave->nr_vcpus++; return 0; } /** * ne_sanity_check_user_mem_region() - Sanity check the user space memory * region received during the set user * memory region ioctl call. * @ne_enclave : Private data associated with the current enclave. * @mem_region : User space memory region to be sanity checked. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave, struct ne_user_memory_region mem_region) { struct ne_mem_region *ne_mem_region = NULL; if (ne_enclave->mm != current->mm) return -EIO; if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) { dev_err_ratelimited(ne_misc_dev.this_device, "User space memory size is not multiple of 2 MiB\n"); return -NE_ERR_INVALID_MEM_REGION_SIZE; } if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) { dev_err_ratelimited(ne_misc_dev.this_device, "User space address is not 2 MiB aligned\n"); return -NE_ERR_UNALIGNED_MEM_REGION_ADDR; } if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) || !access_ok((void __user *)(unsigned long)mem_region.userspace_addr, mem_region.memory_size)) { dev_err_ratelimited(ne_misc_dev.this_device, "Invalid user space address range\n"); return -NE_ERR_INVALID_MEM_REGION_ADDR; } list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list, mem_region_list_entry) { u64 memory_size = ne_mem_region->memory_size; u64 userspace_addr = ne_mem_region->userspace_addr; if ((userspace_addr <= mem_region.userspace_addr && mem_region.userspace_addr < (userspace_addr + memory_size)) || (mem_region.userspace_addr <= userspace_addr && (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) { dev_err_ratelimited(ne_misc_dev.this_device, "User space memory region already used\n"); return -NE_ERR_MEM_REGION_ALREADY_USED; } } return 0; } /** * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space * memory region received during the set * user memory region ioctl call. * @ne_enclave : Private data associated with the current enclave. * @mem_region_page: Page from the user space memory region to be sanity checked. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave, struct page *mem_region_page) { if (!PageHuge(mem_region_page)) { dev_err_ratelimited(ne_misc_dev.this_device, "Not a hugetlbfs page\n"); return -NE_ERR_MEM_NOT_HUGE_PAGE; } if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) { dev_err_ratelimited(ne_misc_dev.this_device, "Page size not multiple of 2 MiB\n"); return -NE_ERR_INVALID_PAGE_SIZE; } if (ne_enclave->numa_node != page_to_nid(mem_region_page)) { dev_err_ratelimited(ne_misc_dev.this_device, "Page is not from NUMA node %d\n", ne_enclave->numa_node); return -NE_ERR_MEM_DIFFERENT_NUMA_NODE; } return 0; } /** * ne_sanity_check_phys_mem_region() - Sanity check the start address and the size * of a physical memory region. * @phys_mem_region_paddr : Physical start address of the region to be sanity checked. * @phys_mem_region_size : Length of the region to be sanity checked. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_sanity_check_phys_mem_region(u64 phys_mem_region_paddr, u64 phys_mem_region_size) { if (phys_mem_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) { dev_err_ratelimited(ne_misc_dev.this_device, "Physical mem region size is not multiple of 2 MiB\n"); return -EINVAL; } if (!IS_ALIGNED(phys_mem_region_paddr, NE_MIN_MEM_REGION_SIZE)) { dev_err_ratelimited(ne_misc_dev.this_device, "Physical mem region address is not 2 MiB aligned\n"); return -EINVAL; } return 0; } /** * ne_merge_phys_contig_memory_regions() - Add a memory region and merge the adjacent * regions if they are physically contiguous. * @phys_contig_regions : Private data associated with the contiguous physical memory regions. * @page_paddr : Physical start address of the region to be added. * @page_size : Length of the region to be added. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_merge_phys_contig_memory_regions(struct ne_phys_contig_mem_regions *phys_contig_regions, u64 page_paddr, u64 page_size) { unsigned long num = phys_contig_regions->num; int rc = 0; rc = ne_sanity_check_phys_mem_region(page_paddr, page_size); if (rc < 0) return rc; /* Physically contiguous, just merge */ if (num && (phys_contig_regions->regions[num - 1].end + 1) == page_paddr) { phys_contig_regions->regions[num - 1].end += page_size; } else { phys_contig_regions->regions[num].start = page_paddr; phys_contig_regions->regions[num].end = page_paddr + page_size - 1; phys_contig_regions->num++; } return 0; } /** * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot * associated with the current enclave. * @ne_enclave : Private data associated with the current enclave. * @mem_region : User space memory region to be associated with the given slot. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave, struct ne_user_memory_region mem_region) { long gup_rc = 0; unsigned long i = 0; unsigned long max_nr_pages = 0; unsigned long memory_size = 0; struct ne_mem_region *ne_mem_region = NULL; struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; struct ne_phys_contig_mem_regions phys_contig_mem_regions = {}; int rc = -EINVAL; rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region); if (rc < 0) return rc; ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL); if (!ne_mem_region) return -ENOMEM; max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE; ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages), GFP_KERNEL); if (!ne_mem_region->pages) { rc = -ENOMEM; goto free_mem_region; } phys_contig_mem_regions.regions = kcalloc(max_nr_pages, sizeof(*phys_contig_mem_regions.regions), GFP_KERNEL); if (!phys_contig_mem_regions.regions) { rc = -ENOMEM; goto free_mem_region; } do { i = ne_mem_region->nr_pages; if (i == max_nr_pages) { dev_err_ratelimited(ne_misc_dev.this_device, "Reached max nr of pages in the pages data struct\n"); rc = -ENOMEM; goto put_pages; } gup_rc = get_user_pages_unlocked(mem_region.userspace_addr + memory_size, 1, ne_mem_region->pages + i, FOLL_GET); if (gup_rc < 0) { rc = gup_rc; dev_err_ratelimited(ne_misc_dev.this_device, "Error in get user pages [rc=%d]\n", rc); goto put_pages; } rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]); if (rc < 0) goto put_pages; rc = ne_merge_phys_contig_memory_regions(&phys_contig_mem_regions, page_to_phys(ne_mem_region->pages[i]), page_size(ne_mem_region->pages[i])); if (rc < 0) goto put_pages; memory_size += page_size(ne_mem_region->pages[i]); ne_mem_region->nr_pages++; } while (memory_size < mem_region.memory_size); if ((ne_enclave->nr_mem_regions + phys_contig_mem_regions.num) > ne_enclave->max_mem_regions) { dev_err_ratelimited(ne_misc_dev.this_device, "Reached max memory regions %lld\n", ne_enclave->max_mem_regions); rc = -NE_ERR_MEM_MAX_REGIONS; goto put_pages; } for (i = 0; i < phys_contig_mem_regions.num; i++) { u64 phys_region_addr = phys_contig_mem_regions.regions[i].start; u64 phys_region_size = range_len(&phys_contig_mem_regions.regions[i]); rc = ne_sanity_check_phys_mem_region(phys_region_addr, phys_region_size); if (rc < 0) goto put_pages; } ne_mem_region->memory_size = mem_region.memory_size; ne_mem_region->userspace_addr = mem_region.userspace_addr; list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list); for (i = 0; i < phys_contig_mem_regions.num; i++) { struct ne_pci_dev_cmd_reply cmd_reply = {}; struct slot_add_mem_req slot_add_mem_req = {}; slot_add_mem_req.slot_uid = ne_enclave->slot_uid; slot_add_mem_req.paddr = phys_contig_mem_regions.regions[i].start; slot_add_mem_req.size = range_len(&phys_contig_mem_regions.regions[i]); rc = ne_do_request(pdev, SLOT_ADD_MEM, &slot_add_mem_req, sizeof(slot_add_mem_req), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in slot add mem [rc=%d]\n", rc); kfree(phys_contig_mem_regions.regions); /* * Exit here without put pages as memory regions may * already been added. */ return rc; } ne_enclave->mem_size += slot_add_mem_req.size; ne_enclave->nr_mem_regions++; } kfree(phys_contig_mem_regions.regions); return 0; put_pages: for (i = 0; i < ne_mem_region->nr_pages; i++) put_page(ne_mem_region->pages[i]); free_mem_region: kfree(phys_contig_mem_regions.regions); kfree(ne_mem_region->pages); kfree(ne_mem_region); return rc; } /** * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources, * such as memory and CPU, have been set. * @ne_enclave : Private data associated with the current enclave. * @enclave_start_info : Enclave info that includes enclave cid and flags. * * Context: Process context. This function is called with the ne_enclave mutex held. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave, struct ne_enclave_start_info *enclave_start_info) { struct ne_pci_dev_cmd_reply cmd_reply = {}; unsigned int cpu = 0; struct enclave_start_req enclave_start_req = {}; unsigned int i = 0; struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; int rc = -EINVAL; if (!ne_enclave->nr_mem_regions) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave has no mem regions\n"); return -NE_ERR_NO_MEM_REGIONS_ADDED; } if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave memory is less than %ld\n", NE_MIN_ENCLAVE_MEM_SIZE); return -NE_ERR_ENCLAVE_MEM_MIN_SIZE; } if (!ne_enclave->nr_vcpus) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave has no vCPUs\n"); return -NE_ERR_NO_VCPUS_ADDED; } for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) for_each_cpu(cpu, ne_enclave->threads_per_core[i]) if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) { dev_err_ratelimited(ne_misc_dev.this_device, "Full CPU cores not used\n"); return -NE_ERR_FULL_CORES_NOT_USED; } enclave_start_req.enclave_cid = enclave_start_info->enclave_cid; enclave_start_req.flags = enclave_start_info->flags; enclave_start_req.slot_uid = ne_enclave->slot_uid; rc = ne_do_request(pdev, ENCLAVE_START, &enclave_start_req, sizeof(enclave_start_req), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in enclave start [rc=%d]\n", rc); return rc; } ne_enclave->state = NE_STATE_RUNNING; enclave_start_info->enclave_cid = cmd_reply.enclave_cid; return 0; } /** * ne_enclave_ioctl() - Ioctl function provided by the enclave file. * @file: File associated with this ioctl function. * @cmd: The command that is set for the ioctl call. * @arg: The argument that is provided for the ioctl call. * * Context: Process context. * Return: * * 0 on success. * * Negative return value on failure. */ static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct ne_enclave *ne_enclave = file->private_data; switch (cmd) { case NE_ADD_VCPU: { int rc = -EINVAL; u32 vcpu_id = 0; if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id))) return -EFAULT; mutex_lock(&ne_enclave->enclave_info_mutex); if (ne_enclave->state != NE_STATE_INIT) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave is not in init state\n"); mutex_unlock(&ne_enclave->enclave_info_mutex); return -NE_ERR_NOT_IN_INIT_STATE; } if (vcpu_id >= (ne_enclave->nr_parent_vm_cores * ne_enclave->nr_threads_per_core)) { dev_err_ratelimited(ne_misc_dev.this_device, "vCPU id higher than max CPU id\n"); mutex_unlock(&ne_enclave->enclave_info_mutex); return -NE_ERR_INVALID_VCPU; } if (!vcpu_id) { /* Use the CPU pool for choosing a CPU for the enclave. */ rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in get CPU from pool [rc=%d]\n", rc); mutex_unlock(&ne_enclave->enclave_info_mutex); return rc; } } else { /* Check if the provided vCPU is available in the NE CPU pool. */ rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in check CPU %d in pool [rc=%d]\n", vcpu_id, rc); mutex_unlock(&ne_enclave->enclave_info_mutex); return rc; } } rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id); if (rc < 0) { mutex_unlock(&ne_enclave->enclave_info_mutex); return rc; } mutex_unlock(&ne_enclave->enclave_info_mutex); if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id))) return -EFAULT; return 0; } case NE_GET_IMAGE_LOAD_INFO: { struct ne_image_load_info image_load_info = {}; if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info))) return -EFAULT; mutex_lock(&ne_enclave->enclave_info_mutex); if (ne_enclave->state != NE_STATE_INIT) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave is not in init state\n"); mutex_unlock(&ne_enclave->enclave_info_mutex); return -NE_ERR_NOT_IN_INIT_STATE; } mutex_unlock(&ne_enclave->enclave_info_mutex); if (!image_load_info.flags || image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) { dev_err_ratelimited(ne_misc_dev.this_device, "Incorrect flag in enclave image load info\n"); return -NE_ERR_INVALID_FLAG_VALUE; } if (image_load_info.flags == NE_EIF_IMAGE) image_load_info.memory_offset = NE_EIF_LOAD_OFFSET; if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info))) return -EFAULT; return 0; } case NE_SET_USER_MEMORY_REGION: { struct ne_user_memory_region mem_region = {}; int rc = -EINVAL; if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region))) return -EFAULT; if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) { dev_err_ratelimited(ne_misc_dev.this_device, "Incorrect flag for user memory region\n"); return -NE_ERR_INVALID_FLAG_VALUE; } mutex_lock(&ne_enclave->enclave_info_mutex); if (ne_enclave->state != NE_STATE_INIT) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave is not in init state\n"); mutex_unlock(&ne_enclave->enclave_info_mutex); return -NE_ERR_NOT_IN_INIT_STATE; } rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region); if (rc < 0) { mutex_unlock(&ne_enclave->enclave_info_mutex); return rc; } mutex_unlock(&ne_enclave->enclave_info_mutex); return 0; } case NE_START_ENCLAVE: { struct ne_enclave_start_info enclave_start_info = {}; int rc = -EINVAL; if (copy_from_user(&enclave_start_info, (void __user *)arg, sizeof(enclave_start_info))) return -EFAULT; if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) { dev_err_ratelimited(ne_misc_dev.this_device, "Incorrect flag in enclave start info\n"); return -NE_ERR_INVALID_FLAG_VALUE; } /* * Do not use well-known CIDs - 0, 1, 2 - for enclaves. * VMADDR_CID_ANY = -1U * VMADDR_CID_HYPERVISOR = 0 * VMADDR_CID_LOCAL = 1 * VMADDR_CID_HOST = 2 * Note: 0 is used as a placeholder to auto-generate an enclave CID. * http://man7.org/linux/man-pages/man7/vsock.7.html */ if (enclave_start_info.enclave_cid > 0 && enclave_start_info.enclave_cid <= VMADDR_CID_HOST) { dev_err_ratelimited(ne_misc_dev.this_device, "Well-known CID value, not to be used for enclaves\n"); return -NE_ERR_INVALID_ENCLAVE_CID; } if (enclave_start_info.enclave_cid == U32_MAX) { dev_err_ratelimited(ne_misc_dev.this_device, "Well-known CID value, not to be used for enclaves\n"); return -NE_ERR_INVALID_ENCLAVE_CID; } /* * Do not use the CID of the primary / parent VM for enclaves. */ if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) { dev_err_ratelimited(ne_misc_dev.this_device, "CID of the parent VM, not to be used for enclaves\n"); return -NE_ERR_INVALID_ENCLAVE_CID; } /* 64-bit CIDs are not yet supported for the vsock device. */ if (enclave_start_info.enclave_cid > U32_MAX) { dev_err_ratelimited(ne_misc_dev.this_device, "64-bit CIDs not yet supported for the vsock device\n"); return -NE_ERR_INVALID_ENCLAVE_CID; } mutex_lock(&ne_enclave->enclave_info_mutex); if (ne_enclave->state != NE_STATE_INIT) { dev_err_ratelimited(ne_misc_dev.this_device, "Enclave is not in init state\n"); mutex_unlock(&ne_enclave->enclave_info_mutex); return -NE_ERR_NOT_IN_INIT_STATE; } rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info); if (rc < 0) { mutex_unlock(&ne_enclave->enclave_info_mutex); return rc; } mutex_unlock(&ne_enclave->enclave_info_mutex); if (copy_to_user((void __user *)arg, &enclave_start_info, sizeof(enclave_start_info))) return -EFAULT; return 0; } default: return -ENOTTY; } return 0; } /** * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries * from the enclave data structure. * @ne_enclave : Private data associated with the current enclave. * * Context: Process context. This function is called with the ne_enclave mutex held. */ static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave) { unsigned long i = 0; struct ne_mem_region *ne_mem_region = NULL; struct ne_mem_region *ne_mem_region_tmp = NULL; list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp, &ne_enclave->mem_regions_list, mem_region_list_entry) { list_del(&ne_mem_region->mem_region_list_entry); for (i = 0; i < ne_mem_region->nr_pages; i++) put_page(ne_mem_region->pages[i]); kfree(ne_mem_region->pages); kfree(ne_mem_region); } } /** * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from * the enclave data structure. * @ne_enclave : Private data associated with the current enclave. * * Context: Process context. This function is called with the ne_enclave mutex held. */ static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave) { unsigned int cpu = 0; unsigned int i = 0; mutex_lock(&ne_cpu_pool.mutex); for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) { for_each_cpu(cpu, ne_enclave->threads_per_core[i]) /* Update the available NE CPU pool. */ cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]); free_cpumask_var(ne_enclave->threads_per_core[i]); } mutex_unlock(&ne_cpu_pool.mutex); kfree(ne_enclave->threads_per_core); free_cpumask_var(ne_enclave->vcpu_ids); } /** * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data * structure that is part of the NE PCI * device private data. * @ne_enclave : Private data associated with the current enclave. * @ne_pci_dev : Private data associated with the PCI device. * * Context: Process context. This function is called with the ne_pci_dev enclave * mutex held. */ static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave, struct ne_pci_dev *ne_pci_dev) { struct ne_enclave *ne_enclave_entry = NULL; struct ne_enclave *ne_enclave_entry_tmp = NULL; list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp, &ne_pci_dev->enclaves_list, enclave_list_entry) { if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) { list_del(&ne_enclave_entry->enclave_list_entry); break; } } } /** * ne_enclave_release() - Release function provided by the enclave file. * @inode: Inode associated with this file release function. * @file: File associated with this release function. * * Context: Process context. * Return: * * 0 on success. * * Negative return value on failure. */ static int ne_enclave_release(struct inode *inode, struct file *file) { struct ne_pci_dev_cmd_reply cmd_reply = {}; struct enclave_stop_req enclave_stop_request = {}; struct ne_enclave *ne_enclave = file->private_data; struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; struct pci_dev *pdev = ne_pci_dev->pdev; int rc = -EINVAL; struct slot_free_req slot_free_req = {}; if (!ne_enclave) return 0; /* * Early exit in case there is an error in the enclave creation logic * and fput() is called on the cleanup path. */ if (!ne_enclave->slot_uid) return 0; /* * Acquire the enclave list mutex before the enclave mutex * in order to avoid deadlocks with @ref ne_event_work_handler. */ mutex_lock(&ne_pci_dev->enclaves_list_mutex); mutex_lock(&ne_enclave->enclave_info_mutex); if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) { enclave_stop_request.slot_uid = ne_enclave->slot_uid; rc = ne_do_request(pdev, ENCLAVE_STOP, &enclave_stop_request, sizeof(enclave_stop_request), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in enclave stop [rc=%d]\n", rc); goto unlock_mutex; } memset(&cmd_reply, 0, sizeof(cmd_reply)); } slot_free_req.slot_uid = ne_enclave->slot_uid; rc = ne_do_request(pdev, SLOT_FREE, &slot_free_req, sizeof(slot_free_req), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in slot free [rc=%d]\n", rc); goto unlock_mutex; } ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev); ne_enclave_remove_all_mem_region_entries(ne_enclave); ne_enclave_remove_all_vcpu_id_entries(ne_enclave); mutex_unlock(&ne_enclave->enclave_info_mutex); mutex_unlock(&ne_pci_dev->enclaves_list_mutex); kfree(ne_enclave); return 0; unlock_mutex: mutex_unlock(&ne_enclave->enclave_info_mutex); mutex_unlock(&ne_pci_dev->enclaves_list_mutex); return rc; } /** * ne_enclave_poll() - Poll functionality used for enclave out-of-band events. * @file: File associated with this poll function. * @wait: Poll table data structure. * * Context: Process context. * Return: * * Poll mask. */ static __poll_t ne_enclave_poll(struct file *file, poll_table *wait) { __poll_t mask = 0; struct ne_enclave *ne_enclave = file->private_data; poll_wait(file, &ne_enclave->eventq, wait); if (ne_enclave->has_event) mask |= EPOLLHUP; return mask; } static const struct file_operations ne_enclave_fops = { .owner = THIS_MODULE, .llseek = noop_llseek, .poll = ne_enclave_poll, .unlocked_ioctl = ne_enclave_ioctl, .release = ne_enclave_release, }; /** * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create * enclave file descriptor to be further used for enclave * resources handling e.g. memory regions and CPUs. * @ne_pci_dev : Private data associated with the PCI device. * @slot_uid: User pointer to store the generated unique slot id * associated with an enclave to. * * Context: Process context. This function is called with the ne_pci_dev enclave * mutex held. * Return: * * Enclave fd on success. * * Negative return value on failure. */ static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid) { struct ne_pci_dev_cmd_reply cmd_reply = {}; int enclave_fd = -1; struct file *enclave_file = NULL; unsigned int i = 0; struct ne_enclave *ne_enclave = NULL; struct pci_dev *pdev = ne_pci_dev->pdev; int rc = -EINVAL; struct slot_alloc_req slot_alloc_req = {}; mutex_lock(&ne_cpu_pool.mutex); for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) break; if (i == ne_cpu_pool.nr_parent_vm_cores) { dev_err_ratelimited(ne_misc_dev.this_device, "No CPUs available in CPU pool\n"); mutex_unlock(&ne_cpu_pool.mutex); return -NE_ERR_NO_CPUS_AVAIL_IN_POOL; } mutex_unlock(&ne_cpu_pool.mutex); ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL); if (!ne_enclave) return -ENOMEM; mutex_lock(&ne_cpu_pool.mutex); ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores; ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core; ne_enclave->numa_node = ne_cpu_pool.numa_node; mutex_unlock(&ne_cpu_pool.mutex); ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores, sizeof(*ne_enclave->threads_per_core), GFP_KERNEL); if (!ne_enclave->threads_per_core) { rc = -ENOMEM; goto free_ne_enclave; } for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) { rc = -ENOMEM; goto free_cpumask; } if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) { rc = -ENOMEM; goto free_cpumask; } enclave_fd = get_unused_fd_flags(O_CLOEXEC); if (enclave_fd < 0) { rc = enclave_fd; dev_err_ratelimited(ne_misc_dev.this_device, "Error in getting unused fd [rc=%d]\n", rc); goto free_cpumask; } enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR); if (IS_ERR(enclave_file)) { rc = PTR_ERR(enclave_file); dev_err_ratelimited(ne_misc_dev.this_device, "Error in anon inode get file [rc=%d]\n", rc); goto put_fd; } rc = ne_do_request(pdev, SLOT_ALLOC, &slot_alloc_req, sizeof(slot_alloc_req), &cmd_reply, sizeof(cmd_reply)); if (rc < 0) { dev_err_ratelimited(ne_misc_dev.this_device, "Error in slot alloc [rc=%d]\n", rc); goto put_file; } init_waitqueue_head(&ne_enclave->eventq); ne_enclave->has_event = false; mutex_init(&ne_enclave->enclave_info_mutex); ne_enclave->max_mem_regions = cmd_reply.mem_regions; INIT_LIST_HEAD(&ne_enclave->mem_regions_list); ne_enclave->mm = current->mm; ne_enclave->slot_uid = cmd_reply.slot_uid; ne_enclave->state = NE_STATE_INIT; list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list); if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) { /* * As we're holding the only reference to 'enclave_file', fput() * will call ne_enclave_release() which will do a proper cleanup * of all so far allocated resources, leaving only the unused fd * for us to free. */ fput(enclave_file); put_unused_fd(enclave_fd); return -EFAULT; } fd_install(enclave_fd, enclave_file); return enclave_fd; put_file: fput(enclave_file); put_fd: put_unused_fd(enclave_fd); free_cpumask: free_cpumask_var(ne_enclave->vcpu_ids); for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) free_cpumask_var(ne_enclave->threads_per_core[i]); kfree(ne_enclave->threads_per_core); free_ne_enclave: kfree(ne_enclave); return rc; } /** * ne_ioctl() - Ioctl function provided by the NE misc device. * @file: File associated with this ioctl function. * @cmd: The command that is set for the ioctl call. * @arg: The argument that is provided for the ioctl call. * * Context: Process context. * Return: * * Ioctl result (e.g. enclave file descriptor) on success. * * Negative return value on failure. */ static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { switch (cmd) { case NE_CREATE_VM: { int enclave_fd = -1; struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; u64 __user *slot_uid = (void __user *)arg; mutex_lock(&ne_pci_dev->enclaves_list_mutex); enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid); mutex_unlock(&ne_pci_dev->enclaves_list_mutex); return enclave_fd; } default: return -ENOTTY; } return 0; } #if defined(CONFIG_NITRO_ENCLAVES_MISC_DEV_TEST) #include "ne_misc_dev_test.c" #endif static int __init ne_init(void) { mutex_init(&ne_cpu_pool.mutex); return pci_register_driver(&ne_pci_driver); } static void __exit ne_exit(void) { pci_unregister_driver(&ne_pci_driver); ne_teardown_cpu_pool(); } module_init(ne_init); module_exit(ne_exit); MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); MODULE_DESCRIPTION("Nitro Enclaves Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1