Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ard Biesheuvel | 2436 | 81.44% | 11 | 52.38% |
Herbert Xu | 481 | 16.08% | 2 | 9.52% |
Stephan Mueller | 23 | 0.77% | 2 | 9.52% |
Jussi Kivilinna | 18 | 0.60% | 1 | 4.76% |
Rik Snel | 14 | 0.47% | 1 | 4.76% |
Torsten Duwe | 11 | 0.37% | 1 | 4.76% |
Horia Geantă | 5 | 0.17% | 1 | 4.76% |
Thomas Gleixner | 2 | 0.07% | 1 | 4.76% |
Vasyl Gomonovych | 1 | 0.03% | 1 | 4.76% |
Total | 2991 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* * Bit sliced AES using NEON instructions * * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org> */ #include <asm/neon.h> #include <asm/simd.h> #include <crypto/aes.h> #include <crypto/ctr.h> #include <crypto/internal/cipher.h> #include <crypto/internal/simd.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <crypto/xts.h> #include <linux/module.h> MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS_CRYPTO("ecb(aes)"); MODULE_ALIAS_CRYPTO("cbc(aes)-all"); MODULE_ALIAS_CRYPTO("ctr(aes)"); MODULE_ALIAS_CRYPTO("xts(aes)"); MODULE_IMPORT_NS(CRYPTO_INTERNAL); asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds); asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks); asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks); asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 ctr[]); asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[], int); asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[], int); struct aesbs_ctx { int rounds; u8 rk[13 * (8 * AES_BLOCK_SIZE) + 32] __aligned(AES_BLOCK_SIZE); }; struct aesbs_cbc_ctx { struct aesbs_ctx key; struct crypto_skcipher *enc_tfm; }; struct aesbs_xts_ctx { struct aesbs_ctx key; struct crypto_cipher *cts_tfm; struct crypto_cipher *tweak_tfm; }; struct aesbs_ctr_ctx { struct aesbs_ctx key; /* must be first member */ struct crypto_aes_ctx fallback; }; static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_aes_ctx rk; int err; err = aes_expandkey(&rk, in_key, key_len); if (err) return err; ctx->rounds = 6 + key_len / 4; kernel_neon_begin(); aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds); kernel_neon_end(); return 0; } static int __ecb_crypt(struct skcipher_request *req, void (*fn)(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks)) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; if (walk.nbytes < walk.total) blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); kernel_neon_begin(); fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk, ctx->rounds, blocks); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } return err; } static int ecb_encrypt(struct skcipher_request *req) { return __ecb_crypt(req, aesbs_ecb_encrypt); } static int ecb_decrypt(struct skcipher_request *req) { return __ecb_crypt(req, aesbs_ecb_decrypt); } static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_aes_ctx rk; int err; err = aes_expandkey(&rk, in_key, key_len); if (err) return err; ctx->key.rounds = 6 + key_len / 4; kernel_neon_begin(); aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds); kernel_neon_end(); memzero_explicit(&rk, sizeof(rk)); return crypto_skcipher_setkey(ctx->enc_tfm, in_key, key_len); } static int cbc_encrypt(struct skcipher_request *req) { struct skcipher_request *subreq = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); skcipher_request_set_tfm(subreq, ctx->enc_tfm); skcipher_request_set_callback(subreq, skcipher_request_flags(req), NULL, NULL); skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); return crypto_skcipher_encrypt(subreq); } static int cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; if (walk.nbytes < walk.total) blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); kernel_neon_begin(); aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk, ctx->key.rounds, blocks, walk.iv); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } return err; } static int cbc_init(struct crypto_skcipher *tfm) { struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); unsigned int reqsize; ctx->enc_tfm = crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->enc_tfm)) return PTR_ERR(ctx->enc_tfm); reqsize = sizeof(struct skcipher_request); reqsize += crypto_skcipher_reqsize(ctx->enc_tfm); crypto_skcipher_set_reqsize(tfm, reqsize); return 0; } static void cbc_exit(struct crypto_skcipher *tfm) { struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_free_skcipher(ctx->enc_tfm); } static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm); int err; err = aes_expandkey(&ctx->fallback, in_key, key_len); if (err) return err; ctx->key.rounds = 6 + key_len / 4; kernel_neon_begin(); aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds); kernel_neon_end(); return 0; } static int ctr_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; u8 buf[AES_BLOCK_SIZE]; int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes > 0) { const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; int bytes = walk.nbytes; if (unlikely(bytes < AES_BLOCK_SIZE)) src = dst = memcpy(buf + sizeof(buf) - bytes, src, bytes); else if (walk.nbytes < walk.total) bytes &= ~(8 * AES_BLOCK_SIZE - 1); kernel_neon_begin(); aesbs_ctr_encrypt(dst, src, ctx->rk, ctx->rounds, bytes, walk.iv); kernel_neon_end(); if (unlikely(bytes < AES_BLOCK_SIZE)) memcpy(walk.dst.virt.addr, buf + sizeof(buf) - bytes, bytes); err = skcipher_walk_done(&walk, walk.nbytes - bytes); } return err; } static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst) { struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm); unsigned long flags; /* * Temporarily disable interrupts to avoid races where * cachelines are evicted when the CPU is interrupted * to do something else. */ local_irq_save(flags); aes_encrypt(&ctx->fallback, dst, src); local_irq_restore(flags); } static int ctr_encrypt_sync(struct skcipher_request *req) { if (!crypto_simd_usable()) return crypto_ctr_encrypt_walk(req, ctr_encrypt_one); return ctr_encrypt(req); } static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int err; err = xts_verify_key(tfm, in_key, key_len); if (err) return err; key_len /= 2; err = crypto_cipher_setkey(ctx->cts_tfm, in_key, key_len); if (err) return err; err = crypto_cipher_setkey(ctx->tweak_tfm, in_key + key_len, key_len); if (err) return err; return aesbs_setkey(tfm, in_key, key_len); } static int xts_init(struct crypto_skcipher *tfm) { struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm); ctx->cts_tfm = crypto_alloc_cipher("aes", 0, 0); if (IS_ERR(ctx->cts_tfm)) return PTR_ERR(ctx->cts_tfm); ctx->tweak_tfm = crypto_alloc_cipher("aes", 0, 0); if (IS_ERR(ctx->tweak_tfm)) crypto_free_cipher(ctx->cts_tfm); return PTR_ERR_OR_ZERO(ctx->tweak_tfm); } static void xts_exit(struct crypto_skcipher *tfm) { struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_free_cipher(ctx->tweak_tfm); crypto_free_cipher(ctx->cts_tfm); } static int __xts_crypt(struct skcipher_request *req, bool encrypt, void (*fn)(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[], int)) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int tail = req->cryptlen % AES_BLOCK_SIZE; struct skcipher_request subreq; u8 buf[2 * AES_BLOCK_SIZE]; struct skcipher_walk walk; int err; if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; if (unlikely(tail)) { skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); skcipher_request_set_crypt(&subreq, req->src, req->dst, req->cryptlen - tail, req->iv); req = &subreq; } err = skcipher_walk_virt(&walk, req, true); if (err) return err; crypto_cipher_encrypt_one(ctx->tweak_tfm, walk.iv, walk.iv); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; int reorder_last_tweak = !encrypt && tail > 0; if (walk.nbytes < walk.total) { blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); reorder_last_tweak = 0; } kernel_neon_begin(); fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk, ctx->key.rounds, blocks, walk.iv, reorder_last_tweak); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } if (err || likely(!tail)) return err; /* handle ciphertext stealing */ scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE, AES_BLOCK_SIZE, 0); memcpy(buf + AES_BLOCK_SIZE, buf, tail); scatterwalk_map_and_copy(buf, req->src, req->cryptlen, tail, 0); crypto_xor(buf, req->iv, AES_BLOCK_SIZE); if (encrypt) crypto_cipher_encrypt_one(ctx->cts_tfm, buf, buf); else crypto_cipher_decrypt_one(ctx->cts_tfm, buf, buf); crypto_xor(buf, req->iv, AES_BLOCK_SIZE); scatterwalk_map_and_copy(buf, req->dst, req->cryptlen - AES_BLOCK_SIZE, AES_BLOCK_SIZE + tail, 1); return 0; } static int xts_encrypt(struct skcipher_request *req) { return __xts_crypt(req, true, aesbs_xts_encrypt); } static int xts_decrypt(struct skcipher_request *req) { return __xts_crypt(req, false, aesbs_xts_decrypt); } static struct skcipher_alg aes_algs[] = { { .base.cra_name = "__ecb(aes)", .base.cra_driver_name = "__ecb-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .setkey = aesbs_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, { .base.cra_name = "__cbc(aes)", .base.cra_driver_name = "__cbc-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL | CRYPTO_ALG_NEED_FALLBACK, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_cbc_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, .init = cbc_init, .exit = cbc_exit, }, { .base.cra_name = "__ctr(aes)", .base.cra_driver_name = "__ctr-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct aesbs_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .chunksize = AES_BLOCK_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_setkey, .encrypt = ctr_encrypt, .decrypt = ctr_encrypt, }, { .base.cra_name = "ctr(aes)", .base.cra_driver_name = "ctr-aes-neonbs-sync", .base.cra_priority = 250 - 1, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct aesbs_ctr_ctx), .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .chunksize = AES_BLOCK_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_ctr_setkey_sync, .encrypt = ctr_encrypt_sync, .decrypt = ctr_encrypt_sync, }, { .base.cra_name = "__xts(aes)", .base.cra_driver_name = "__xts-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_xts_ctx), .base.cra_module = THIS_MODULE, .base.cra_flags = CRYPTO_ALG_INTERNAL, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_xts_setkey, .encrypt = xts_encrypt, .decrypt = xts_decrypt, .init = xts_init, .exit = xts_exit, } }; static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)]; static void aes_exit(void) { int i; for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++) if (aes_simd_algs[i]) simd_skcipher_free(aes_simd_algs[i]); crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); } static int __init aes_init(void) { struct simd_skcipher_alg *simd; const char *basename; const char *algname; const char *drvname; int err; int i; if (!(elf_hwcap & HWCAP_NEON)) return -ENODEV; err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); if (err) return err; for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL)) continue; algname = aes_algs[i].base.cra_name + 2; drvname = aes_algs[i].base.cra_driver_name + 2; basename = aes_algs[i].base.cra_driver_name; simd = simd_skcipher_create_compat(algname, drvname, basename); err = PTR_ERR(simd); if (IS_ERR(simd)) goto unregister_simds; aes_simd_algs[i] = simd; } return 0; unregister_simds: aes_exit(); return err; } late_initcall(aes_init); module_exit(aes_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1