Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Claudiu Beznea | 4302 | 61.43% | 36 | 30.77% |
Alexandre Belloni | 1551 | 22.15% | 28 | 23.93% |
Andrew Victor | 287 | 4.10% | 7 | 5.98% |
Nicolas Ferre | 189 | 2.70% | 5 | 4.27% |
Jean-Christophe Plagniol-Villard | 160 | 2.28% | 7 | 5.98% |
Clément Leger | 133 | 1.90% | 1 | 0.85% |
Arnd Bergmann | 97 | 1.39% | 2 | 1.71% |
Wenyou Yang | 81 | 1.16% | 5 | 4.27% |
Daniel Lezcano | 44 | 0.63% | 2 | 1.71% |
Thomas Perrot | 29 | 0.41% | 1 | 0.85% |
Albin Tonnerre | 17 | 0.24% | 1 | 0.85% |
zhong jiang | 17 | 0.24% | 1 | 0.85% |
Rafael J. Wysocki | 17 | 0.24% | 2 | 1.71% |
Maxime Ripard | 13 | 0.19% | 2 | 1.71% |
yu kuai | 12 | 0.17% | 1 | 0.85% |
Uwe Kleine-König | 10 | 0.14% | 1 | 0.85% |
Joachim Eastwood | 7 | 0.10% | 1 | 0.85% |
Ludovic Desroches | 7 | 0.10% | 1 | 0.85% |
Boris Brezillon | 7 | 0.10% | 2 | 1.71% |
Vladimir Zapolskiy | 6 | 0.09% | 2 | 1.71% |
Rob Herring | 3 | 0.04% | 1 | 0.85% |
Philippe Mazenauer | 3 | 0.04% | 1 | 0.85% |
Ben Dooks | 2 | 0.03% | 1 | 0.85% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.85% |
Ryan Mallon | 2 | 0.03% | 1 | 0.85% |
Nico Pitre | 2 | 0.03% | 1 | 0.85% |
Lionel Debroux | 1 | 0.01% | 1 | 0.85% |
Johan Hovold | 1 | 0.01% | 1 | 0.85% |
Fabio Estevam | 1 | 0.01% | 1 | 0.85% |
Total | 7003 | 117 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * arch/arm/mach-at91/pm.c * AT91 Power Management * * Copyright (C) 2005 David Brownell */ #include <linux/genalloc.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/of.h> #include <linux/of_fdt.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/parser.h> #include <linux/suspend.h> #include <linux/clk.h> #include <linux/clk/at91_pmc.h> #include <linux/platform_data/atmel.h> #include <asm/cacheflush.h> #include <asm/fncpy.h> #include <asm/system_misc.h> #include <asm/suspend.h> #include "generic.h" #include "pm.h" #include "sam_secure.h" #define BACKUP_DDR_PHY_CALIBRATION (9) /** * struct at91_pm_bu - AT91 power management backup unit data structure * @suspended: true if suspended to backup mode * @reserved: reserved * @canary: canary data for memory checking after exit from backup mode * @resume: resume API * @ddr_phy_calibration: DDR PHY calibration data: ZQ0CR0, first 8 words * of the memory */ struct at91_pm_bu { int suspended; unsigned long reserved; phys_addr_t canary; phys_addr_t resume; unsigned long ddr_phy_calibration[BACKUP_DDR_PHY_CALIBRATION]; }; /** * struct at91_pm_sfrbu_regs - registers mapping for SFRBU * @pswbu: power switch BU control registers */ struct at91_pm_sfrbu_regs { struct { u32 key; u32 ctrl; u32 state; u32 softsw; } pswbu; }; /** * enum at91_pm_eth_clk - Ethernet clock indexes * @AT91_PM_ETH_PCLK: pclk index * @AT91_PM_ETH_HCLK: hclk index * @AT91_PM_ETH_MAX_CLK: max index */ enum at91_pm_eth_clk { AT91_PM_ETH_PCLK, AT91_PM_ETH_HCLK, AT91_PM_ETH_MAX_CLK, }; /** * enum at91_pm_eth - Ethernet controller indexes * @AT91_PM_G_ETH: gigabit Ethernet controller index * @AT91_PM_E_ETH: megabit Ethernet controller index * @AT91_PM_MAX_ETH: max index */ enum at91_pm_eth { AT91_PM_G_ETH, AT91_PM_E_ETH, AT91_PM_MAX_ETH, }; /** * struct at91_pm_quirk_eth - AT91 PM Ethernet quirks * @dev: Ethernet device * @np: Ethernet device node * @clks: Ethernet clocks * @modes: power management mode that this quirk applies to * @dns_modes: do not suspend modes: stop suspending if Ethernet is configured * as wakeup source but buggy and no other wakeup source is * available */ struct at91_pm_quirk_eth { struct device *dev; struct device_node *np; struct clk_bulk_data clks[AT91_PM_ETH_MAX_CLK]; u32 modes; u32 dns_modes; }; /** * struct at91_pm_quirks - AT91 PM quirks * @eth: Ethernet quirks */ struct at91_pm_quirks { struct at91_pm_quirk_eth eth[AT91_PM_MAX_ETH]; }; /** * struct at91_soc_pm - AT91 SoC power management data structure * @config_shdwc_ws: wakeup sources configuration function for SHDWC * @config_pmc_ws: wakeup srouces configuration function for PMC * @ws_ids: wakup sources of_device_id array * @bu: backup unit mapped data (for backup mode) * @quirks: PM quirks * @data: PM data to be used on last phase of suspend * @sfrbu_regs: SFRBU registers mapping * @memcs: memory chip select */ struct at91_soc_pm { int (*config_shdwc_ws)(void __iomem *shdwc, u32 *mode, u32 *polarity); int (*config_pmc_ws)(void __iomem *pmc, u32 mode, u32 polarity); const struct of_device_id *ws_ids; struct at91_pm_bu *bu; struct at91_pm_quirks quirks; struct at91_pm_data data; struct at91_pm_sfrbu_regs sfrbu_regs; void *memcs; }; /** * enum at91_pm_iomaps - IOs that needs to be mapped for different PM modes * @AT91_PM_IOMAP_SHDWC: SHDWC controller * @AT91_PM_IOMAP_SFRBU: SFRBU controller * @AT91_PM_IOMAP_ETHC: Ethernet controller */ enum at91_pm_iomaps { AT91_PM_IOMAP_SHDWC, AT91_PM_IOMAP_SFRBU, AT91_PM_IOMAP_ETHC, }; #define AT91_PM_IOMAP(name) BIT(AT91_PM_IOMAP_##name) static struct at91_soc_pm soc_pm = { .data = { .standby_mode = AT91_PM_STANDBY, .suspend_mode = AT91_PM_ULP0, }, }; static const match_table_t pm_modes __initconst = { { AT91_PM_STANDBY, "standby" }, { AT91_PM_ULP0, "ulp0" }, { AT91_PM_ULP0_FAST, "ulp0-fast" }, { AT91_PM_ULP1, "ulp1" }, { AT91_PM_BACKUP, "backup" }, { -1, NULL }, }; #define at91_ramc_read(id, field) \ __raw_readl(soc_pm.data.ramc[id] + field) #define at91_ramc_write(id, field, value) \ __raw_writel(value, soc_pm.data.ramc[id] + field) static int at91_pm_valid_state(suspend_state_t state) { switch (state) { case PM_SUSPEND_ON: case PM_SUSPEND_STANDBY: case PM_SUSPEND_MEM: return 1; default: return 0; } } static int canary = 0xA5A5A5A5; struct wakeup_source_info { unsigned int pmc_fsmr_bit; unsigned int shdwc_mr_bit; bool set_polarity; }; static const struct wakeup_source_info ws_info[] = { { .pmc_fsmr_bit = AT91_PMC_FSTT(10), .set_polarity = true }, { .pmc_fsmr_bit = AT91_PMC_RTCAL, .shdwc_mr_bit = BIT(17) }, { .pmc_fsmr_bit = AT91_PMC_USBAL }, { .pmc_fsmr_bit = AT91_PMC_SDMMC_CD }, { .pmc_fsmr_bit = AT91_PMC_RTTAL }, { .pmc_fsmr_bit = AT91_PMC_RXLP_MCE }, }; static const struct of_device_id sama5d2_ws_ids[] = { { .compatible = "atmel,sama5d2-gem", .data = &ws_info[0] }, { .compatible = "atmel,sama5d2-rtc", .data = &ws_info[1] }, { .compatible = "atmel,sama5d3-udc", .data = &ws_info[2] }, { .compatible = "atmel,at91rm9200-ohci", .data = &ws_info[2] }, { .compatible = "usb-ohci", .data = &ws_info[2] }, { .compatible = "atmel,at91sam9g45-ehci", .data = &ws_info[2] }, { .compatible = "usb-ehci", .data = &ws_info[2] }, { .compatible = "atmel,sama5d2-sdhci", .data = &ws_info[3] }, { /* sentinel */ } }; static const struct of_device_id sam9x60_ws_ids[] = { { .compatible = "microchip,sam9x60-rtc", .data = &ws_info[1] }, { .compatible = "atmel,at91rm9200-ohci", .data = &ws_info[2] }, { .compatible = "usb-ohci", .data = &ws_info[2] }, { .compatible = "atmel,at91sam9g45-ehci", .data = &ws_info[2] }, { .compatible = "usb-ehci", .data = &ws_info[2] }, { .compatible = "microchip,sam9x60-rtt", .data = &ws_info[4] }, { .compatible = "cdns,sam9x60-macb", .data = &ws_info[5] }, { /* sentinel */ } }; static const struct of_device_id sama7g5_ws_ids[] = { { .compatible = "microchip,sama7g5-rtc", .data = &ws_info[1] }, { .compatible = "microchip,sama7g5-ohci", .data = &ws_info[2] }, { .compatible = "usb-ohci", .data = &ws_info[2] }, { .compatible = "atmel,at91sam9g45-ehci", .data = &ws_info[2] }, { .compatible = "usb-ehci", .data = &ws_info[2] }, { .compatible = "microchip,sama7g5-sdhci", .data = &ws_info[3] }, { .compatible = "microchip,sama7g5-rtt", .data = &ws_info[4] }, { /* sentinel */ } }; static int at91_pm_config_ws(unsigned int pm_mode, bool set) { const struct wakeup_source_info *wsi; const struct of_device_id *match; struct platform_device *pdev; struct device_node *np; unsigned int mode = 0, polarity = 0, val = 0; if (pm_mode != AT91_PM_ULP1) return 0; if (!soc_pm.data.pmc || !soc_pm.data.shdwc || !soc_pm.ws_ids) return -EPERM; if (!set) { writel(mode, soc_pm.data.pmc + AT91_PMC_FSMR); return 0; } if (soc_pm.config_shdwc_ws) soc_pm.config_shdwc_ws(soc_pm.data.shdwc, &mode, &polarity); /* SHDWC.MR */ val = readl(soc_pm.data.shdwc + 0x04); /* Loop through defined wakeup sources. */ for_each_matching_node_and_match(np, soc_pm.ws_ids, &match) { pdev = of_find_device_by_node(np); if (!pdev) continue; if (device_may_wakeup(&pdev->dev)) { wsi = match->data; /* Check if enabled on SHDWC. */ if (wsi->shdwc_mr_bit && !(val & wsi->shdwc_mr_bit)) goto put_device; mode |= wsi->pmc_fsmr_bit; if (wsi->set_polarity) polarity |= wsi->pmc_fsmr_bit; } put_device: put_device(&pdev->dev); } if (mode) { if (soc_pm.config_pmc_ws) soc_pm.config_pmc_ws(soc_pm.data.pmc, mode, polarity); } else { pr_err("AT91: PM: no ULP1 wakeup sources found!"); } return mode ? 0 : -EPERM; } static int at91_sama5d2_config_shdwc_ws(void __iomem *shdwc, u32 *mode, u32 *polarity) { u32 val; /* SHDWC.WUIR */ val = readl(shdwc + 0x0c); *mode |= (val & 0x3ff); *polarity |= ((val >> 16) & 0x3ff); return 0; } static int at91_sama5d2_config_pmc_ws(void __iomem *pmc, u32 mode, u32 polarity) { writel(mode, pmc + AT91_PMC_FSMR); writel(polarity, pmc + AT91_PMC_FSPR); return 0; } static int at91_sam9x60_config_pmc_ws(void __iomem *pmc, u32 mode, u32 polarity) { writel(mode, pmc + AT91_PMC_FSMR); return 0; } static bool at91_pm_eth_quirk_is_valid(struct at91_pm_quirk_eth *eth) { struct platform_device *pdev; /* Interface NA in DT. */ if (!eth->np) return false; /* No quirks for this interface and current suspend mode. */ if (!(eth->modes & BIT(soc_pm.data.mode))) return false; if (!eth->dev) { /* Driver not probed. */ pdev = of_find_device_by_node(eth->np); if (!pdev) return false; /* put_device(eth->dev) is called at the end of suspend. */ eth->dev = &pdev->dev; } /* No quirks if device isn't a wakeup source. */ if (!device_may_wakeup(eth->dev)) return false; return true; } static int at91_pm_config_quirks(bool suspend) { struct at91_pm_quirk_eth *eth; int i, j, ret, tmp; /* * Ethernet IPs who's device_node pointers are stored into * soc_pm.quirks.eth[].np cannot handle WoL packets while in ULP0, ULP1 * or both due to a hardware bug. If they receive WoL packets while in * ULP0 or ULP1 IPs could stop working or the whole system could stop * working. We cannot handle this scenario in the ethernet driver itself * as the driver is common to multiple vendors and also we only know * here, in this file, if we suspend to ULP0 or ULP1 mode. Thus handle * these scenarios here, as quirks. */ for (i = 0; i < AT91_PM_MAX_ETH; i++) { eth = &soc_pm.quirks.eth[i]; if (!at91_pm_eth_quirk_is_valid(eth)) continue; /* * For modes in dns_modes mask the system blocks if quirk is not * applied but if applied the interface doesn't act at WoL * events. Thus take care to avoid suspending if this interface * is the only configured wakeup source. */ if (suspend && eth->dns_modes & BIT(soc_pm.data.mode)) { int ws_count = 0; #ifdef CONFIG_PM_SLEEP struct wakeup_source *ws; for_each_wakeup_source(ws) { if (ws->dev == eth->dev) continue; ws_count++; break; } #endif /* * Checking !ws is good for all platforms with issues * even when both G_ETH and E_ETH are available as dns_modes * is populated only on G_ETH interface. */ if (!ws_count) { pr_err("AT91: PM: Ethernet cannot resume from WoL!"); ret = -EPERM; put_device(eth->dev); eth->dev = NULL; /* No need to revert clock settings for this eth. */ i--; goto clk_unconfigure; } } if (suspend) { clk_bulk_disable_unprepare(AT91_PM_ETH_MAX_CLK, eth->clks); } else { ret = clk_bulk_prepare_enable(AT91_PM_ETH_MAX_CLK, eth->clks); if (ret) goto clk_unconfigure; /* * Release the reference to eth->dev taken in * at91_pm_eth_quirk_is_valid(). */ put_device(eth->dev); eth->dev = NULL; } } return 0; clk_unconfigure: /* * In case of resume we reach this point if clk_prepare_enable() failed. * we don't want to revert the previous clk_prepare_enable() for the * other IP. */ for (j = i; j >= 0; j--) { eth = &soc_pm.quirks.eth[j]; if (suspend) { if (!at91_pm_eth_quirk_is_valid(eth)) continue; tmp = clk_bulk_prepare_enable(AT91_PM_ETH_MAX_CLK, eth->clks); if (tmp) { pr_err("AT91: PM: failed to enable %s clocks\n", j == AT91_PM_G_ETH ? "geth" : "eth"); } } /* * Release the reference to eth->dev taken in * at91_pm_eth_quirk_is_valid(). */ put_device(eth->dev); eth->dev = NULL; } return ret; } /* * Called after processes are frozen, but before we shutdown devices. */ static int at91_pm_begin(suspend_state_t state) { int ret; switch (state) { case PM_SUSPEND_MEM: soc_pm.data.mode = soc_pm.data.suspend_mode; break; case PM_SUSPEND_STANDBY: soc_pm.data.mode = soc_pm.data.standby_mode; break; default: soc_pm.data.mode = -1; } ret = at91_pm_config_ws(soc_pm.data.mode, true); if (ret) return ret; if (soc_pm.data.mode == AT91_PM_BACKUP) soc_pm.bu->suspended = 1; else if (soc_pm.bu) soc_pm.bu->suspended = 0; return 0; } /* * Verify that all the clocks are correct before entering * slow-clock mode. */ static int at91_pm_verify_clocks(void) { unsigned long scsr; int i; scsr = readl(soc_pm.data.pmc + AT91_PMC_SCSR); /* USB must not be using PLLB */ if ((scsr & soc_pm.data.uhp_udp_mask) != 0) { pr_err("AT91: PM - Suspend-to-RAM with USB still active\n"); return 0; } /* PCK0..PCK3 must be disabled, or configured to use clk32k */ for (i = 0; i < 4; i++) { u32 css; if ((scsr & (AT91_PMC_PCK0 << i)) == 0) continue; css = readl(soc_pm.data.pmc + AT91_PMC_PCKR(i)) & AT91_PMC_CSS; if (css != AT91_PMC_CSS_SLOW) { pr_err("AT91: PM - Suspend-to-RAM with PCK%d src %d\n", i, css); return 0; } } return 1; } /* * Call this from platform driver suspend() to see how deeply to suspend. * For example, some controllers (like OHCI) need one of the PLL clocks * in order to act as a wakeup source, and those are not available when * going into slow clock mode. * * REVISIT: generalize as clk_will_be_available(clk)? Other platforms have * the very same problem (but not using at91 main_clk), and it'd be better * to add one generic API rather than lots of platform-specific ones. */ int at91_suspend_entering_slow_clock(void) { return (soc_pm.data.mode >= AT91_PM_ULP0); } EXPORT_SYMBOL(at91_suspend_entering_slow_clock); static void (*at91_suspend_sram_fn)(struct at91_pm_data *); extern void at91_pm_suspend_in_sram(struct at91_pm_data *pm_data); extern u32 at91_pm_suspend_in_sram_sz; static int at91_suspend_finish(unsigned long val) { unsigned char modified_gray_code[] = { 0x00, 0x01, 0x02, 0x03, 0x06, 0x07, 0x04, 0x05, 0x0c, 0x0d, 0x0e, 0x0f, 0x0a, 0x0b, 0x08, 0x09, 0x18, 0x19, 0x1a, 0x1b, 0x1e, 0x1f, 0x1c, 0x1d, 0x14, 0x15, 0x16, 0x17, 0x12, 0x13, 0x10, 0x11, }; unsigned int tmp, index; int i; if (soc_pm.data.mode == AT91_PM_BACKUP && soc_pm.data.ramc_phy) { /* * Bootloader will perform DDR recalibration and will try to * restore the ZQ0SR0 with the value saved here. But the * calibration is buggy and restoring some values from ZQ0SR0 * is forbidden and risky thus we need to provide processed * values for these (modified gray code values). */ tmp = readl(soc_pm.data.ramc_phy + DDR3PHY_ZQ0SR0); /* Store pull-down output impedance select. */ index = (tmp >> DDR3PHY_ZQ0SR0_PDO_OFF) & 0x1f; soc_pm.bu->ddr_phy_calibration[0] = modified_gray_code[index]; /* Store pull-up output impedance select. */ index = (tmp >> DDR3PHY_ZQ0SR0_PUO_OFF) & 0x1f; soc_pm.bu->ddr_phy_calibration[0] |= modified_gray_code[index]; /* Store pull-down on-die termination impedance select. */ index = (tmp >> DDR3PHY_ZQ0SR0_PDODT_OFF) & 0x1f; soc_pm.bu->ddr_phy_calibration[0] |= modified_gray_code[index]; /* Store pull-up on-die termination impedance select. */ index = (tmp >> DDR3PHY_ZQ0SRO_PUODT_OFF) & 0x1f; soc_pm.bu->ddr_phy_calibration[0] |= modified_gray_code[index]; /* * The 1st 8 words of memory might get corrupted in the process * of DDR PHY recalibration; it is saved here in securam and it * will be restored later, after recalibration, by bootloader */ for (i = 1; i < BACKUP_DDR_PHY_CALIBRATION; i++) soc_pm.bu->ddr_phy_calibration[i] = *((unsigned int *)soc_pm.memcs + (i - 1)); } flush_cache_all(); outer_disable(); at91_suspend_sram_fn(&soc_pm.data); return 0; } static void at91_pm_switch_ba_to_vbat(void) { unsigned int offset = offsetof(struct at91_pm_sfrbu_regs, pswbu); unsigned int val; /* Just for safety. */ if (!soc_pm.data.sfrbu) return; val = readl(soc_pm.data.sfrbu + offset); /* Already on VBAT. */ if (!(val & soc_pm.sfrbu_regs.pswbu.state)) return; val &= ~soc_pm.sfrbu_regs.pswbu.softsw; val |= soc_pm.sfrbu_regs.pswbu.key | soc_pm.sfrbu_regs.pswbu.ctrl; writel(val, soc_pm.data.sfrbu + offset); /* Wait for update. */ val = readl(soc_pm.data.sfrbu + offset); while (val & soc_pm.sfrbu_regs.pswbu.state) val = readl(soc_pm.data.sfrbu + offset); } static void at91_pm_suspend(suspend_state_t state) { if (soc_pm.data.mode == AT91_PM_BACKUP) { at91_pm_switch_ba_to_vbat(); cpu_suspend(0, at91_suspend_finish); /* The SRAM is lost between suspend cycles */ at91_suspend_sram_fn = fncpy(at91_suspend_sram_fn, &at91_pm_suspend_in_sram, at91_pm_suspend_in_sram_sz); } else { at91_suspend_finish(0); } outer_resume(); } /* * STANDBY mode has *all* drivers suspended; ignores irqs not marked as 'wakeup' * event sources; and reduces DRAM power. But otherwise it's identical to * PM_SUSPEND_ON: cpu idle, and nothing fancy done with main or cpu clocks. * * AT91_PM_ULP0 is like STANDBY plus slow clock mode, so drivers must * suspend more deeply, the master clock switches to the clk32k and turns off * the main oscillator * * AT91_PM_BACKUP turns off the whole SoC after placing the DDR in self refresh */ static int at91_pm_enter(suspend_state_t state) { int ret; ret = at91_pm_config_quirks(true); if (ret) return ret; switch (state) { case PM_SUSPEND_MEM: case PM_SUSPEND_STANDBY: /* * Ensure that clocks are in a valid state. */ if (soc_pm.data.mode >= AT91_PM_ULP0 && !at91_pm_verify_clocks()) goto error; at91_pm_suspend(state); break; case PM_SUSPEND_ON: cpu_do_idle(); break; default: pr_debug("AT91: PM - bogus suspend state %d\n", state); goto error; } error: at91_pm_config_quirks(false); return 0; } /* * Called right prior to thawing processes. */ static void at91_pm_end(void) { at91_pm_config_ws(soc_pm.data.mode, false); } static const struct platform_suspend_ops at91_pm_ops = { .valid = at91_pm_valid_state, .begin = at91_pm_begin, .enter = at91_pm_enter, .end = at91_pm_end, }; static struct platform_device at91_cpuidle_device = { .name = "cpuidle-at91", }; /* * The AT91RM9200 goes into self-refresh mode with this command, and will * terminate self-refresh automatically on the next SDRAM access. * * Self-refresh mode is exited as soon as a memory access is made, but we don't * know for sure when that happens. However, we need to restore the low-power * mode if it was enabled before going idle. Restoring low-power mode while * still in self-refresh is "not recommended", but seems to work. */ static void at91rm9200_standby(void) { asm volatile( "b 1f\n\t" ".align 5\n\t" "1: mcr p15, 0, %0, c7, c10, 4\n\t" " str %2, [%1, %3]\n\t" " mcr p15, 0, %0, c7, c0, 4\n\t" : : "r" (0), "r" (soc_pm.data.ramc[0]), "r" (1), "r" (AT91_MC_SDRAMC_SRR)); } /* We manage both DDRAM/SDRAM controllers, we need more than one value to * remember. */ static void at91_ddr_standby(void) { /* Those two values allow us to delay self-refresh activation * to the maximum. */ u32 lpr0, lpr1 = 0; u32 mdr, saved_mdr0, saved_mdr1 = 0; u32 saved_lpr0, saved_lpr1 = 0; /* LPDDR1 --> force DDR2 mode during self-refresh */ saved_mdr0 = at91_ramc_read(0, AT91_DDRSDRC_MDR); if ((saved_mdr0 & AT91_DDRSDRC_MD) == AT91_DDRSDRC_MD_LOW_POWER_DDR) { mdr = saved_mdr0 & ~AT91_DDRSDRC_MD; mdr |= AT91_DDRSDRC_MD_DDR2; at91_ramc_write(0, AT91_DDRSDRC_MDR, mdr); } if (soc_pm.data.ramc[1]) { saved_lpr1 = at91_ramc_read(1, AT91_DDRSDRC_LPR); lpr1 = saved_lpr1 & ~AT91_DDRSDRC_LPCB; lpr1 |= AT91_DDRSDRC_LPCB_SELF_REFRESH; saved_mdr1 = at91_ramc_read(1, AT91_DDRSDRC_MDR); if ((saved_mdr1 & AT91_DDRSDRC_MD) == AT91_DDRSDRC_MD_LOW_POWER_DDR) { mdr = saved_mdr1 & ~AT91_DDRSDRC_MD; mdr |= AT91_DDRSDRC_MD_DDR2; at91_ramc_write(1, AT91_DDRSDRC_MDR, mdr); } } saved_lpr0 = at91_ramc_read(0, AT91_DDRSDRC_LPR); lpr0 = saved_lpr0 & ~AT91_DDRSDRC_LPCB; lpr0 |= AT91_DDRSDRC_LPCB_SELF_REFRESH; /* self-refresh mode now */ at91_ramc_write(0, AT91_DDRSDRC_LPR, lpr0); if (soc_pm.data.ramc[1]) at91_ramc_write(1, AT91_DDRSDRC_LPR, lpr1); cpu_do_idle(); at91_ramc_write(0, AT91_DDRSDRC_MDR, saved_mdr0); at91_ramc_write(0, AT91_DDRSDRC_LPR, saved_lpr0); if (soc_pm.data.ramc[1]) { at91_ramc_write(0, AT91_DDRSDRC_MDR, saved_mdr1); at91_ramc_write(1, AT91_DDRSDRC_LPR, saved_lpr1); } } static void sama5d3_ddr_standby(void) { u32 lpr0; u32 saved_lpr0; saved_lpr0 = at91_ramc_read(0, AT91_DDRSDRC_LPR); lpr0 = saved_lpr0 & ~AT91_DDRSDRC_LPCB; lpr0 |= AT91_DDRSDRC_LPCB_POWER_DOWN; at91_ramc_write(0, AT91_DDRSDRC_LPR, lpr0); cpu_do_idle(); at91_ramc_write(0, AT91_DDRSDRC_LPR, saved_lpr0); } /* We manage both DDRAM/SDRAM controllers, we need more than one value to * remember. */ static void at91sam9_sdram_standby(void) { u32 lpr0, lpr1 = 0; u32 saved_lpr0, saved_lpr1 = 0; if (soc_pm.data.ramc[1]) { saved_lpr1 = at91_ramc_read(1, AT91_SDRAMC_LPR); lpr1 = saved_lpr1 & ~AT91_SDRAMC_LPCB; lpr1 |= AT91_SDRAMC_LPCB_SELF_REFRESH; } saved_lpr0 = at91_ramc_read(0, AT91_SDRAMC_LPR); lpr0 = saved_lpr0 & ~AT91_SDRAMC_LPCB; lpr0 |= AT91_SDRAMC_LPCB_SELF_REFRESH; /* self-refresh mode now */ at91_ramc_write(0, AT91_SDRAMC_LPR, lpr0); if (soc_pm.data.ramc[1]) at91_ramc_write(1, AT91_SDRAMC_LPR, lpr1); cpu_do_idle(); at91_ramc_write(0, AT91_SDRAMC_LPR, saved_lpr0); if (soc_pm.data.ramc[1]) at91_ramc_write(1, AT91_SDRAMC_LPR, saved_lpr1); } static void sama7g5_standby(void) { int pwrtmg, ratio; pwrtmg = readl(soc_pm.data.ramc[0] + UDDRC_PWRCTL); ratio = readl(soc_pm.data.pmc + AT91_PMC_RATIO); /* * Place RAM into self-refresh after a maximum idle clocks. The maximum * idle clocks is configured by bootloader in * UDDRC_PWRMGT.SELFREF_TO_X32. */ writel(pwrtmg | UDDRC_PWRCTL_SELFREF_EN, soc_pm.data.ramc[0] + UDDRC_PWRCTL); /* Divide CPU clock by 16. */ writel(ratio & ~AT91_PMC_RATIO_RATIO, soc_pm.data.pmc + AT91_PMC_RATIO); cpu_do_idle(); /* Restore previous configuration. */ writel(ratio, soc_pm.data.pmc + AT91_PMC_RATIO); writel(pwrtmg, soc_pm.data.ramc[0] + UDDRC_PWRCTL); } struct ramc_info { void (*idle)(void); unsigned int memctrl; }; static const struct ramc_info ramc_infos[] __initconst = { { .idle = at91rm9200_standby, .memctrl = AT91_MEMCTRL_MC}, { .idle = at91sam9_sdram_standby, .memctrl = AT91_MEMCTRL_SDRAMC}, { .idle = at91_ddr_standby, .memctrl = AT91_MEMCTRL_DDRSDR}, { .idle = sama5d3_ddr_standby, .memctrl = AT91_MEMCTRL_DDRSDR}, { .idle = sama7g5_standby, }, }; static const struct of_device_id ramc_ids[] __initconst = { { .compatible = "atmel,at91rm9200-sdramc", .data = &ramc_infos[0] }, { .compatible = "atmel,at91sam9260-sdramc", .data = &ramc_infos[1] }, { .compatible = "atmel,at91sam9g45-ddramc", .data = &ramc_infos[2] }, { .compatible = "atmel,sama5d3-ddramc", .data = &ramc_infos[3] }, { .compatible = "microchip,sama7g5-uddrc", .data = &ramc_infos[4], }, { /*sentinel*/ } }; static const struct of_device_id ramc_phy_ids[] __initconst = { { .compatible = "microchip,sama7g5-ddr3phy", }, { /* Sentinel. */ }, }; static __init int at91_dt_ramc(bool phy_mandatory) { struct device_node *np; const struct of_device_id *of_id; int idx = 0; void *standby = NULL; const struct ramc_info *ramc; int ret; for_each_matching_node_and_match(np, ramc_ids, &of_id) { soc_pm.data.ramc[idx] = of_iomap(np, 0); if (!soc_pm.data.ramc[idx]) { pr_err("unable to map ramc[%d] cpu registers\n", idx); ret = -ENOMEM; of_node_put(np); goto unmap_ramc; } ramc = of_id->data; if (ramc) { if (!standby) standby = ramc->idle; soc_pm.data.memctrl = ramc->memctrl; } idx++; } if (!idx) { pr_err("unable to find compatible ram controller node in dtb\n"); ret = -ENODEV; goto unmap_ramc; } /* Lookup for DDR PHY node, if any. */ for_each_matching_node_and_match(np, ramc_phy_ids, &of_id) { soc_pm.data.ramc_phy = of_iomap(np, 0); if (!soc_pm.data.ramc_phy) { pr_err("unable to map ramc phy cpu registers\n"); ret = -ENOMEM; of_node_put(np); goto unmap_ramc; } } if (phy_mandatory && !soc_pm.data.ramc_phy) { pr_err("DDR PHY is mandatory!\n"); ret = -ENODEV; goto unmap_ramc; } if (!standby) { pr_warn("ramc no standby function available\n"); return 0; } at91_cpuidle_device.dev.platform_data = standby; return 0; unmap_ramc: while (idx) iounmap(soc_pm.data.ramc[--idx]); return ret; } static void at91rm9200_idle(void) { /* * Disable the processor clock. The processor will be automatically * re-enabled by an interrupt or by a reset. */ writel(AT91_PMC_PCK, soc_pm.data.pmc + AT91_PMC_SCDR); } static void at91sam9_idle(void) { writel(AT91_PMC_PCK, soc_pm.data.pmc + AT91_PMC_SCDR); cpu_do_idle(); } static void __init at91_pm_sram_init(void) { struct gen_pool *sram_pool; phys_addr_t sram_pbase; unsigned long sram_base; struct device_node *node; struct platform_device *pdev = NULL; for_each_compatible_node(node, NULL, "mmio-sram") { pdev = of_find_device_by_node(node); if (pdev) { of_node_put(node); break; } } if (!pdev) { pr_warn("%s: failed to find sram device!\n", __func__); return; } sram_pool = gen_pool_get(&pdev->dev, NULL); if (!sram_pool) { pr_warn("%s: sram pool unavailable!\n", __func__); goto out_put_device; } sram_base = gen_pool_alloc(sram_pool, at91_pm_suspend_in_sram_sz); if (!sram_base) { pr_warn("%s: unable to alloc sram!\n", __func__); goto out_put_device; } sram_pbase = gen_pool_virt_to_phys(sram_pool, sram_base); at91_suspend_sram_fn = __arm_ioremap_exec(sram_pbase, at91_pm_suspend_in_sram_sz, false); if (!at91_suspend_sram_fn) { pr_warn("SRAM: Could not map\n"); goto out_put_device; } /* Copy the pm suspend handler to SRAM */ at91_suspend_sram_fn = fncpy(at91_suspend_sram_fn, &at91_pm_suspend_in_sram, at91_pm_suspend_in_sram_sz); return; out_put_device: put_device(&pdev->dev); return; } static bool __init at91_is_pm_mode_active(int pm_mode) { return (soc_pm.data.standby_mode == pm_mode || soc_pm.data.suspend_mode == pm_mode); } static int __init at91_pm_backup_scan_memcs(unsigned long node, const char *uname, int depth, void *data) { const char *type; const __be32 *reg; int *located = data; int size; /* Memory node already located. */ if (*located) return 0; type = of_get_flat_dt_prop(node, "device_type", NULL); /* We are scanning "memory" nodes only. */ if (!type || strcmp(type, "memory")) return 0; reg = of_get_flat_dt_prop(node, "reg", &size); if (reg) { soc_pm.memcs = __va((phys_addr_t)be32_to_cpu(*reg)); *located = 1; } return 0; } static int __init at91_pm_backup_init(void) { struct gen_pool *sram_pool; struct device_node *np; struct platform_device *pdev; int ret = -ENODEV, located = 0; if (!IS_ENABLED(CONFIG_SOC_SAMA5D2) && !IS_ENABLED(CONFIG_SOC_SAMA7G5)) return -EPERM; if (!at91_is_pm_mode_active(AT91_PM_BACKUP)) return 0; np = of_find_compatible_node(NULL, NULL, "atmel,sama5d2-securam"); if (!np) return ret; pdev = of_find_device_by_node(np); of_node_put(np); if (!pdev) { pr_warn("%s: failed to find securam device!\n", __func__); return ret; } sram_pool = gen_pool_get(&pdev->dev, NULL); if (!sram_pool) { pr_warn("%s: securam pool unavailable!\n", __func__); goto securam_fail; } soc_pm.bu = (void *)gen_pool_alloc(sram_pool, sizeof(struct at91_pm_bu)); if (!soc_pm.bu) { pr_warn("%s: unable to alloc securam!\n", __func__); ret = -ENOMEM; goto securam_fail; } soc_pm.bu->suspended = 0; soc_pm.bu->canary = __pa_symbol(&canary); soc_pm.bu->resume = __pa_symbol(cpu_resume); if (soc_pm.data.ramc_phy) { of_scan_flat_dt(at91_pm_backup_scan_memcs, &located); if (!located) goto securam_fail; } return 0; securam_fail: put_device(&pdev->dev); return ret; } static void __init at91_pm_secure_init(void) { int suspend_mode; struct arm_smccc_res res; suspend_mode = soc_pm.data.suspend_mode; res = sam_smccc_call(SAMA5_SMC_SIP_SET_SUSPEND_MODE, suspend_mode, 0); if (res.a0 == 0) { pr_info("AT91: Secure PM: suspend mode set to %s\n", pm_modes[suspend_mode].pattern); soc_pm.data.mode = suspend_mode; return; } pr_warn("AT91: Secure PM: %s mode not supported !\n", pm_modes[suspend_mode].pattern); res = sam_smccc_call(SAMA5_SMC_SIP_GET_SUSPEND_MODE, 0, 0); if (res.a0 == 0) { pr_warn("AT91: Secure PM: failed to get default mode\n"); soc_pm.data.mode = -1; return; } pr_info("AT91: Secure PM: using default suspend mode %s\n", pm_modes[suspend_mode].pattern); soc_pm.data.suspend_mode = res.a1; soc_pm.data.mode = soc_pm.data.suspend_mode; } static const struct of_device_id atmel_shdwc_ids[] = { { .compatible = "atmel,sama5d2-shdwc" }, { .compatible = "microchip,sam9x60-shdwc" }, { .compatible = "microchip,sama7g5-shdwc" }, { /* sentinel. */ } }; static const struct of_device_id gmac_ids[] __initconst = { { .compatible = "atmel,sama5d3-gem" }, { .compatible = "atmel,sama5d2-gem" }, { .compatible = "atmel,sama5d29-gem" }, { .compatible = "microchip,sama7g5-gem" }, { }, }; static const struct of_device_id emac_ids[] __initconst = { { .compatible = "atmel,sama5d3-macb" }, { .compatible = "microchip,sama7g5-emac" }, { }, }; /* * Replaces _mode_to_replace with a supported mode that doesn't depend * on controller pointed by _map_bitmask * @_maps: u32 array containing AT91_PM_IOMAP() flags and indexed by AT91 * PM mode * @_map_bitmask: AT91_PM_IOMAP() bitmask; if _mode_to_replace depends on * controller represented by _map_bitmask, _mode_to_replace needs to be * updated * @_mode_to_replace: standby_mode or suspend_mode that need to be * updated * @_mode_to_check: standby_mode or suspend_mode; this is needed here * to avoid having standby_mode and suspend_mode set with the same AT91 * PM mode */ #define AT91_PM_REPLACE_MODE(_maps, _map_bitmask, _mode_to_replace, \ _mode_to_check) \ do { \ if (((_maps)[(_mode_to_replace)]) & (_map_bitmask)) { \ int _mode_to_use, _mode_complementary; \ /* Use ULP0 if it doesn't need _map_bitmask. */ \ if (!((_maps)[AT91_PM_ULP0] & (_map_bitmask))) {\ _mode_to_use = AT91_PM_ULP0; \ _mode_complementary = AT91_PM_STANDBY; \ } else { \ _mode_to_use = AT91_PM_STANDBY; \ _mode_complementary = AT91_PM_STANDBY; \ } \ \ if ((_mode_to_check) != _mode_to_use) \ (_mode_to_replace) = _mode_to_use; \ else \ (_mode_to_replace) = _mode_complementary;\ } \ } while (0) /* * Replaces standby and suspend modes with default supported modes: * ULP0 and STANDBY. * @_maps: u32 array indexed by AT91 PM mode containing AT91_PM_IOMAP() * flags * @_map: controller specific name; standby and suspend mode need to be * replaced in order to not depend on this controller */ #define AT91_PM_REPLACE_MODES(_maps, _map) \ do { \ AT91_PM_REPLACE_MODE((_maps), BIT(AT91_PM_IOMAP_##_map),\ (soc_pm.data.standby_mode), \ (soc_pm.data.suspend_mode)); \ AT91_PM_REPLACE_MODE((_maps), BIT(AT91_PM_IOMAP_##_map),\ (soc_pm.data.suspend_mode), \ (soc_pm.data.standby_mode)); \ } while (0) static int __init at91_pm_get_eth_clks(struct device_node *np, struct clk_bulk_data *clks) { clks[AT91_PM_ETH_PCLK].clk = of_clk_get_by_name(np, "pclk"); if (IS_ERR(clks[AT91_PM_ETH_PCLK].clk)) return PTR_ERR(clks[AT91_PM_ETH_PCLK].clk); clks[AT91_PM_ETH_HCLK].clk = of_clk_get_by_name(np, "hclk"); if (IS_ERR(clks[AT91_PM_ETH_HCLK].clk)) return PTR_ERR(clks[AT91_PM_ETH_HCLK].clk); return 0; } static int __init at91_pm_eth_clks_empty(struct clk_bulk_data *clks) { return IS_ERR(clks[AT91_PM_ETH_PCLK].clk) || IS_ERR(clks[AT91_PM_ETH_HCLK].clk); } static void __init at91_pm_modes_init(const u32 *maps, int len) { struct at91_pm_quirk_eth *gmac = &soc_pm.quirks.eth[AT91_PM_G_ETH]; struct at91_pm_quirk_eth *emac = &soc_pm.quirks.eth[AT91_PM_E_ETH]; struct device_node *np; int ret; ret = at91_pm_backup_init(); if (ret) { if (soc_pm.data.standby_mode == AT91_PM_BACKUP) soc_pm.data.standby_mode = AT91_PM_ULP0; if (soc_pm.data.suspend_mode == AT91_PM_BACKUP) soc_pm.data.suspend_mode = AT91_PM_ULP0; } if (maps[soc_pm.data.standby_mode] & AT91_PM_IOMAP(SHDWC) || maps[soc_pm.data.suspend_mode] & AT91_PM_IOMAP(SHDWC)) { np = of_find_matching_node(NULL, atmel_shdwc_ids); if (!np) { pr_warn("%s: failed to find shdwc!\n", __func__); AT91_PM_REPLACE_MODES(maps, SHDWC); } else { soc_pm.data.shdwc = of_iomap(np, 0); of_node_put(np); } } if (maps[soc_pm.data.standby_mode] & AT91_PM_IOMAP(SFRBU) || maps[soc_pm.data.suspend_mode] & AT91_PM_IOMAP(SFRBU)) { np = of_find_compatible_node(NULL, NULL, "atmel,sama5d2-sfrbu"); if (!np) { pr_warn("%s: failed to find sfrbu!\n", __func__); AT91_PM_REPLACE_MODES(maps, SFRBU); } else { soc_pm.data.sfrbu = of_iomap(np, 0); of_node_put(np); } } if ((at91_is_pm_mode_active(AT91_PM_ULP1) || at91_is_pm_mode_active(AT91_PM_ULP0) || at91_is_pm_mode_active(AT91_PM_ULP0_FAST)) && (maps[soc_pm.data.standby_mode] & AT91_PM_IOMAP(ETHC) || maps[soc_pm.data.suspend_mode] & AT91_PM_IOMAP(ETHC))) { np = of_find_matching_node(NULL, gmac_ids); if (!np) { np = of_find_matching_node(NULL, emac_ids); if (np) goto get_emac_clks; AT91_PM_REPLACE_MODES(maps, ETHC); goto unmap_unused_nodes; } else { gmac->np = np; at91_pm_get_eth_clks(np, gmac->clks); } np = of_find_matching_node(NULL, emac_ids); if (!np) { if (at91_pm_eth_clks_empty(gmac->clks)) AT91_PM_REPLACE_MODES(maps, ETHC); } else { get_emac_clks: emac->np = np; ret = at91_pm_get_eth_clks(np, emac->clks); if (ret && at91_pm_eth_clks_empty(gmac->clks)) { of_node_put(gmac->np); of_node_put(emac->np); gmac->np = NULL; emac->np = NULL; } } } unmap_unused_nodes: /* Unmap all unnecessary. */ if (soc_pm.data.shdwc && !(maps[soc_pm.data.standby_mode] & AT91_PM_IOMAP(SHDWC) || maps[soc_pm.data.suspend_mode] & AT91_PM_IOMAP(SHDWC))) { iounmap(soc_pm.data.shdwc); soc_pm.data.shdwc = NULL; } if (soc_pm.data.sfrbu && !(maps[soc_pm.data.standby_mode] & AT91_PM_IOMAP(SFRBU) || maps[soc_pm.data.suspend_mode] & AT91_PM_IOMAP(SFRBU))) { iounmap(soc_pm.data.sfrbu); soc_pm.data.sfrbu = NULL; } return; } struct pmc_info { unsigned long uhp_udp_mask; unsigned long mckr; unsigned long version; }; static const struct pmc_info pmc_infos[] __initconst = { { .uhp_udp_mask = AT91RM9200_PMC_UHP | AT91RM9200_PMC_UDP, .mckr = 0x30, .version = AT91_PMC_V1, }, { .uhp_udp_mask = AT91SAM926x_PMC_UHP | AT91SAM926x_PMC_UDP, .mckr = 0x30, .version = AT91_PMC_V1, }, { .uhp_udp_mask = AT91SAM926x_PMC_UHP, .mckr = 0x30, .version = AT91_PMC_V1, }, { .uhp_udp_mask = 0, .mckr = 0x30, .version = AT91_PMC_V1, }, { .uhp_udp_mask = AT91SAM926x_PMC_UHP | AT91SAM926x_PMC_UDP, .mckr = 0x28, .version = AT91_PMC_V2, }, { .mckr = 0x28, .version = AT91_PMC_V2, }, }; static const struct of_device_id atmel_pmc_ids[] __initconst = { { .compatible = "atmel,at91rm9200-pmc", .data = &pmc_infos[0] }, { .compatible = "atmel,at91sam9260-pmc", .data = &pmc_infos[1] }, { .compatible = "atmel,at91sam9261-pmc", .data = &pmc_infos[1] }, { .compatible = "atmel,at91sam9263-pmc", .data = &pmc_infos[1] }, { .compatible = "atmel,at91sam9g45-pmc", .data = &pmc_infos[2] }, { .compatible = "atmel,at91sam9n12-pmc", .data = &pmc_infos[1] }, { .compatible = "atmel,at91sam9rl-pmc", .data = &pmc_infos[3] }, { .compatible = "atmel,at91sam9x5-pmc", .data = &pmc_infos[1] }, { .compatible = "atmel,sama5d3-pmc", .data = &pmc_infos[1] }, { .compatible = "atmel,sama5d4-pmc", .data = &pmc_infos[1] }, { .compatible = "atmel,sama5d2-pmc", .data = &pmc_infos[1] }, { .compatible = "microchip,sam9x60-pmc", .data = &pmc_infos[4] }, { .compatible = "microchip,sama7g5-pmc", .data = &pmc_infos[5] }, { /* sentinel */ }, }; static void __init at91_pm_modes_validate(const int *modes, int len) { u8 i, standby = 0, suspend = 0; int mode; for (i = 0; i < len; i++) { if (standby && suspend) break; if (modes[i] == soc_pm.data.standby_mode && !standby) { standby = 1; continue; } if (modes[i] == soc_pm.data.suspend_mode && !suspend) { suspend = 1; continue; } } if (!standby) { if (soc_pm.data.suspend_mode == AT91_PM_STANDBY) mode = AT91_PM_ULP0; else mode = AT91_PM_STANDBY; pr_warn("AT91: PM: %s mode not supported! Using %s.\n", pm_modes[soc_pm.data.standby_mode].pattern, pm_modes[mode].pattern); soc_pm.data.standby_mode = mode; } if (!suspend) { if (soc_pm.data.standby_mode == AT91_PM_ULP0) mode = AT91_PM_STANDBY; else mode = AT91_PM_ULP0; pr_warn("AT91: PM: %s mode not supported! Using %s.\n", pm_modes[soc_pm.data.suspend_mode].pattern, pm_modes[mode].pattern); soc_pm.data.suspend_mode = mode; } } static void __init at91_pm_init(void (*pm_idle)(void)) { struct device_node *pmc_np; const struct of_device_id *of_id; const struct pmc_info *pmc; if (at91_cpuidle_device.dev.platform_data) platform_device_register(&at91_cpuidle_device); pmc_np = of_find_matching_node_and_match(NULL, atmel_pmc_ids, &of_id); soc_pm.data.pmc = of_iomap(pmc_np, 0); of_node_put(pmc_np); if (!soc_pm.data.pmc) { pr_err("AT91: PM not supported, PMC not found\n"); return; } pmc = of_id->data; soc_pm.data.uhp_udp_mask = pmc->uhp_udp_mask; soc_pm.data.pmc_mckr_offset = pmc->mckr; soc_pm.data.pmc_version = pmc->version; if (pm_idle) arm_pm_idle = pm_idle; at91_pm_sram_init(); if (at91_suspend_sram_fn) { suspend_set_ops(&at91_pm_ops); pr_info("AT91: PM: standby: %s, suspend: %s\n", pm_modes[soc_pm.data.standby_mode].pattern, pm_modes[soc_pm.data.suspend_mode].pattern); } else { pr_info("AT91: PM not supported, due to no SRAM allocated\n"); } } void __init at91rm9200_pm_init(void) { int ret; if (!IS_ENABLED(CONFIG_SOC_AT91RM9200)) return; /* * Force STANDBY and ULP0 mode to avoid calling * at91_pm_modes_validate() which may increase booting time. * Platform supports anyway only STANDBY and ULP0 modes. */ soc_pm.data.standby_mode = AT91_PM_STANDBY; soc_pm.data.suspend_mode = AT91_PM_ULP0; ret = at91_dt_ramc(false); if (ret) return; /* * AT91RM9200 SDRAM low-power mode cannot be used with self-refresh. */ at91_ramc_write(0, AT91_MC_SDRAMC_LPR, 0); at91_pm_init(at91rm9200_idle); } void __init sam9x60_pm_init(void) { static const int modes[] __initconst = { AT91_PM_STANDBY, AT91_PM_ULP0, AT91_PM_ULP0_FAST, AT91_PM_ULP1, }; static const int iomaps[] __initconst = { [AT91_PM_ULP1] = AT91_PM_IOMAP(SHDWC), }; int ret; if (!IS_ENABLED(CONFIG_SOC_SAM9X60)) return; at91_pm_modes_validate(modes, ARRAY_SIZE(modes)); at91_pm_modes_init(iomaps, ARRAY_SIZE(iomaps)); ret = at91_dt_ramc(false); if (ret) return; at91_pm_init(NULL); soc_pm.ws_ids = sam9x60_ws_ids; soc_pm.config_pmc_ws = at91_sam9x60_config_pmc_ws; } void __init at91sam9_pm_init(void) { int ret; if (!IS_ENABLED(CONFIG_SOC_AT91SAM9)) return; /* * Force STANDBY and ULP0 mode to avoid calling * at91_pm_modes_validate() which may increase booting time. * Platform supports anyway only STANDBY and ULP0 modes. */ soc_pm.data.standby_mode = AT91_PM_STANDBY; soc_pm.data.suspend_mode = AT91_PM_ULP0; ret = at91_dt_ramc(false); if (ret) return; at91_pm_init(at91sam9_idle); } void __init sama5_pm_init(void) { static const int modes[] __initconst = { AT91_PM_STANDBY, AT91_PM_ULP0, AT91_PM_ULP0_FAST, }; static const u32 iomaps[] __initconst = { [AT91_PM_ULP0] = AT91_PM_IOMAP(ETHC), [AT91_PM_ULP0_FAST] = AT91_PM_IOMAP(ETHC), }; int ret; if (!IS_ENABLED(CONFIG_SOC_SAMA5)) return; at91_pm_modes_validate(modes, ARRAY_SIZE(modes)); at91_pm_modes_init(iomaps, ARRAY_SIZE(iomaps)); ret = at91_dt_ramc(false); if (ret) return; at91_pm_init(NULL); /* Quirks applies to ULP0, ULP0 fast and ULP1 modes. */ soc_pm.quirks.eth[AT91_PM_G_ETH].modes = BIT(AT91_PM_ULP0) | BIT(AT91_PM_ULP0_FAST) | BIT(AT91_PM_ULP1); /* Do not suspend in ULP0, ULP0 fast if GETH is the only wakeup source. */ soc_pm.quirks.eth[AT91_PM_G_ETH].dns_modes = BIT(AT91_PM_ULP0) | BIT(AT91_PM_ULP0_FAST); } void __init sama5d2_pm_init(void) { static const int modes[] __initconst = { AT91_PM_STANDBY, AT91_PM_ULP0, AT91_PM_ULP0_FAST, AT91_PM_ULP1, AT91_PM_BACKUP, }; static const u32 iomaps[] __initconst = { [AT91_PM_ULP0] = AT91_PM_IOMAP(ETHC), [AT91_PM_ULP0_FAST] = AT91_PM_IOMAP(ETHC), [AT91_PM_ULP1] = AT91_PM_IOMAP(SHDWC) | AT91_PM_IOMAP(ETHC), [AT91_PM_BACKUP] = AT91_PM_IOMAP(SHDWC) | AT91_PM_IOMAP(SFRBU), }; int ret; if (!IS_ENABLED(CONFIG_SOC_SAMA5D2)) return; if (IS_ENABLED(CONFIG_ATMEL_SECURE_PM)) { pr_warn("AT91: Secure PM: ignoring standby mode\n"); at91_pm_secure_init(); return; } at91_pm_modes_validate(modes, ARRAY_SIZE(modes)); at91_pm_modes_init(iomaps, ARRAY_SIZE(iomaps)); ret = at91_dt_ramc(false); if (ret) return; at91_pm_init(NULL); soc_pm.ws_ids = sama5d2_ws_ids; soc_pm.config_shdwc_ws = at91_sama5d2_config_shdwc_ws; soc_pm.config_pmc_ws = at91_sama5d2_config_pmc_ws; soc_pm.sfrbu_regs.pswbu.key = (0x4BD20C << 8); soc_pm.sfrbu_regs.pswbu.ctrl = BIT(0); soc_pm.sfrbu_regs.pswbu.softsw = BIT(1); soc_pm.sfrbu_regs.pswbu.state = BIT(3); /* Quirk applies to ULP0, ULP0 fast and ULP1 modes. */ soc_pm.quirks.eth[AT91_PM_G_ETH].modes = BIT(AT91_PM_ULP0) | BIT(AT91_PM_ULP0_FAST) | BIT(AT91_PM_ULP1); /* * Do not suspend in ULP0, ULP0 fast if GETH is the only wakeup * source. */ soc_pm.quirks.eth[AT91_PM_G_ETH].dns_modes = BIT(AT91_PM_ULP0) | BIT(AT91_PM_ULP0_FAST); } void __init sama7_pm_init(void) { static const int modes[] __initconst = { AT91_PM_STANDBY, AT91_PM_ULP0, AT91_PM_ULP1, AT91_PM_BACKUP, }; static const u32 iomaps[] __initconst = { [AT91_PM_ULP0] = AT91_PM_IOMAP(SFRBU), [AT91_PM_ULP1] = AT91_PM_IOMAP(SFRBU) | AT91_PM_IOMAP(SHDWC) | AT91_PM_IOMAP(ETHC), [AT91_PM_BACKUP] = AT91_PM_IOMAP(SFRBU) | AT91_PM_IOMAP(SHDWC), }; int ret; if (!IS_ENABLED(CONFIG_SOC_SAMA7)) return; at91_pm_modes_validate(modes, ARRAY_SIZE(modes)); ret = at91_dt_ramc(true); if (ret) return; at91_pm_modes_init(iomaps, ARRAY_SIZE(iomaps)); at91_pm_init(NULL); soc_pm.ws_ids = sama7g5_ws_ids; soc_pm.config_pmc_ws = at91_sam9x60_config_pmc_ws; soc_pm.sfrbu_regs.pswbu.key = (0x4BD20C << 8); soc_pm.sfrbu_regs.pswbu.ctrl = BIT(0); soc_pm.sfrbu_regs.pswbu.softsw = BIT(1); soc_pm.sfrbu_regs.pswbu.state = BIT(2); /* Quirks applies to ULP1 for both Ethernet interfaces. */ soc_pm.quirks.eth[AT91_PM_E_ETH].modes = BIT(AT91_PM_ULP1); soc_pm.quirks.eth[AT91_PM_G_ETH].modes = BIT(AT91_PM_ULP1); } static int __init at91_pm_modes_select(char *str) { char *s; substring_t args[MAX_OPT_ARGS]; int standby, suspend; if (!str) return 0; s = strsep(&str, ","); standby = match_token(s, pm_modes, args); if (standby < 0) return 0; suspend = match_token(str, pm_modes, args); if (suspend < 0) return 0; soc_pm.data.standby_mode = standby; soc_pm.data.suspend_mode = suspend; return 0; } early_param("atmel.pm_modes", at91_pm_modes_select);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1