Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Elder | 511 | 49.09% | 1 | 6.67% |
Chris Brand | 291 | 27.95% | 2 | 13.33% |
Kapil Hali | 158 | 15.18% | 2 | 13.33% |
Stefan Wahren | 40 | 3.84% | 2 | 13.33% |
Andrea Merello | 18 | 1.73% | 1 | 6.67% |
Phil Elwell | 8 | 0.77% | 1 | 6.67% |
Masahiro Yamada | 5 | 0.48% | 2 | 13.33% |
Ingo Molnar | 3 | 0.29% | 1 | 6.67% |
Ben Dooks | 3 | 0.29% | 1 | 6.67% |
Florian Fainelli | 2 | 0.19% | 1 | 6.67% |
Christoph Hellwig | 2 | 0.19% | 1 | 6.67% |
Total | 1041 | 15 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2014-2015 Broadcom Corporation * Copyright 2014 Linaro Limited */ #include <linux/cpumask.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/io.h> #include <linux/irqchip/irq-bcm2836.h> #include <linux/jiffies.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/smp.h> #include <asm/cacheflush.h> #include <asm/smp.h> #include <asm/smp_plat.h> #include <asm/smp_scu.h> #include "platsmp.h" /* Size of mapped Cortex A9 SCU address space */ #define CORTEX_A9_SCU_SIZE 0x58 #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */ #define BOOT_ADDR_CPUID_MASK 0x3 /* Name of device node property defining secondary boot register location */ #define OF_SECONDARY_BOOT "secondary-boot-reg" #define MPIDR_CPUID_BITMASK 0x3 /* * Enable the Cortex A9 Snoop Control Unit * * By the time this is called we already know there are multiple * cores present. We assume we're running on a Cortex A9 processor, * so any trouble getting the base address register or getting the * SCU base is a problem. * * Return 0 if successful or an error code otherwise. */ static int __init scu_a9_enable(void) { unsigned long config_base; void __iomem *scu_base; if (!scu_a9_has_base()) { pr_err("no configuration base address register!\n"); return -ENXIO; } /* Config base address register value is zero for uniprocessor */ config_base = scu_a9_get_base(); if (!config_base) { pr_err("hardware reports only one core\n"); return -ENOENT; } scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE); if (!scu_base) { pr_err("failed to remap config base (%lu/%u) for SCU\n", config_base, CORTEX_A9_SCU_SIZE); return -ENOMEM; } scu_enable(scu_base); iounmap(scu_base); /* That's the last we'll need of this */ return 0; } static u32 secondary_boot_addr_for(unsigned int cpu) { u32 secondary_boot_addr = 0; struct device_node *cpu_node = of_get_cpu_node(cpu, NULL); if (!cpu_node) { pr_err("Failed to find device tree node for CPU%u\n", cpu); return 0; } if (of_property_read_u32(cpu_node, OF_SECONDARY_BOOT, &secondary_boot_addr)) pr_err("required secondary boot register not specified for CPU%u\n", cpu); of_node_put(cpu_node); return secondary_boot_addr; } static int nsp_write_lut(unsigned int cpu) { void __iomem *sku_rom_lut; phys_addr_t secondary_startup_phy; const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); if (!secondary_boot_addr) return -EINVAL; sku_rom_lut = ioremap((phys_addr_t)secondary_boot_addr, sizeof(phys_addr_t)); if (!sku_rom_lut) { pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu); return -ENOMEM; } secondary_startup_phy = __pa_symbol(secondary_startup); BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX); writel_relaxed(secondary_startup_phy, sku_rom_lut); /* Ensure the write is visible to the secondary core */ smp_wmb(); iounmap(sku_rom_lut); return 0; } static void __init bcm_smp_prepare_cpus(unsigned int max_cpus) { const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 }; /* Enable the SCU on Cortex A9 based SoCs */ if (scu_a9_enable()) { /* Update the CPU present map to reflect uniprocessor mode */ pr_warn("failed to enable A9 SCU - disabling SMP\n"); init_cpu_present(&only_cpu_0); } } /* * The ROM code has the secondary cores looping, waiting for an event. * When an event occurs each core examines the bottom two bits of the * secondary boot register. When a core finds those bits contain its * own core id, it performs initialization, including computing its boot * address by clearing the boot register value's bottom two bits. The * core signals that it is beginning its execution by writing its boot * address back to the secondary boot register, and finally jumps to * that address. * * So to start a core executing we need to: * - Encode the (hardware) CPU id with the bottom bits of the secondary * start address. * - Write that value into the secondary boot register. * - Generate an event to wake up the secondary CPU(s). * - Wait for the secondary boot register to be re-written, which * indicates the secondary core has started. */ static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle) { void __iomem *boot_reg; phys_addr_t boot_func; u64 start_clock; u32 cpu_id; u32 boot_val; bool timeout = false; const u32 secondary_boot_addr = secondary_boot_addr_for(cpu); cpu_id = cpu_logical_map(cpu); if (cpu_id & ~BOOT_ADDR_CPUID_MASK) { pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK); return -EINVAL; } if (!secondary_boot_addr) return -EINVAL; boot_reg = ioremap((phys_addr_t)secondary_boot_addr, sizeof(phys_addr_t)); if (!boot_reg) { pr_err("unable to map boot register for cpu %u\n", cpu_id); return -ENOMEM; } /* * Secondary cores will start in secondary_startup(), * defined in "arch/arm/kernel/head.S" */ boot_func = __pa_symbol(secondary_startup); BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK); BUG_ON(boot_func > (phys_addr_t)U32_MAX); /* The core to start is encoded in the low bits */ boot_val = (u32)boot_func | cpu_id; writel_relaxed(boot_val, boot_reg); sev(); /* The low bits will be cleared once the core has started */ start_clock = local_clock(); while (!timeout && readl_relaxed(boot_reg) == boot_val) timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS; iounmap(boot_reg); if (!timeout) return 0; pr_err("timeout waiting for cpu %u to start\n", cpu_id); return -ENXIO; } /* Cluster Dormant Control command to bring CPU into a running state */ #define CDC_CMD 6 #define CDC_CMD_OFFSET 0 #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu)) /* * BCM23550 has a Cluster Dormant Control block that keeps the core in * idle state. A command needs to be sent to the block to bring the CPU * into running state. */ static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle) { void __iomem *cdc_base; struct device_node *dn; char *name; int ret; /* Make sure a CDC node exists before booting the * secondary core. */ name = "brcm,bcm23550-cdc"; dn = of_find_compatible_node(NULL, NULL, name); if (!dn) { pr_err("unable to find cdc node\n"); return -ENODEV; } cdc_base = of_iomap(dn, 0); of_node_put(dn); if (!cdc_base) { pr_err("unable to remap cdc base register\n"); return -ENOMEM; } /* Boot the secondary core */ ret = kona_boot_secondary(cpu, idle); if (ret) goto out; /* Bring this CPU to RUN state so that nIRQ nFIQ * signals are unblocked. */ writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu)); out: iounmap(cdc_base); return ret; } static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle) { int ret; /* * After wake up, secondary core branches to the startup * address programmed at SKU ROM LUT location. */ ret = nsp_write_lut(cpu); if (ret) { pr_err("unable to write startup addr to SKU ROM LUT\n"); goto out; } /* Send a CPU wakeup interrupt to the secondary core */ arch_send_wakeup_ipi_mask(cpumask_of(cpu)); out: return ret; } static int bcm2836_boot_secondary(unsigned int cpu, struct task_struct *idle) { void __iomem *intc_base; struct device_node *dn; char *name; name = "brcm,bcm2836-l1-intc"; dn = of_find_compatible_node(NULL, NULL, name); if (!dn) { pr_err("unable to find intc node\n"); return -ENODEV; } intc_base = of_iomap(dn, 0); of_node_put(dn); if (!intc_base) { pr_err("unable to remap intc base register\n"); return -ENOMEM; } writel(virt_to_phys(secondary_startup), intc_base + LOCAL_MAILBOX3_SET0 + 16 * cpu); dsb(sy); sev(); iounmap(intc_base); return 0; } static const struct smp_operations kona_smp_ops __initconst = { .smp_prepare_cpus = bcm_smp_prepare_cpus, .smp_boot_secondary = kona_boot_secondary, }; CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method", &kona_smp_ops); static const struct smp_operations bcm23550_smp_ops __initconst = { .smp_boot_secondary = bcm23550_boot_secondary, }; CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550", &bcm23550_smp_ops); static const struct smp_operations nsp_smp_ops __initconst = { .smp_prepare_cpus = bcm_smp_prepare_cpus, .smp_boot_secondary = nsp_boot_secondary, }; CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops); const struct smp_operations bcm2836_smp_ops __initconst = { .smp_boot_secondary = bcm2836_boot_secondary, }; CPU_METHOD_OF_DECLARE(bcm_smp_bcm2836, "brcm,bcm2836-smp", &bcm2836_smp_ops);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1