Contributors: 17
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Marc Zyngier |
304 |
26.32% |
3 |
6.98% |
Andre Przywara |
205 |
17.75% |
2 |
4.65% |
Will Deacon |
151 |
13.07% |
6 |
13.95% |
Joey Gouly |
108 |
9.35% |
2 |
4.65% |
Daniel R Thompson |
106 |
9.18% |
1 |
2.33% |
Mark Rutland |
92 |
7.97% |
10 |
23.26% |
Suzuki K. Poulose |
75 |
6.49% |
3 |
6.98% |
Julien Thierry |
41 |
3.55% |
1 |
2.33% |
Ard Biesheuvel |
27 |
2.34% |
2 |
4.65% |
James Morse |
16 |
1.39% |
4 |
9.30% |
Catalin Marinas |
16 |
1.39% |
3 |
6.98% |
Luc Van Oostenryck |
6 |
0.52% |
1 |
2.33% |
JiSheng Zhang |
3 |
0.26% |
1 |
2.33% |
Thomas Gleixner |
2 |
0.17% |
1 |
2.33% |
Vincenzo Frascino |
1 |
0.09% |
1 |
2.33% |
Mark Brown |
1 |
0.09% |
1 |
2.33% |
Fuad Tabba |
1 |
0.09% |
1 |
2.33% |
Total |
1155 |
|
43 |
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* alternative runtime patching
* inspired by the x86 version
*
* Copyright (C) 2014 ARM Ltd.
*/
#define pr_fmt(fmt) "alternatives: " fmt
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/elf.h>
#include <asm/cacheflush.h>
#include <asm/alternative.h>
#include <asm/cpufeature.h>
#include <asm/insn.h>
#include <asm/module.h>
#include <asm/sections.h>
#include <asm/vdso.h>
#include <linux/stop_machine.h>
#define __ALT_PTR(a, f) ((void *)&(a)->f + (a)->f)
#define ALT_ORIG_PTR(a) __ALT_PTR(a, orig_offset)
#define ALT_REPL_PTR(a) __ALT_PTR(a, alt_offset)
#define ALT_CAP(a) ((a)->cpucap & ~ARM64_CB_BIT)
#define ALT_HAS_CB(a) ((a)->cpucap & ARM64_CB_BIT)
/* Volatile, as we may be patching the guts of READ_ONCE() */
static volatile int all_alternatives_applied;
static DECLARE_BITMAP(applied_alternatives, ARM64_NCAPS);
struct alt_region {
struct alt_instr *begin;
struct alt_instr *end;
};
bool alternative_is_applied(u16 cpucap)
{
if (WARN_ON(cpucap >= ARM64_NCAPS))
return false;
return test_bit(cpucap, applied_alternatives);
}
/*
* Check if the target PC is within an alternative block.
*/
static __always_inline bool branch_insn_requires_update(struct alt_instr *alt, unsigned long pc)
{
unsigned long replptr = (unsigned long)ALT_REPL_PTR(alt);
return !(pc >= replptr && pc <= (replptr + alt->alt_len));
}
#define align_down(x, a) ((unsigned long)(x) & ~(((unsigned long)(a)) - 1))
static __always_inline u32 get_alt_insn(struct alt_instr *alt, __le32 *insnptr, __le32 *altinsnptr)
{
u32 insn;
insn = le32_to_cpu(*altinsnptr);
if (aarch64_insn_is_branch_imm(insn)) {
s32 offset = aarch64_get_branch_offset(insn);
unsigned long target;
target = (unsigned long)altinsnptr + offset;
/*
* If we're branching inside the alternate sequence,
* do not rewrite the instruction, as it is already
* correct. Otherwise, generate the new instruction.
*/
if (branch_insn_requires_update(alt, target)) {
offset = target - (unsigned long)insnptr;
insn = aarch64_set_branch_offset(insn, offset);
}
} else if (aarch64_insn_is_adrp(insn)) {
s32 orig_offset, new_offset;
unsigned long target;
/*
* If we're replacing an adrp instruction, which uses PC-relative
* immediate addressing, adjust the offset to reflect the new
* PC. adrp operates on 4K aligned addresses.
*/
orig_offset = aarch64_insn_adrp_get_offset(insn);
target = align_down(altinsnptr, SZ_4K) + orig_offset;
new_offset = target - align_down(insnptr, SZ_4K);
insn = aarch64_insn_adrp_set_offset(insn, new_offset);
} else if (aarch64_insn_uses_literal(insn)) {
/*
* Disallow patching unhandled instructions using PC relative
* literal addresses
*/
BUG();
}
return insn;
}
static noinstr void patch_alternative(struct alt_instr *alt,
__le32 *origptr, __le32 *updptr, int nr_inst)
{
__le32 *replptr;
int i;
replptr = ALT_REPL_PTR(alt);
for (i = 0; i < nr_inst; i++) {
u32 insn;
insn = get_alt_insn(alt, origptr + i, replptr + i);
updptr[i] = cpu_to_le32(insn);
}
}
/*
* We provide our own, private D-cache cleaning function so that we don't
* accidentally call into the cache.S code, which is patched by us at
* runtime.
*/
static noinstr void clean_dcache_range_nopatch(u64 start, u64 end)
{
u64 cur, d_size, ctr_el0;
ctr_el0 = arm64_ftr_reg_ctrel0.sys_val;
d_size = 4 << cpuid_feature_extract_unsigned_field(ctr_el0,
CTR_EL0_DminLine_SHIFT);
cur = start & ~(d_size - 1);
do {
/*
* We must clean+invalidate to the PoC in order to avoid
* Cortex-A53 errata 826319, 827319, 824069 and 819472
* (this corresponds to ARM64_WORKAROUND_CLEAN_CACHE)
*/
asm volatile("dc civac, %0" : : "r" (cur) : "memory");
} while (cur += d_size, cur < end);
}
static void __apply_alternatives(const struct alt_region *region,
bool is_module,
unsigned long *cpucap_mask)
{
struct alt_instr *alt;
__le32 *origptr, *updptr;
alternative_cb_t alt_cb;
for (alt = region->begin; alt < region->end; alt++) {
int nr_inst;
int cap = ALT_CAP(alt);
if (!test_bit(cap, cpucap_mask))
continue;
if (!cpus_have_cap(cap))
continue;
if (ALT_HAS_CB(alt))
BUG_ON(alt->alt_len != 0);
else
BUG_ON(alt->alt_len != alt->orig_len);
origptr = ALT_ORIG_PTR(alt);
updptr = is_module ? origptr : lm_alias(origptr);
nr_inst = alt->orig_len / AARCH64_INSN_SIZE;
if (ALT_HAS_CB(alt))
alt_cb = ALT_REPL_PTR(alt);
else
alt_cb = patch_alternative;
alt_cb(alt, origptr, updptr, nr_inst);
if (!is_module) {
clean_dcache_range_nopatch((u64)origptr,
(u64)(origptr + nr_inst));
}
}
/*
* The core module code takes care of cache maintenance in
* flush_module_icache().
*/
if (!is_module) {
dsb(ish);
icache_inval_all_pou();
isb();
bitmap_or(applied_alternatives, applied_alternatives,
cpucap_mask, ARM64_NCAPS);
bitmap_and(applied_alternatives, applied_alternatives,
system_cpucaps, ARM64_NCAPS);
}
}
static void __init apply_alternatives_vdso(void)
{
struct alt_region region;
const struct elf64_hdr *hdr;
const struct elf64_shdr *shdr;
const struct elf64_shdr *alt;
DECLARE_BITMAP(all_capabilities, ARM64_NCAPS);
bitmap_fill(all_capabilities, ARM64_NCAPS);
hdr = (struct elf64_hdr *)vdso_start;
shdr = (void *)hdr + hdr->e_shoff;
alt = find_section(hdr, shdr, ".altinstructions");
if (!alt)
return;
region = (struct alt_region){
.begin = (void *)hdr + alt->sh_offset,
.end = (void *)hdr + alt->sh_offset + alt->sh_size,
};
__apply_alternatives(®ion, false, &all_capabilities[0]);
}
static const struct alt_region kernel_alternatives __initconst = {
.begin = (struct alt_instr *)__alt_instructions,
.end = (struct alt_instr *)__alt_instructions_end,
};
/*
* We might be patching the stop_machine state machine, so implement a
* really simple polling protocol here.
*/
static int __init __apply_alternatives_multi_stop(void *unused)
{
/* We always have a CPU 0 at this point (__init) */
if (smp_processor_id()) {
while (!all_alternatives_applied)
cpu_relax();
isb();
} else {
DECLARE_BITMAP(remaining_capabilities, ARM64_NCAPS);
bitmap_complement(remaining_capabilities, boot_cpucaps,
ARM64_NCAPS);
BUG_ON(all_alternatives_applied);
__apply_alternatives(&kernel_alternatives, false,
remaining_capabilities);
/* Barriers provided by the cache flushing */
all_alternatives_applied = 1;
}
return 0;
}
void __init apply_alternatives_all(void)
{
pr_info("applying system-wide alternatives\n");
apply_alternatives_vdso();
/* better not try code patching on a live SMP system */
stop_machine(__apply_alternatives_multi_stop, NULL, cpu_online_mask);
}
/*
* This is called very early in the boot process (directly after we run
* a feature detect on the boot CPU). No need to worry about other CPUs
* here.
*/
void __init apply_boot_alternatives(void)
{
/* If called on non-boot cpu things could go wrong */
WARN_ON(smp_processor_id() != 0);
pr_info("applying boot alternatives\n");
__apply_alternatives(&kernel_alternatives, false,
&boot_cpucaps[0]);
}
#ifdef CONFIG_MODULES
void apply_alternatives_module(void *start, size_t length)
{
struct alt_region region = {
.begin = start,
.end = start + length,
};
DECLARE_BITMAP(all_capabilities, ARM64_NCAPS);
bitmap_fill(all_capabilities, ARM64_NCAPS);
__apply_alternatives(®ion, true, &all_capabilities[0]);
}
#endif
noinstr void alt_cb_patch_nops(struct alt_instr *alt, __le32 *origptr,
__le32 *updptr, int nr_inst)
{
for (int i = 0; i < nr_inst; i++)
updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
}
EXPORT_SYMBOL(alt_cb_patch_nops);