Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marc Zyngier | 3172 | 48.25% | 44 | 33.33% |
Christoffer Dall | 2379 | 36.19% | 44 | 33.33% |
Andre Przywara | 435 | 6.62% | 3 | 2.27% |
Alexander Graf | 244 | 3.71% | 1 | 0.76% |
Jintack Lim | 174 | 2.65% | 8 | 6.06% |
Dan Carpenter | 25 | 0.38% | 1 | 0.76% |
Julien Grall | 22 | 0.33% | 2 | 1.52% |
Steven Price | 19 | 0.29% | 2 | 1.52% |
Anup Patel | 17 | 0.26% | 1 | 0.76% |
Dave P Martin | 12 | 0.18% | 1 | 0.76% |
Alexandru Elisei | 10 | 0.15% | 2 | 1.52% |
Thomas Gleixner | 8 | 0.12% | 3 | 2.27% |
Andrew Jones | 8 | 0.12% | 1 | 0.76% |
Will Deacon | 7 | 0.11% | 1 | 0.76% |
Fuad Tabba | 7 | 0.11% | 1 | 0.76% |
Richard Cochran | 7 | 0.11% | 2 | 1.52% |
Shannon Zhao | 5 | 0.08% | 1 | 0.76% |
Wei Huang | 5 | 0.08% | 1 | 0.76% |
Mark Rutland | 4 | 0.06% | 2 | 1.52% |
Sean Christopherson | 4 | 0.06% | 3 | 2.27% |
Paolo Bonzini | 4 | 0.06% | 2 | 1.52% |
KarimAllah Ahmed | 1 | 0.02% | 1 | 0.76% |
Eric Auger | 1 | 0.02% | 1 | 0.76% |
Oliver Upton | 1 | 0.02% | 1 | 0.76% |
Linus Torvalds | 1 | 0.02% | 1 | 0.76% |
Björn Helgaas | 1 | 0.02% | 1 | 0.76% |
Ard Biesheuvel | 1 | 0.02% | 1 | 0.76% |
Total | 6574 | 132 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 ARM Ltd. * Author: Marc Zyngier <marc.zyngier@arm.com> */ #include <linux/cpu.h> #include <linux/kvm.h> #include <linux/kvm_host.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/uaccess.h> #include <clocksource/arm_arch_timer.h> #include <asm/arch_timer.h> #include <asm/kvm_emulate.h> #include <asm/kvm_hyp.h> #include <asm/kvm_nested.h> #include <kvm/arm_vgic.h> #include <kvm/arm_arch_timer.h> #include "trace.h" static struct timecounter *timecounter; static unsigned int host_vtimer_irq; static unsigned int host_ptimer_irq; static u32 host_vtimer_irq_flags; static u32 host_ptimer_irq_flags; static DEFINE_STATIC_KEY_FALSE(has_gic_active_state); static const u8 default_ppi[] = { [TIMER_PTIMER] = 30, [TIMER_VTIMER] = 27, [TIMER_HPTIMER] = 26, [TIMER_HVTIMER] = 28, }; static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx); static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, struct arch_timer_context *timer_ctx); static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx); static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, struct arch_timer_context *timer, enum kvm_arch_timer_regs treg, u64 val); static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, struct arch_timer_context *timer, enum kvm_arch_timer_regs treg); static bool kvm_arch_timer_get_input_level(int vintid); static struct irq_ops arch_timer_irq_ops = { .get_input_level = kvm_arch_timer_get_input_level, }; static int nr_timers(struct kvm_vcpu *vcpu) { if (!vcpu_has_nv(vcpu)) return NR_KVM_EL0_TIMERS; return NR_KVM_TIMERS; } u32 timer_get_ctl(struct arch_timer_context *ctxt) { struct kvm_vcpu *vcpu = ctxt->vcpu; switch(arch_timer_ctx_index(ctxt)) { case TIMER_VTIMER: return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0); case TIMER_PTIMER: return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0); case TIMER_HVTIMER: return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2); case TIMER_HPTIMER: return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2); default: WARN_ON(1); return 0; } } u64 timer_get_cval(struct arch_timer_context *ctxt) { struct kvm_vcpu *vcpu = ctxt->vcpu; switch(arch_timer_ctx_index(ctxt)) { case TIMER_VTIMER: return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0); case TIMER_PTIMER: return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); case TIMER_HVTIMER: return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2); case TIMER_HPTIMER: return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2); default: WARN_ON(1); return 0; } } static u64 timer_get_offset(struct arch_timer_context *ctxt) { u64 offset = 0; if (!ctxt) return 0; if (ctxt->offset.vm_offset) offset += *ctxt->offset.vm_offset; if (ctxt->offset.vcpu_offset) offset += *ctxt->offset.vcpu_offset; return offset; } static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl) { struct kvm_vcpu *vcpu = ctxt->vcpu; switch(arch_timer_ctx_index(ctxt)) { case TIMER_VTIMER: __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl; break; case TIMER_PTIMER: __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl; break; case TIMER_HVTIMER: __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl; break; case TIMER_HPTIMER: __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl; break; default: WARN_ON(1); } } static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval) { struct kvm_vcpu *vcpu = ctxt->vcpu; switch(arch_timer_ctx_index(ctxt)) { case TIMER_VTIMER: __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval; break; case TIMER_PTIMER: __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval; break; case TIMER_HVTIMER: __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval; break; case TIMER_HPTIMER: __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval; break; default: WARN_ON(1); } } static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset) { if (!ctxt->offset.vm_offset) { WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt)); return; } WRITE_ONCE(*ctxt->offset.vm_offset, offset); } u64 kvm_phys_timer_read(void) { return timecounter->cc->read(timecounter->cc); } void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map) { if (vcpu_has_nv(vcpu)) { if (is_hyp_ctxt(vcpu)) { map->direct_vtimer = vcpu_hvtimer(vcpu); map->direct_ptimer = vcpu_hptimer(vcpu); map->emul_vtimer = vcpu_vtimer(vcpu); map->emul_ptimer = vcpu_ptimer(vcpu); } else { map->direct_vtimer = vcpu_vtimer(vcpu); map->direct_ptimer = vcpu_ptimer(vcpu); map->emul_vtimer = vcpu_hvtimer(vcpu); map->emul_ptimer = vcpu_hptimer(vcpu); } } else if (has_vhe()) { map->direct_vtimer = vcpu_vtimer(vcpu); map->direct_ptimer = vcpu_ptimer(vcpu); map->emul_vtimer = NULL; map->emul_ptimer = NULL; } else { map->direct_vtimer = vcpu_vtimer(vcpu); map->direct_ptimer = NULL; map->emul_vtimer = NULL; map->emul_ptimer = vcpu_ptimer(vcpu); } trace_kvm_get_timer_map(vcpu->vcpu_id, map); } static inline bool userspace_irqchip(struct kvm *kvm) { return static_branch_unlikely(&userspace_irqchip_in_use) && unlikely(!irqchip_in_kernel(kvm)); } static void soft_timer_start(struct hrtimer *hrt, u64 ns) { hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns), HRTIMER_MODE_ABS_HARD); } static void soft_timer_cancel(struct hrtimer *hrt) { hrtimer_cancel(hrt); } static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id) { struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id; struct arch_timer_context *ctx; struct timer_map map; /* * We may see a timer interrupt after vcpu_put() has been called which * sets the CPU's vcpu pointer to NULL, because even though the timer * has been disabled in timer_save_state(), the hardware interrupt * signal may not have been retired from the interrupt controller yet. */ if (!vcpu) return IRQ_HANDLED; get_timer_map(vcpu, &map); if (irq == host_vtimer_irq) ctx = map.direct_vtimer; else ctx = map.direct_ptimer; if (kvm_timer_should_fire(ctx)) kvm_timer_update_irq(vcpu, true, ctx); if (userspace_irqchip(vcpu->kvm) && !static_branch_unlikely(&has_gic_active_state)) disable_percpu_irq(host_vtimer_irq); return IRQ_HANDLED; } static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx, u64 val) { u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx); if (now < val) { u64 ns; ns = cyclecounter_cyc2ns(timecounter->cc, val - now, timecounter->mask, &timer_ctx->ns_frac); return ns; } return 0; } static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx) { return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx)); } static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx) { WARN_ON(timer_ctx && timer_ctx->loaded); return timer_ctx && ((timer_get_ctl(timer_ctx) & (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE); } static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu) { return (cpus_have_final_cap(ARM64_HAS_WFXT) && vcpu_get_flag(vcpu, IN_WFIT)); } static u64 wfit_delay_ns(struct kvm_vcpu *vcpu) { u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); struct arch_timer_context *ctx; ctx = is_hyp_ctxt(vcpu) ? vcpu_hvtimer(vcpu) : vcpu_vtimer(vcpu); return kvm_counter_compute_delta(ctx, val); } /* * Returns the earliest expiration time in ns among guest timers. * Note that it will return 0 if none of timers can fire. */ static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu) { u64 min_delta = ULLONG_MAX; int i; for (i = 0; i < nr_timers(vcpu); i++) { struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i]; WARN(ctx->loaded, "timer %d loaded\n", i); if (kvm_timer_irq_can_fire(ctx)) min_delta = min(min_delta, kvm_timer_compute_delta(ctx)); } if (vcpu_has_wfit_active(vcpu)) min_delta = min(min_delta, wfit_delay_ns(vcpu)); /* If none of timers can fire, then return 0 */ if (min_delta == ULLONG_MAX) return 0; return min_delta; } static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt) { struct arch_timer_cpu *timer; struct kvm_vcpu *vcpu; u64 ns; timer = container_of(hrt, struct arch_timer_cpu, bg_timer); vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu); /* * Check that the timer has really expired from the guest's * PoV (NTP on the host may have forced it to expire * early). If we should have slept longer, restart it. */ ns = kvm_timer_earliest_exp(vcpu); if (unlikely(ns)) { hrtimer_forward_now(hrt, ns_to_ktime(ns)); return HRTIMER_RESTART; } kvm_vcpu_wake_up(vcpu); return HRTIMER_NORESTART; } static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt) { struct arch_timer_context *ctx; struct kvm_vcpu *vcpu; u64 ns; ctx = container_of(hrt, struct arch_timer_context, hrtimer); vcpu = ctx->vcpu; trace_kvm_timer_hrtimer_expire(ctx); /* * Check that the timer has really expired from the guest's * PoV (NTP on the host may have forced it to expire * early). If not ready, schedule for a later time. */ ns = kvm_timer_compute_delta(ctx); if (unlikely(ns)) { hrtimer_forward_now(hrt, ns_to_ktime(ns)); return HRTIMER_RESTART; } kvm_timer_update_irq(vcpu, true, ctx); return HRTIMER_NORESTART; } static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx) { enum kvm_arch_timers index; u64 cval, now; if (!timer_ctx) return false; index = arch_timer_ctx_index(timer_ctx); if (timer_ctx->loaded) { u32 cnt_ctl = 0; switch (index) { case TIMER_VTIMER: case TIMER_HVTIMER: cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL); break; case TIMER_PTIMER: case TIMER_HPTIMER: cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL); break; case NR_KVM_TIMERS: /* GCC is braindead */ cnt_ctl = 0; break; } return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) && (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) && !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK); } if (!kvm_timer_irq_can_fire(timer_ctx)) return false; cval = timer_get_cval(timer_ctx); now = kvm_phys_timer_read() - timer_get_offset(timer_ctx); return cval <= now; } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0; } /* * Reflect the timer output level into the kvm_run structure */ void kvm_timer_update_run(struct kvm_vcpu *vcpu) { struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); struct kvm_sync_regs *regs = &vcpu->run->s.regs; /* Populate the device bitmap with the timer states */ regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER | KVM_ARM_DEV_EL1_PTIMER); if (kvm_timer_should_fire(vtimer)) regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER; if (kvm_timer_should_fire(ptimer)) regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER; } static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, struct arch_timer_context *timer_ctx) { int ret; timer_ctx->irq.level = new_level; trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx), timer_ctx->irq.level); if (!userspace_irqchip(vcpu->kvm)) { ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu, timer_irq(timer_ctx), timer_ctx->irq.level, timer_ctx); WARN_ON(ret); } } /* Only called for a fully emulated timer */ static void timer_emulate(struct arch_timer_context *ctx) { bool should_fire = kvm_timer_should_fire(ctx); trace_kvm_timer_emulate(ctx, should_fire); if (should_fire != ctx->irq.level) { kvm_timer_update_irq(ctx->vcpu, should_fire, ctx); return; } /* * If the timer can fire now, we don't need to have a soft timer * scheduled for the future. If the timer cannot fire at all, * then we also don't need a soft timer. */ if (should_fire || !kvm_timer_irq_can_fire(ctx)) return; soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx)); } static void set_cntvoff(u64 cntvoff) { kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff); } static void set_cntpoff(u64 cntpoff) { if (has_cntpoff()) write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2); } static void timer_save_state(struct arch_timer_context *ctx) { struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); enum kvm_arch_timers index = arch_timer_ctx_index(ctx); unsigned long flags; if (!timer->enabled) return; local_irq_save(flags); if (!ctx->loaded) goto out; switch (index) { u64 cval; case TIMER_VTIMER: case TIMER_HVTIMER: timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL)); timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL)); /* Disable the timer */ write_sysreg_el0(0, SYS_CNTV_CTL); isb(); /* * The kernel may decide to run userspace after * calling vcpu_put, so we reset cntvoff to 0 to * ensure a consistent read between user accesses to * the virtual counter and kernel access to the * physical counter of non-VHE case. * * For VHE, the virtual counter uses a fixed virtual * offset of zero, so no need to zero CNTVOFF_EL2 * register, but this is actually useful when switching * between EL1/vEL2 with NV. * * Do it unconditionally, as this is either unavoidable * or dirt cheap. */ set_cntvoff(0); break; case TIMER_PTIMER: case TIMER_HPTIMER: timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL)); cval = read_sysreg_el0(SYS_CNTP_CVAL); cval -= timer_get_offset(ctx); timer_set_cval(ctx, cval); /* Disable the timer */ write_sysreg_el0(0, SYS_CNTP_CTL); isb(); set_cntpoff(0); break; case NR_KVM_TIMERS: BUG(); } trace_kvm_timer_save_state(ctx); ctx->loaded = false; out: local_irq_restore(flags); } /* * Schedule the background timer before calling kvm_vcpu_halt, so that this * thread is removed from its waitqueue and made runnable when there's a timer * interrupt to handle. */ static void kvm_timer_blocking(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = vcpu_timer(vcpu); struct timer_map map; get_timer_map(vcpu, &map); /* * If no timers are capable of raising interrupts (disabled or * masked), then there's no more work for us to do. */ if (!kvm_timer_irq_can_fire(map.direct_vtimer) && !kvm_timer_irq_can_fire(map.direct_ptimer) && !kvm_timer_irq_can_fire(map.emul_vtimer) && !kvm_timer_irq_can_fire(map.emul_ptimer) && !vcpu_has_wfit_active(vcpu)) return; /* * At least one guest time will expire. Schedule a background timer. * Set the earliest expiration time among the guest timers. */ soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu)); } static void kvm_timer_unblocking(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = vcpu_timer(vcpu); soft_timer_cancel(&timer->bg_timer); } static void timer_restore_state(struct arch_timer_context *ctx) { struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); enum kvm_arch_timers index = arch_timer_ctx_index(ctx); unsigned long flags; if (!timer->enabled) return; local_irq_save(flags); if (ctx->loaded) goto out; switch (index) { u64 cval, offset; case TIMER_VTIMER: case TIMER_HVTIMER: set_cntvoff(timer_get_offset(ctx)); write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL); isb(); write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL); break; case TIMER_PTIMER: case TIMER_HPTIMER: cval = timer_get_cval(ctx); offset = timer_get_offset(ctx); set_cntpoff(offset); cval += offset; write_sysreg_el0(cval, SYS_CNTP_CVAL); isb(); write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL); break; case NR_KVM_TIMERS: BUG(); } trace_kvm_timer_restore_state(ctx); ctx->loaded = true; out: local_irq_restore(flags); } static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active) { int r; r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active); WARN_ON(r); } static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx) { struct kvm_vcpu *vcpu = ctx->vcpu; bool phys_active = false; /* * Update the timer output so that it is likely to match the * state we're about to restore. If the timer expires between * this point and the register restoration, we'll take the * interrupt anyway. */ kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx); if (irqchip_in_kernel(vcpu->kvm)) phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx)); phys_active |= ctx->irq.level; set_timer_irq_phys_active(ctx, phys_active); } static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu) { struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); /* * Update the timer output so that it is likely to match the * state we're about to restore. If the timer expires between * this point and the register restoration, we'll take the * interrupt anyway. */ kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer); /* * When using a userspace irqchip with the architected timers and a * host interrupt controller that doesn't support an active state, we * must still prevent continuously exiting from the guest, and * therefore mask the physical interrupt by disabling it on the host * interrupt controller when the virtual level is high, such that the * guest can make forward progress. Once we detect the output level * being de-asserted, we unmask the interrupt again so that we exit * from the guest when the timer fires. */ if (vtimer->irq.level) disable_percpu_irq(host_vtimer_irq); else enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); } /* If _pred is true, set bit in _set, otherwise set it in _clr */ #define assign_clear_set_bit(_pred, _bit, _clr, _set) \ do { \ if (_pred) \ (_set) |= (_bit); \ else \ (_clr) |= (_bit); \ } while (0) static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu, struct timer_map *map) { int hw, ret; if (!irqchip_in_kernel(vcpu->kvm)) return; /* * We only ever unmap the vtimer irq on a VHE system that runs nested * virtualization, in which case we have both a valid emul_vtimer, * emul_ptimer, direct_vtimer, and direct_ptimer. * * Since this is called from kvm_timer_vcpu_load(), a change between * vEL2 and vEL1/0 will have just happened, and the timer_map will * represent this, and therefore we switch the emul/direct mappings * below. */ hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer)); if (hw < 0) { kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer)); kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer)); ret = kvm_vgic_map_phys_irq(vcpu, map->direct_vtimer->host_timer_irq, timer_irq(map->direct_vtimer), &arch_timer_irq_ops); WARN_ON_ONCE(ret); ret = kvm_vgic_map_phys_irq(vcpu, map->direct_ptimer->host_timer_irq, timer_irq(map->direct_ptimer), &arch_timer_irq_ops); WARN_ON_ONCE(ret); /* * The virtual offset behaviour is "interesting", as it * always applies when HCR_EL2.E2H==0, but only when * accessed from EL1 when HCR_EL2.E2H==1. So make sure we * track E2H when putting the HV timer in "direct" mode. */ if (map->direct_vtimer == vcpu_hvtimer(vcpu)) { struct arch_timer_offset *offs = &map->direct_vtimer->offset; if (vcpu_el2_e2h_is_set(vcpu)) offs->vcpu_offset = NULL; else offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2); } } } static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map) { bool tpt, tpc; u64 clr, set; /* * No trapping gets configured here with nVHE. See * __timer_enable_traps(), which is where the stuff happens. */ if (!has_vhe()) return; /* * Our default policy is not to trap anything. As we progress * within this function, reality kicks in and we start adding * traps based on emulation requirements. */ tpt = tpc = false; /* * We have two possibility to deal with a physical offset: * * - Either we have CNTPOFF (yay!) or the offset is 0: * we let the guest freely access the HW * * - or neither of these condition apply: * we trap accesses to the HW, but still use it * after correcting the physical offset */ if (!has_cntpoff() && timer_get_offset(map->direct_ptimer)) tpt = tpc = true; /* * Apply the enable bits that the guest hypervisor has requested for * its own guest. We can only add traps that wouldn't have been set * above. */ if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); /* Use the VHE format for mental sanity */ if (!vcpu_el2_e2h_is_set(vcpu)) val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10; tpt |= !(val & (CNTHCTL_EL1PCEN << 10)); tpc |= !(val & (CNTHCTL_EL1PCTEN << 10)); } /* * Now that we have collected our requirements, compute the * trap and enable bits. */ set = 0; clr = 0; assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr); assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr); /* This only happens on VHE, so use the CNTHCTL_EL2 accessor. */ sysreg_clear_set(cnthctl_el2, clr, set); } void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = vcpu_timer(vcpu); struct timer_map map; if (unlikely(!timer->enabled)) return; get_timer_map(vcpu, &map); if (static_branch_likely(&has_gic_active_state)) { if (vcpu_has_nv(vcpu)) kvm_timer_vcpu_load_nested_switch(vcpu, &map); kvm_timer_vcpu_load_gic(map.direct_vtimer); if (map.direct_ptimer) kvm_timer_vcpu_load_gic(map.direct_ptimer); } else { kvm_timer_vcpu_load_nogic(vcpu); } kvm_timer_unblocking(vcpu); timer_restore_state(map.direct_vtimer); if (map.direct_ptimer) timer_restore_state(map.direct_ptimer); if (map.emul_vtimer) timer_emulate(map.emul_vtimer); if (map.emul_ptimer) timer_emulate(map.emul_ptimer); timer_set_traps(vcpu, &map); } bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu) { struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); struct kvm_sync_regs *sregs = &vcpu->run->s.regs; bool vlevel, plevel; if (likely(irqchip_in_kernel(vcpu->kvm))) return false; vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER; plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER; return kvm_timer_should_fire(vtimer) != vlevel || kvm_timer_should_fire(ptimer) != plevel; } void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = vcpu_timer(vcpu); struct timer_map map; if (unlikely(!timer->enabled)) return; get_timer_map(vcpu, &map); timer_save_state(map.direct_vtimer); if (map.direct_ptimer) timer_save_state(map.direct_ptimer); /* * Cancel soft timer emulation, because the only case where we * need it after a vcpu_put is in the context of a sleeping VCPU, and * in that case we already factor in the deadline for the physical * timer when scheduling the bg_timer. * * In any case, we re-schedule the hrtimer for the physical timer when * coming back to the VCPU thread in kvm_timer_vcpu_load(). */ if (map.emul_vtimer) soft_timer_cancel(&map.emul_vtimer->hrtimer); if (map.emul_ptimer) soft_timer_cancel(&map.emul_ptimer->hrtimer); if (kvm_vcpu_is_blocking(vcpu)) kvm_timer_blocking(vcpu); } /* * With a userspace irqchip we have to check if the guest de-asserted the * timer and if so, unmask the timer irq signal on the host interrupt * controller to ensure that we see future timer signals. */ static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu) { struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); if (!kvm_timer_should_fire(vtimer)) { kvm_timer_update_irq(vcpu, false, vtimer); if (static_branch_likely(&has_gic_active_state)) set_timer_irq_phys_active(vtimer, false); else enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); } } void kvm_timer_sync_user(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = vcpu_timer(vcpu); if (unlikely(!timer->enabled)) return; if (unlikely(!irqchip_in_kernel(vcpu->kvm))) unmask_vtimer_irq_user(vcpu); } void kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = vcpu_timer(vcpu); struct timer_map map; get_timer_map(vcpu, &map); /* * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8 * and to 0 for ARMv7. We provide an implementation that always * resets the timer to be disabled and unmasked and is compliant with * the ARMv7 architecture. */ for (int i = 0; i < nr_timers(vcpu); i++) timer_set_ctl(vcpu_get_timer(vcpu, i), 0); /* * A vcpu running at EL2 is in charge of the offset applied to * the virtual timer, so use the physical VM offset, and point * the vcpu offset to CNTVOFF_EL2. */ if (vcpu_has_nv(vcpu)) { struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset; offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2); offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset; } if (timer->enabled) { for (int i = 0; i < nr_timers(vcpu); i++) kvm_timer_update_irq(vcpu, false, vcpu_get_timer(vcpu, i)); if (irqchip_in_kernel(vcpu->kvm)) { kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer)); if (map.direct_ptimer) kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer)); } } if (map.emul_vtimer) soft_timer_cancel(&map.emul_vtimer->hrtimer); if (map.emul_ptimer) soft_timer_cancel(&map.emul_ptimer->hrtimer); } static void timer_context_init(struct kvm_vcpu *vcpu, int timerid) { struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid); struct kvm *kvm = vcpu->kvm; ctxt->vcpu = vcpu; if (timerid == TIMER_VTIMER) ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset; else ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset; hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); ctxt->hrtimer.function = kvm_hrtimer_expire; switch (timerid) { case TIMER_PTIMER: case TIMER_HPTIMER: ctxt->host_timer_irq = host_ptimer_irq; break; case TIMER_VTIMER: case TIMER_HVTIMER: ctxt->host_timer_irq = host_vtimer_irq; break; } } void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = vcpu_timer(vcpu); for (int i = 0; i < NR_KVM_TIMERS; i++) timer_context_init(vcpu, i); /* Synchronize offsets across timers of a VM if not already provided */ if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) { timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read()); timer_set_offset(vcpu_ptimer(vcpu), 0); } hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); timer->bg_timer.function = kvm_bg_timer_expire; } void kvm_timer_init_vm(struct kvm *kvm) { for (int i = 0; i < NR_KVM_TIMERS; i++) kvm->arch.timer_data.ppi[i] = default_ppi[i]; } void kvm_timer_cpu_up(void) { enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); if (host_ptimer_irq) enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags); } void kvm_timer_cpu_down(void) { disable_percpu_irq(host_vtimer_irq); if (host_ptimer_irq) disable_percpu_irq(host_ptimer_irq); } int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value) { struct arch_timer_context *timer; switch (regid) { case KVM_REG_ARM_TIMER_CTL: timer = vcpu_vtimer(vcpu); kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); break; case KVM_REG_ARM_TIMER_CNT: if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) { timer = vcpu_vtimer(vcpu); timer_set_offset(timer, kvm_phys_timer_read() - value); } break; case KVM_REG_ARM_TIMER_CVAL: timer = vcpu_vtimer(vcpu); kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); break; case KVM_REG_ARM_PTIMER_CTL: timer = vcpu_ptimer(vcpu); kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); break; case KVM_REG_ARM_PTIMER_CNT: if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) { timer = vcpu_ptimer(vcpu); timer_set_offset(timer, kvm_phys_timer_read() - value); } break; case KVM_REG_ARM_PTIMER_CVAL: timer = vcpu_ptimer(vcpu); kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); break; default: return -1; } return 0; } static u64 read_timer_ctl(struct arch_timer_context *timer) { /* * Set ISTATUS bit if it's expired. * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit * regardless of ENABLE bit for our implementation convenience. */ u32 ctl = timer_get_ctl(timer); if (!kvm_timer_compute_delta(timer)) ctl |= ARCH_TIMER_CTRL_IT_STAT; return ctl; } u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid) { switch (regid) { case KVM_REG_ARM_TIMER_CTL: return kvm_arm_timer_read(vcpu, vcpu_vtimer(vcpu), TIMER_REG_CTL); case KVM_REG_ARM_TIMER_CNT: return kvm_arm_timer_read(vcpu, vcpu_vtimer(vcpu), TIMER_REG_CNT); case KVM_REG_ARM_TIMER_CVAL: return kvm_arm_timer_read(vcpu, vcpu_vtimer(vcpu), TIMER_REG_CVAL); case KVM_REG_ARM_PTIMER_CTL: return kvm_arm_timer_read(vcpu, vcpu_ptimer(vcpu), TIMER_REG_CTL); case KVM_REG_ARM_PTIMER_CNT: return kvm_arm_timer_read(vcpu, vcpu_ptimer(vcpu), TIMER_REG_CNT); case KVM_REG_ARM_PTIMER_CVAL: return kvm_arm_timer_read(vcpu, vcpu_ptimer(vcpu), TIMER_REG_CVAL); } return (u64)-1; } static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, struct arch_timer_context *timer, enum kvm_arch_timer_regs treg) { u64 val; switch (treg) { case TIMER_REG_TVAL: val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer); val = lower_32_bits(val); break; case TIMER_REG_CTL: val = read_timer_ctl(timer); break; case TIMER_REG_CVAL: val = timer_get_cval(timer); break; case TIMER_REG_CNT: val = kvm_phys_timer_read() - timer_get_offset(timer); break; case TIMER_REG_VOFF: val = *timer->offset.vcpu_offset; break; default: BUG(); } return val; } u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu, enum kvm_arch_timers tmr, enum kvm_arch_timer_regs treg) { struct arch_timer_context *timer; struct timer_map map; u64 val; get_timer_map(vcpu, &map); timer = vcpu_get_timer(vcpu, tmr); if (timer == map.emul_vtimer || timer == map.emul_ptimer) return kvm_arm_timer_read(vcpu, timer, treg); preempt_disable(); timer_save_state(timer); val = kvm_arm_timer_read(vcpu, timer, treg); timer_restore_state(timer); preempt_enable(); return val; } static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, struct arch_timer_context *timer, enum kvm_arch_timer_regs treg, u64 val) { switch (treg) { case TIMER_REG_TVAL: timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val); break; case TIMER_REG_CTL: timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT); break; case TIMER_REG_CVAL: timer_set_cval(timer, val); break; case TIMER_REG_VOFF: *timer->offset.vcpu_offset = val; break; default: BUG(); } } void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu, enum kvm_arch_timers tmr, enum kvm_arch_timer_regs treg, u64 val) { struct arch_timer_context *timer; struct timer_map map; get_timer_map(vcpu, &map); timer = vcpu_get_timer(vcpu, tmr); if (timer == map.emul_vtimer || timer == map.emul_ptimer) { soft_timer_cancel(&timer->hrtimer); kvm_arm_timer_write(vcpu, timer, treg, val); timer_emulate(timer); } else { preempt_disable(); timer_save_state(timer); kvm_arm_timer_write(vcpu, timer, treg, val); timer_restore_state(timer); preempt_enable(); } } static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) { if (vcpu) irqd_set_forwarded_to_vcpu(d); else irqd_clr_forwarded_to_vcpu(d); return 0; } static int timer_irq_set_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool val) { if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d)) return irq_chip_set_parent_state(d, which, val); if (val) irq_chip_mask_parent(d); else irq_chip_unmask_parent(d); return 0; } static void timer_irq_eoi(struct irq_data *d) { if (!irqd_is_forwarded_to_vcpu(d)) irq_chip_eoi_parent(d); } static void timer_irq_ack(struct irq_data *d) { d = d->parent_data; if (d->chip->irq_ack) d->chip->irq_ack(d); } static struct irq_chip timer_chip = { .name = "KVM", .irq_ack = timer_irq_ack, .irq_mask = irq_chip_mask_parent, .irq_unmask = irq_chip_unmask_parent, .irq_eoi = timer_irq_eoi, .irq_set_type = irq_chip_set_type_parent, .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity, .irq_set_irqchip_state = timer_irq_set_irqchip_state, }; static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { irq_hw_number_t hwirq = (uintptr_t)arg; return irq_domain_set_hwirq_and_chip(domain, virq, hwirq, &timer_chip, NULL); } static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { } static const struct irq_domain_ops timer_domain_ops = { .alloc = timer_irq_domain_alloc, .free = timer_irq_domain_free, }; static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags) { *flags = irq_get_trigger_type(virq); if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) { kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n", virq); *flags = IRQF_TRIGGER_LOW; } } static int kvm_irq_init(struct arch_timer_kvm_info *info) { struct irq_domain *domain = NULL; if (info->virtual_irq <= 0) { kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n", info->virtual_irq); return -ENODEV; } host_vtimer_irq = info->virtual_irq; kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags); if (kvm_vgic_global_state.no_hw_deactivation) { struct fwnode_handle *fwnode; struct irq_data *data; fwnode = irq_domain_alloc_named_fwnode("kvm-timer"); if (!fwnode) return -ENOMEM; /* Assume both vtimer and ptimer in the same parent */ data = irq_get_irq_data(host_vtimer_irq); domain = irq_domain_create_hierarchy(data->domain, 0, NR_KVM_TIMERS, fwnode, &timer_domain_ops, NULL); if (!domain) { irq_domain_free_fwnode(fwnode); return -ENOMEM; } arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE; WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq, (void *)TIMER_VTIMER)); } if (info->physical_irq > 0) { host_ptimer_irq = info->physical_irq; kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags); if (domain) WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq, (void *)TIMER_PTIMER)); } return 0; } int __init kvm_timer_hyp_init(bool has_gic) { struct arch_timer_kvm_info *info; int err; info = arch_timer_get_kvm_info(); timecounter = &info->timecounter; if (!timecounter->cc) { kvm_err("kvm_arch_timer: uninitialized timecounter\n"); return -ENODEV; } err = kvm_irq_init(info); if (err) return err; /* First, do the virtual EL1 timer irq */ err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler, "kvm guest vtimer", kvm_get_running_vcpus()); if (err) { kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n", host_vtimer_irq, err); return err; } if (has_gic) { err = irq_set_vcpu_affinity(host_vtimer_irq, kvm_get_running_vcpus()); if (err) { kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); goto out_free_vtimer_irq; } static_branch_enable(&has_gic_active_state); } kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq); /* Now let's do the physical EL1 timer irq */ if (info->physical_irq > 0) { err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler, "kvm guest ptimer", kvm_get_running_vcpus()); if (err) { kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n", host_ptimer_irq, err); goto out_free_vtimer_irq; } if (has_gic) { err = irq_set_vcpu_affinity(host_ptimer_irq, kvm_get_running_vcpus()); if (err) { kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); goto out_free_ptimer_irq; } } kvm_debug("physical timer IRQ%d\n", host_ptimer_irq); } else if (has_vhe()) { kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n", info->physical_irq); err = -ENODEV; goto out_free_vtimer_irq; } return 0; out_free_ptimer_irq: if (info->physical_irq > 0) free_percpu_irq(host_ptimer_irq, kvm_get_running_vcpus()); out_free_vtimer_irq: free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus()); return err; } void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = vcpu_timer(vcpu); soft_timer_cancel(&timer->bg_timer); } static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu) { u32 ppis = 0; bool valid; mutex_lock(&vcpu->kvm->arch.config_lock); for (int i = 0; i < nr_timers(vcpu); i++) { struct arch_timer_context *ctx; int irq; ctx = vcpu_get_timer(vcpu, i); irq = timer_irq(ctx); if (kvm_vgic_set_owner(vcpu, irq, ctx)) break; /* * We know by construction that we only have PPIs, so * all values are less than 32. */ ppis |= BIT(irq); } valid = hweight32(ppis) == nr_timers(vcpu); if (valid) set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags); mutex_unlock(&vcpu->kvm->arch.config_lock); return valid; } static bool kvm_arch_timer_get_input_level(int vintid) { struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); if (WARN(!vcpu, "No vcpu context!\n")) return false; for (int i = 0; i < nr_timers(vcpu); i++) { struct arch_timer_context *ctx; ctx = vcpu_get_timer(vcpu, i); if (timer_irq(ctx) == vintid) return kvm_timer_should_fire(ctx); } /* A timer IRQ has fired, but no matching timer was found? */ WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid); return false; } int kvm_timer_enable(struct kvm_vcpu *vcpu) { struct arch_timer_cpu *timer = vcpu_timer(vcpu); struct timer_map map; int ret; if (timer->enabled) return 0; /* Without a VGIC we do not map virtual IRQs to physical IRQs */ if (!irqchip_in_kernel(vcpu->kvm)) goto no_vgic; /* * At this stage, we have the guarantee that the vgic is both * available and initialized. */ if (!timer_irqs_are_valid(vcpu)) { kvm_debug("incorrectly configured timer irqs\n"); return -EINVAL; } get_timer_map(vcpu, &map); ret = kvm_vgic_map_phys_irq(vcpu, map.direct_vtimer->host_timer_irq, timer_irq(map.direct_vtimer), &arch_timer_irq_ops); if (ret) return ret; if (map.direct_ptimer) { ret = kvm_vgic_map_phys_irq(vcpu, map.direct_ptimer->host_timer_irq, timer_irq(map.direct_ptimer), &arch_timer_irq_ops); } if (ret) return ret; no_vgic: timer->enabled = 1; return 0; } /* If we have CNTPOFF, permanently set ECV to enable it */ void kvm_timer_init_vhe(void) { if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF)) sysreg_clear_set(cnthctl_el2, 0, CNTHCTL_ECV); } int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { int __user *uaddr = (int __user *)(long)attr->addr; int irq, idx, ret = 0; if (!irqchip_in_kernel(vcpu->kvm)) return -EINVAL; if (get_user(irq, uaddr)) return -EFAULT; if (!(irq_is_ppi(irq))) return -EINVAL; mutex_lock(&vcpu->kvm->arch.config_lock); if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags)) { ret = -EBUSY; goto out; } switch (attr->attr) { case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: idx = TIMER_VTIMER; break; case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: idx = TIMER_PTIMER; break; case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: idx = TIMER_HVTIMER; break; case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: idx = TIMER_HPTIMER; break; default: ret = -ENXIO; goto out; } /* * We cannot validate the IRQ unicity before we run, so take it at * face value. The verdict will be given on first vcpu run, for each * vcpu. Yes this is late. Blame it on the stupid API. */ vcpu->kvm->arch.timer_data.ppi[idx] = irq; out: mutex_unlock(&vcpu->kvm->arch.config_lock); return ret; } int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { int __user *uaddr = (int __user *)(long)attr->addr; struct arch_timer_context *timer; int irq; switch (attr->attr) { case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: timer = vcpu_vtimer(vcpu); break; case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: timer = vcpu_ptimer(vcpu); break; case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: timer = vcpu_hvtimer(vcpu); break; case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: timer = vcpu_hptimer(vcpu); break; default: return -ENXIO; } irq = timer_irq(timer); return put_user(irq, uaddr); } int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { switch (attr->attr) { case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: return 0; } return -ENXIO; } int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm, struct kvm_arm_counter_offset *offset) { int ret = 0; if (offset->reserved) return -EINVAL; mutex_lock(&kvm->lock); if (lock_all_vcpus(kvm)) { set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags); /* * If userspace decides to set the offset using this * API rather than merely restoring the counter * values, the offset applies to both the virtual and * physical views. */ kvm->arch.timer_data.voffset = offset->counter_offset; kvm->arch.timer_data.poffset = offset->counter_offset; unlock_all_vcpus(kvm); } else { ret = -EBUSY; } mutex_unlock(&kvm->lock); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1