Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 1494 | 61.74% | 28 | 49.12% |
Finn Thain | 653 | 26.98% | 16 | 28.07% |
Al Viro | 201 | 8.31% | 2 | 3.51% |
Geert Uytterhoeven | 33 | 1.36% | 5 | 8.77% |
Arnd Bergmann | 22 | 0.91% | 1 | 1.75% |
Roman Zippel | 11 | 0.45% | 1 | 1.75% |
Andy Shevchenko | 2 | 0.08% | 1 | 1.75% |
Andrew Morton | 2 | 0.08% | 1 | 1.75% |
Linus Torvalds | 1 | 0.04% | 1 | 1.75% |
Greg Kroah-Hartman | 1 | 0.04% | 1 | 1.75% |
Total | 2420 | 57 |
// SPDX-License-Identifier: GPL-2.0 /* * Miscellaneous Mac68K-specific stuff */ #include <linux/types.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/time.h> #include <linux/rtc.h> #include <linux/mm.h> #include <linux/adb.h> #include <linux/cuda.h> #include <linux/pmu.h> #include <linux/uaccess.h> #include <asm/io.h> #include <asm/setup.h> #include <asm/macintosh.h> #include <asm/mac_via.h> #include <asm/mac_oss.h> #include <asm/machdep.h> #include "mac.h" /* * Offset between Unix time (1970-based) and Mac time (1904-based). Cuda and PMU * times wrap in 2040. If we need to handle later times, the read_time functions * need to be changed to interpret wrapped times as post-2040. */ #define RTC_OFFSET 2082844800 static void (*rom_reset)(void); #if IS_ENABLED(CONFIG_NVRAM) #ifdef CONFIG_ADB_CUDA static unsigned char cuda_pram_read_byte(int offset) { struct adb_request req; if (cuda_request(&req, NULL, 4, CUDA_PACKET, CUDA_GET_PRAM, (offset >> 8) & 0xFF, offset & 0xFF) < 0) return 0; while (!req.complete) cuda_poll(); return req.reply[3]; } static void cuda_pram_write_byte(unsigned char data, int offset) { struct adb_request req; if (cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_SET_PRAM, (offset >> 8) & 0xFF, offset & 0xFF, data) < 0) return; while (!req.complete) cuda_poll(); } #endif /* CONFIG_ADB_CUDA */ #ifdef CONFIG_ADB_PMU static unsigned char pmu_pram_read_byte(int offset) { struct adb_request req; if (pmu_request(&req, NULL, 3, PMU_READ_XPRAM, offset & 0xFF, 1) < 0) return 0; pmu_wait_complete(&req); return req.reply[0]; } static void pmu_pram_write_byte(unsigned char data, int offset) { struct adb_request req; if (pmu_request(&req, NULL, 4, PMU_WRITE_XPRAM, offset & 0xFF, 1, data) < 0) return; pmu_wait_complete(&req); } #endif /* CONFIG_ADB_PMU */ #endif /* CONFIG_NVRAM */ /* * VIA PRAM/RTC access routines * * Must be called with interrupts disabled and * the RTC should be enabled. */ static __u8 via_rtc_recv(void) { int i, reg; __u8 data; reg = via1[vBufB] & ~VIA1B_vRTCClk; /* Set the RTC data line to be an input. */ via1[vDirB] &= ~VIA1B_vRTCData; /* The bits of the byte come out in MSB order */ data = 0; for (i = 0 ; i < 8 ; i++) { via1[vBufB] = reg; via1[vBufB] = reg | VIA1B_vRTCClk; data = (data << 1) | (via1[vBufB] & VIA1B_vRTCData); } /* Return RTC data line to output state */ via1[vDirB] |= VIA1B_vRTCData; return data; } static void via_rtc_send(__u8 data) { int i, reg, bit; reg = via1[vBufB] & ~(VIA1B_vRTCClk | VIA1B_vRTCData); /* The bits of the byte go into the RTC in MSB order */ for (i = 0 ; i < 8 ; i++) { bit = data & 0x80? 1 : 0; data <<= 1; via1[vBufB] = reg | bit; via1[vBufB] = reg | bit | VIA1B_vRTCClk; } } /* * These values can be found in Inside Macintosh vol. III ch. 2 * which has a description of the RTC chip in the original Mac. */ #define RTC_FLG_READ BIT(7) #define RTC_FLG_WRITE_PROTECT BIT(7) #define RTC_CMD_READ(r) (RTC_FLG_READ | (r << 2)) #define RTC_CMD_WRITE(r) (r << 2) #define RTC_REG_SECONDS_0 0 #define RTC_REG_SECONDS_1 1 #define RTC_REG_SECONDS_2 2 #define RTC_REG_SECONDS_3 3 #define RTC_REG_WRITE_PROTECT 13 /* * Inside Mac has no information about two-byte RTC commands but * the MAME/MESS source code has the essentials. */ #define RTC_REG_XPRAM 14 #define RTC_CMD_XPRAM_READ (RTC_CMD_READ(RTC_REG_XPRAM) << 8) #define RTC_CMD_XPRAM_WRITE (RTC_CMD_WRITE(RTC_REG_XPRAM) << 8) #define RTC_CMD_XPRAM_ARG(a) (((a & 0xE0) << 3) | ((a & 0x1F) << 2)) /* * Execute a VIA PRAM/RTC command. For read commands * data should point to a one-byte buffer for the * resulting data. For write commands it should point * to the data byte to for the command. * * This function disables all interrupts while running. */ static void via_rtc_command(int command, __u8 *data) { unsigned long flags; int is_read; local_irq_save(flags); /* The least significant bits must be 0b01 according to Inside Mac */ command = (command & ~3) | 1; /* Enable the RTC and make sure the strobe line is high */ via1[vBufB] = (via1[vBufB] | VIA1B_vRTCClk) & ~VIA1B_vRTCEnb; if (command & 0xFF00) { /* extended (two-byte) command */ via_rtc_send((command & 0xFF00) >> 8); via_rtc_send(command & 0xFF); is_read = command & (RTC_FLG_READ << 8); } else { /* one-byte command */ via_rtc_send(command); is_read = command & RTC_FLG_READ; } if (is_read) { *data = via_rtc_recv(); } else { via_rtc_send(*data); } /* All done, disable the RTC */ via1[vBufB] |= VIA1B_vRTCEnb; local_irq_restore(flags); } #if IS_ENABLED(CONFIG_NVRAM) static unsigned char via_pram_read_byte(int offset) { unsigned char temp; via_rtc_command(RTC_CMD_XPRAM_READ | RTC_CMD_XPRAM_ARG(offset), &temp); return temp; } static void via_pram_write_byte(unsigned char data, int offset) { unsigned char temp; temp = 0x55; via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp); temp = data; via_rtc_command(RTC_CMD_XPRAM_WRITE | RTC_CMD_XPRAM_ARG(offset), &temp); temp = 0x55 | RTC_FLG_WRITE_PROTECT; via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp); } #endif /* CONFIG_NVRAM */ /* * Return the current time in seconds since January 1, 1904. * * This only works on machines with the VIA-based PRAM/RTC, which * is basically any machine with Mac II-style ADB. */ static time64_t via_read_time(void) { union { __u8 cdata[4]; __u32 idata; } result, last_result; int count = 1; via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0), &last_result.cdata[3]); via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1), &last_result.cdata[2]); via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2), &last_result.cdata[1]); via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3), &last_result.cdata[0]); /* * The NetBSD guys say to loop until you get the same reading * twice in a row. */ while (1) { via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_0), &result.cdata[3]); via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_1), &result.cdata[2]); via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_2), &result.cdata[1]); via_rtc_command(RTC_CMD_READ(RTC_REG_SECONDS_3), &result.cdata[0]); if (result.idata == last_result.idata) return (time64_t)result.idata - RTC_OFFSET; if (++count > 10) break; last_result.idata = result.idata; } pr_err("%s: failed to read a stable value; got 0x%08x then 0x%08x\n", __func__, last_result.idata, result.idata); return 0; } /* * Set the current time to a number of seconds since January 1, 1904. * * This only works on machines with the VIA-based PRAM/RTC, which * is basically any machine with Mac II-style ADB. */ static void via_set_rtc_time(struct rtc_time *tm) { union { __u8 cdata[4]; __u32 idata; } data; __u8 temp; time64_t time; time = mktime64(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); /* Clear the write protect bit */ temp = 0x55; via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp); data.idata = lower_32_bits(time + RTC_OFFSET); via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_0), &data.cdata[3]); via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_1), &data.cdata[2]); via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_2), &data.cdata[1]); via_rtc_command(RTC_CMD_WRITE(RTC_REG_SECONDS_3), &data.cdata[0]); /* Set the write protect bit */ temp = 0x55 | RTC_FLG_WRITE_PROTECT; via_rtc_command(RTC_CMD_WRITE(RTC_REG_WRITE_PROTECT), &temp); } static void via_shutdown(void) { if (rbv_present) { via2[rBufB] &= ~0x04; } else { /* Direction of vDirB is output */ via2[vDirB] |= 0x04; /* Send a value of 0 on that line */ via2[vBufB] &= ~0x04; mdelay(1000); } } static void oss_shutdown(void) { oss->rom_ctrl = OSS_POWEROFF; } #ifdef CONFIG_ADB_CUDA static void cuda_restart(void) { struct adb_request req; if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_RESET_SYSTEM) < 0) return; while (!req.complete) cuda_poll(); } static void cuda_shutdown(void) { struct adb_request req; if (cuda_request(&req, NULL, 2, CUDA_PACKET, CUDA_POWERDOWN) < 0) return; /* Avoid infinite polling loop when PSU is not under Cuda control */ switch (macintosh_config->ident) { case MAC_MODEL_C660: case MAC_MODEL_Q605: case MAC_MODEL_Q605_ACC: case MAC_MODEL_P475: case MAC_MODEL_P475F: return; } while (!req.complete) cuda_poll(); } #endif /* CONFIG_ADB_CUDA */ /* *------------------------------------------------------------------- * Below this point are the generic routines; they'll dispatch to the * correct routine for the hardware on which we're running. *------------------------------------------------------------------- */ #if IS_ENABLED(CONFIG_NVRAM) unsigned char mac_pram_read_byte(int addr) { switch (macintosh_config->adb_type) { case MAC_ADB_IOP: case MAC_ADB_II: case MAC_ADB_PB1: return via_pram_read_byte(addr); #ifdef CONFIG_ADB_CUDA case MAC_ADB_EGRET: case MAC_ADB_CUDA: return cuda_pram_read_byte(addr); #endif #ifdef CONFIG_ADB_PMU case MAC_ADB_PB2: return pmu_pram_read_byte(addr); #endif default: return 0xFF; } } void mac_pram_write_byte(unsigned char val, int addr) { switch (macintosh_config->adb_type) { case MAC_ADB_IOP: case MAC_ADB_II: case MAC_ADB_PB1: via_pram_write_byte(val, addr); break; #ifdef CONFIG_ADB_CUDA case MAC_ADB_EGRET: case MAC_ADB_CUDA: cuda_pram_write_byte(val, addr); break; #endif #ifdef CONFIG_ADB_PMU case MAC_ADB_PB2: pmu_pram_write_byte(val, addr); break; #endif default: break; } } ssize_t mac_pram_get_size(void) { return 256; } #endif /* CONFIG_NVRAM */ void mac_poweroff(void) { if (oss_present) { oss_shutdown(); } else if (macintosh_config->adb_type == MAC_ADB_II) { via_shutdown(); #ifdef CONFIG_ADB_CUDA } else if (macintosh_config->adb_type == MAC_ADB_EGRET || macintosh_config->adb_type == MAC_ADB_CUDA) { cuda_shutdown(); #endif #ifdef CONFIG_ADB_PMU } else if (macintosh_config->adb_type == MAC_ADB_PB2) { pmu_shutdown(); #endif } pr_crit("It is now safe to turn off your Macintosh.\n"); local_irq_disable(); while(1); } void mac_reset(void) { #ifdef CONFIG_ADB_CUDA if (macintosh_config->adb_type == MAC_ADB_EGRET || macintosh_config->adb_type == MAC_ADB_CUDA) { cuda_restart(); } else #endif #ifdef CONFIG_ADB_PMU if (macintosh_config->adb_type == MAC_ADB_PB2) { pmu_restart(); } else #endif if (CPU_IS_030) { /* 030-specific reset routine. The idea is general, but the * specific registers to reset are '030-specific. Until I * have a non-030 machine, I can't test anything else. * -- C. Scott Ananian <cananian@alumni.princeton.edu> */ unsigned long rombase = 0x40000000; /* make a 1-to-1 mapping, using the transparent tran. reg. */ unsigned long virt = (unsigned long) mac_reset; unsigned long phys = virt_to_phys(mac_reset); unsigned long addr = (phys&0xFF000000)|0x8777; unsigned long offset = phys-virt; local_irq_disable(); /* lets not screw this up, ok? */ __asm__ __volatile__(".chip 68030\n\t" "pmove %0,%/tt0\n\t" ".chip 68k" : : "m" (addr)); /* Now jump to physical address so we can disable MMU */ __asm__ __volatile__( ".chip 68030\n\t" "lea %/pc@(1f),%/a0\n\t" "addl %0,%/a0\n\t"/* fixup target address and stack ptr */ "addl %0,%/sp\n\t" "pflusha\n\t" "jmp %/a0@\n\t" /* jump into physical memory */ "0:.long 0\n\t" /* a constant zero. */ /* OK. Now reset everything and jump to reset vector. */ "1:\n\t" "lea %/pc@(0b),%/a0\n\t" "pmove %/a0@, %/tc\n\t" /* disable mmu */ "pmove %/a0@, %/tt0\n\t" /* disable tt0 */ "pmove %/a0@, %/tt1\n\t" /* disable tt1 */ "movel #0, %/a0\n\t" "movec %/a0, %/vbr\n\t" /* clear vector base register */ "movec %/a0, %/cacr\n\t" /* disable caches */ "movel #0x0808,%/a0\n\t" "movec %/a0, %/cacr\n\t" /* flush i&d caches */ "movew #0x2700,%/sr\n\t" /* set up status register */ "movel %1@(0x0),%/a0\n\t"/* load interrupt stack pointer */ "movec %/a0, %/isp\n\t" "movel %1@(0x4),%/a0\n\t" /* load reset vector */ "reset\n\t" /* reset external devices */ "jmp %/a0@\n\t" /* jump to the reset vector */ ".chip 68k" : : "r" (offset), "a" (rombase) : "a0"); } else { /* need ROMBASE in booter */ /* indeed, plus need to MAP THE ROM !! */ if (mac_bi_data.rombase == 0) mac_bi_data.rombase = 0x40800000; /* works on some */ rom_reset = (void *)(mac_bi_data.rombase + 0xa); local_irq_disable(); rom_reset(); } /* should never get here */ pr_crit("Restart failed. Please restart manually.\n"); local_irq_disable(); while(1); } /* * This function translates seconds since 1970 into a proper date. * * Algorithm cribbed from glibc2.1, __offtime(). * * This is roughly same as rtc_time64_to_tm(), which we should probably * use here, but it's only available when CONFIG_RTC_LIB is enabled. */ #define SECS_PER_MINUTE (60) #define SECS_PER_HOUR (SECS_PER_MINUTE * 60) #define SECS_PER_DAY (SECS_PER_HOUR * 24) static void unmktime(time64_t time, long offset, int *yearp, int *monp, int *dayp, int *hourp, int *minp, int *secp) { /* How many days come before each month (0-12). */ static const unsigned short int __mon_yday[2][13] = { /* Normal years. */ { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, /* Leap years. */ { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } }; int days, rem, y, wday; const unsigned short int *ip; days = div_u64_rem(time, SECS_PER_DAY, &rem); rem += offset; while (rem < 0) { rem += SECS_PER_DAY; --days; } while (rem >= SECS_PER_DAY) { rem -= SECS_PER_DAY; ++days; } *hourp = rem / SECS_PER_HOUR; rem %= SECS_PER_HOUR; *minp = rem / SECS_PER_MINUTE; *secp = rem % SECS_PER_MINUTE; /* January 1, 1970 was a Thursday. */ wday = (4 + days) % 7; /* Day in the week. Not currently used */ if (wday < 0) wday += 7; y = 1970; #define DIV(a, b) ((a) / (b) - ((a) % (b) < 0)) #define LEAPS_THRU_END_OF(y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400)) #define __isleap(year) \ ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0)) while (days < 0 || days >= (__isleap (y) ? 366 : 365)) { /* Guess a corrected year, assuming 365 days per year. */ long int yg = y + days / 365 - (days % 365 < 0); /* Adjust DAYS and Y to match the guessed year. */ days -= (yg - y) * 365 + LEAPS_THRU_END_OF(yg - 1) - LEAPS_THRU_END_OF(y - 1); y = yg; } *yearp = y - 1900; ip = __mon_yday[__isleap(y)]; for (y = 11; days < (long int) ip[y]; --y) continue; days -= ip[y]; *monp = y; *dayp = days + 1; /* day in the month */ return; } /* * Read/write the hardware clock. */ int mac_hwclk(int op, struct rtc_time *t) { time64_t now; if (!op) { /* read */ switch (macintosh_config->adb_type) { case MAC_ADB_IOP: case MAC_ADB_II: case MAC_ADB_PB1: now = via_read_time(); break; #ifdef CONFIG_ADB_CUDA case MAC_ADB_EGRET: case MAC_ADB_CUDA: now = cuda_get_time(); break; #endif #ifdef CONFIG_ADB_PMU case MAC_ADB_PB2: now = pmu_get_time(); break; #endif default: now = 0; } t->tm_wday = 0; unmktime(now, 0, &t->tm_year, &t->tm_mon, &t->tm_mday, &t->tm_hour, &t->tm_min, &t->tm_sec); pr_debug("%s: read %ptR\n", __func__, t); } else { /* write */ pr_debug("%s: tried to write %ptR\n", __func__, t); switch (macintosh_config->adb_type) { case MAC_ADB_IOP: case MAC_ADB_II: case MAC_ADB_PB1: via_set_rtc_time(t); break; #ifdef CONFIG_ADB_CUDA case MAC_ADB_EGRET: case MAC_ADB_CUDA: cuda_set_rtc_time(t); break; #endif #ifdef CONFIG_ADB_PMU case MAC_ADB_PB2: pmu_set_rtc_time(t); break; #endif default: return -ENODEV; } } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1