Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Manuel Lauss | 4909 | 97.73% | 4 | 21.05% |
Boris Brezillon | 52 | 1.04% | 2 | 10.53% |
Qilong Zhang | 29 | 0.58% | 1 | 5.26% |
Stephen Boyd | 10 | 0.20% | 4 | 21.05% |
Bhumika Goyal | 5 | 0.10% | 1 | 5.26% |
Tomeu Vizoso | 4 | 0.08% | 1 | 5.26% |
Chen Lifu | 4 | 0.08% | 1 | 5.26% |
Erick Archer | 3 | 0.06% | 1 | 5.26% |
Kees Cook | 3 | 0.06% | 1 | 5.26% |
Ralf Baechle | 2 | 0.04% | 1 | 5.26% |
Sergei Shtylyov | 1 | 0.02% | 1 | 5.26% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 5.26% |
Total | 5023 | 19 |
// SPDX-License-Identifier: GPL-2.0 /* * Alchemy clocks. * * Exposes all configurable internal clock sources to the clk framework. * * We have: * - Root source, usually 12MHz supplied by an external crystal * - 3 PLLs which generate multiples of root rate [AUX, CPU, AUX2] * * Dividers: * - 6 clock dividers with: * * selectable source [one of the PLLs], * * output divided between [2 .. 512 in steps of 2] (!Au1300) * or [1 .. 256 in steps of 1] (Au1300), * * can be enabled individually. * * - up to 6 "internal" (fixed) consumers which: * * take either AUXPLL or one of the above 6 dividers as input, * * divide this input by 1, 2, or 4 (and 3 on Au1300). * * can be disabled separately. * * Misc clocks: * - sysbus clock: CPU core clock (CPUPLL) divided by 2, 3 or 4. * depends on board design and should be set by bootloader, read-only. * - peripheral clock: half the rate of sysbus clock, source for a lot * of peripheral blocks, read-only. * - memory clock: clk rate to main memory chips, depends on board * design and is read-only, * - lrclk: the static bus clock signal for synchronous operation. * depends on board design, must be set by bootloader, * but may be required to correctly configure devices attached to * the static bus. The Au1000/1500/1100 manuals call it LCLK, on * later models it's called RCLK. */ #include <linux/init.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clkdev.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include <asm/mach-au1x00/au1000.h> /* Base clock: 12MHz is the default in all databooks, and I haven't * found any board yet which uses a different rate. */ #define ALCHEMY_ROOTCLK_RATE 12000000 /* * the internal sources which can be driven by the PLLs and dividers. * Names taken from the databooks, refer to them for more information, * especially which ones are share a clock line. */ static const char * const alchemy_au1300_intclknames[] = { "lcd_intclk", "gpemgp_clk", "maempe_clk", "maebsa_clk", "EXTCLK0", "EXTCLK1" }; static const char * const alchemy_au1200_intclknames[] = { "lcd_intclk", NULL, NULL, NULL, "EXTCLK0", "EXTCLK1" }; static const char * const alchemy_au1550_intclknames[] = { "usb_clk", "psc0_intclk", "psc1_intclk", "pci_clko", "EXTCLK0", "EXTCLK1" }; static const char * const alchemy_au1100_intclknames[] = { "usb_clk", "lcd_intclk", NULL, "i2s_clk", "EXTCLK0", "EXTCLK1" }; static const char * const alchemy_au1500_intclknames[] = { NULL, "usbd_clk", "usbh_clk", "pci_clko", "EXTCLK0", "EXTCLK1" }; static const char * const alchemy_au1000_intclknames[] = { "irda_clk", "usbd_clk", "usbh_clk", "i2s_clk", "EXTCLK0", "EXTCLK1" }; /* aliases for a few on-chip sources which are either shared * or have gone through name changes. */ static struct clk_aliastable { char *alias; char *base; int cputype; } alchemy_clk_aliases[] __initdata = { { "usbh_clk", "usb_clk", ALCHEMY_CPU_AU1100 }, { "usbd_clk", "usb_clk", ALCHEMY_CPU_AU1100 }, { "irda_clk", "usb_clk", ALCHEMY_CPU_AU1100 }, { "usbh_clk", "usb_clk", ALCHEMY_CPU_AU1550 }, { "usbd_clk", "usb_clk", ALCHEMY_CPU_AU1550 }, { "psc2_intclk", "usb_clk", ALCHEMY_CPU_AU1550 }, { "psc3_intclk", "EXTCLK0", ALCHEMY_CPU_AU1550 }, { "psc0_intclk", "EXTCLK0", ALCHEMY_CPU_AU1200 }, { "psc1_intclk", "EXTCLK1", ALCHEMY_CPU_AU1200 }, { "psc0_intclk", "EXTCLK0", ALCHEMY_CPU_AU1300 }, { "psc2_intclk", "EXTCLK0", ALCHEMY_CPU_AU1300 }, { "psc1_intclk", "EXTCLK1", ALCHEMY_CPU_AU1300 }, { "psc3_intclk", "EXTCLK1", ALCHEMY_CPU_AU1300 }, { NULL, NULL, 0 }, }; #define IOMEM(x) ((void __iomem *)(KSEG1ADDR(CPHYSADDR(x)))) /* access locks to SYS_FREQCTRL0/1 and SYS_CLKSRC registers */ static spinlock_t alchemy_clk_fg0_lock; static spinlock_t alchemy_clk_fg1_lock; static DEFINE_SPINLOCK(alchemy_clk_csrc_lock); /* CPU Core clock *****************************************************/ static unsigned long alchemy_clk_cpu_recalc(struct clk_hw *hw, unsigned long parent_rate) { unsigned long t; /* * On early Au1000, sys_cpupll was write-only. Since these * silicon versions of Au1000 are not sold, we don't bend * over backwards trying to determine the frequency. */ if (unlikely(au1xxx_cpu_has_pll_wo())) t = 396000000; else { t = alchemy_rdsys(AU1000_SYS_CPUPLL) & 0x7f; if (alchemy_get_cputype() < ALCHEMY_CPU_AU1300) t &= 0x3f; t *= parent_rate; } return t; } void __init alchemy_set_lpj(void) { preset_lpj = alchemy_clk_cpu_recalc(NULL, ALCHEMY_ROOTCLK_RATE); preset_lpj /= 2 * HZ; } static const struct clk_ops alchemy_clkops_cpu = { .recalc_rate = alchemy_clk_cpu_recalc, }; static struct clk __init *alchemy_clk_setup_cpu(const char *parent_name, int ctype) { struct clk_init_data id; struct clk_hw *h; struct clk *clk; h = kzalloc(sizeof(*h), GFP_KERNEL); if (!h) return ERR_PTR(-ENOMEM); id.name = ALCHEMY_CPU_CLK; id.parent_names = &parent_name; id.num_parents = 1; id.flags = 0; id.ops = &alchemy_clkops_cpu; h->init = &id; clk = clk_register(NULL, h); if (IS_ERR(clk)) { pr_err("failed to register clock\n"); kfree(h); } return clk; } /* AUXPLLs ************************************************************/ struct alchemy_auxpll_clk { struct clk_hw hw; unsigned long reg; /* au1300 has also AUXPLL2 */ int maxmult; /* max multiplier */ }; #define to_auxpll_clk(x) container_of(x, struct alchemy_auxpll_clk, hw) static unsigned long alchemy_clk_aux_recalc(struct clk_hw *hw, unsigned long parent_rate) { struct alchemy_auxpll_clk *a = to_auxpll_clk(hw); return (alchemy_rdsys(a->reg) & 0xff) * parent_rate; } static int alchemy_clk_aux_setr(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct alchemy_auxpll_clk *a = to_auxpll_clk(hw); unsigned long d = rate; if (rate) d /= parent_rate; else d = 0; /* minimum is 84MHz, max is 756-1032 depending on variant */ if (((d < 7) && (d != 0)) || (d > a->maxmult)) return -EINVAL; alchemy_wrsys(d, a->reg); return 0; } static long alchemy_clk_aux_roundr(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct alchemy_auxpll_clk *a = to_auxpll_clk(hw); unsigned long mult; if (!rate || !*parent_rate) return 0; mult = rate / (*parent_rate); if (mult && (mult < 7)) mult = 7; if (mult > a->maxmult) mult = a->maxmult; return (*parent_rate) * mult; } static const struct clk_ops alchemy_clkops_aux = { .recalc_rate = alchemy_clk_aux_recalc, .set_rate = alchemy_clk_aux_setr, .round_rate = alchemy_clk_aux_roundr, }; static struct clk __init *alchemy_clk_setup_aux(const char *parent_name, char *name, int maxmult, unsigned long reg) { struct clk_init_data id; struct clk *c; struct alchemy_auxpll_clk *a; a = kzalloc(sizeof(*a), GFP_KERNEL); if (!a) return ERR_PTR(-ENOMEM); id.name = name; id.parent_names = &parent_name; id.num_parents = 1; id.flags = CLK_GET_RATE_NOCACHE; id.ops = &alchemy_clkops_aux; a->reg = reg; a->maxmult = maxmult; a->hw.init = &id; c = clk_register(NULL, &a->hw); if (!IS_ERR(c)) clk_register_clkdev(c, name, NULL); else kfree(a); return c; } /* sysbus_clk *********************************************************/ static struct clk __init *alchemy_clk_setup_sysbus(const char *pn) { unsigned long v = (alchemy_rdsys(AU1000_SYS_POWERCTRL) & 3) + 2; struct clk *c; c = clk_register_fixed_factor(NULL, ALCHEMY_SYSBUS_CLK, pn, 0, 1, v); if (!IS_ERR(c)) clk_register_clkdev(c, ALCHEMY_SYSBUS_CLK, NULL); return c; } /* Peripheral Clock ***************************************************/ static struct clk __init *alchemy_clk_setup_periph(const char *pn) { /* Peripheral clock runs at half the rate of sysbus clk */ struct clk *c; c = clk_register_fixed_factor(NULL, ALCHEMY_PERIPH_CLK, pn, 0, 1, 2); if (!IS_ERR(c)) clk_register_clkdev(c, ALCHEMY_PERIPH_CLK, NULL); return c; } /* mem clock **********************************************************/ static struct clk __init *alchemy_clk_setup_mem(const char *pn, int ct) { void __iomem *addr = IOMEM(AU1000_MEM_PHYS_ADDR); unsigned long v; struct clk *c; int div; switch (ct) { case ALCHEMY_CPU_AU1550: case ALCHEMY_CPU_AU1200: v = __raw_readl(addr + AU1550_MEM_SDCONFIGB); div = (v & (1 << 15)) ? 1 : 2; break; case ALCHEMY_CPU_AU1300: v = __raw_readl(addr + AU1550_MEM_SDCONFIGB); div = (v & (1 << 31)) ? 1 : 2; break; case ALCHEMY_CPU_AU1000: case ALCHEMY_CPU_AU1500: case ALCHEMY_CPU_AU1100: default: div = 2; break; } c = clk_register_fixed_factor(NULL, ALCHEMY_MEM_CLK, pn, 0, 1, div); if (!IS_ERR(c)) clk_register_clkdev(c, ALCHEMY_MEM_CLK, NULL); return c; } /* lrclk: external synchronous static bus clock ***********************/ static struct clk __init *alchemy_clk_setup_lrclk(const char *pn, int t) { /* Au1000, Au1500: MEM_STCFG0[11]: If bit is set, lrclk=pclk/5, * otherwise lrclk=pclk/4. * All other variants: MEM_STCFG0[15:13] = divisor. * L/RCLK = periph_clk / (divisor + 1) * On Au1000, Au1500, Au1100 it's called LCLK, * on later models it's called RCLK, but it's the same thing. */ struct clk *c; unsigned long v = alchemy_rdsmem(AU1000_MEM_STCFG0); switch (t) { case ALCHEMY_CPU_AU1000: case ALCHEMY_CPU_AU1500: v = 4 + ((v >> 11) & 1); break; default: /* all other models */ v = ((v >> 13) & 7) + 1; } c = clk_register_fixed_factor(NULL, ALCHEMY_LR_CLK, pn, 0, 1, v); if (!IS_ERR(c)) clk_register_clkdev(c, ALCHEMY_LR_CLK, NULL); return c; } /* Clock dividers and muxes *******************************************/ /* data for fgen and csrc mux-dividers */ struct alchemy_fgcs_clk { struct clk_hw hw; spinlock_t *reglock; /* register lock */ unsigned long reg; /* SYS_FREQCTRL0/1 */ int shift; /* offset in register */ int parent; /* parent before disable [Au1300] */ int isen; /* is it enabled? */ int *dt; /* dividertable for csrc */ }; #define to_fgcs_clk(x) container_of(x, struct alchemy_fgcs_clk, hw) static long alchemy_calc_div(unsigned long rate, unsigned long prate, int scale, int maxdiv, unsigned long *rv) { long div1, div2; div1 = prate / rate; if ((prate / div1) > rate) div1++; if (scale == 2) { /* only div-by-multiple-of-2 possible */ if (div1 & 1) div1++; /* stay <=prate */ } div2 = (div1 / scale) - 1; /* value to write to register */ if (div2 > maxdiv) div2 = maxdiv; if (rv) *rv = div2; div1 = ((div2 + 1) * scale); return div1; } static int alchemy_clk_fgcs_detr(struct clk_hw *hw, struct clk_rate_request *req, int scale, int maxdiv) { struct clk_hw *pc, *bpc, *free; long tdv, tpr, pr, nr, br, bpr, diff, lastdiff; int j; lastdiff = INT_MAX; bpr = 0; bpc = NULL; br = -EINVAL; free = NULL; /* look at the rates each enabled parent supplies and select * the one that gets closest to but not over the requested rate. */ for (j = 0; j < 7; j++) { pc = clk_hw_get_parent_by_index(hw, j); if (!pc) break; /* if this parent is currently unused, remember it. * XXX: we would actually want clk_has_active_children() * but this is a good-enough approximation for now. */ if (!clk_hw_is_prepared(pc)) { if (!free) free = pc; } pr = clk_hw_get_rate(pc); if (pr < req->rate) continue; /* what can hardware actually provide */ tdv = alchemy_calc_div(req->rate, pr, scale, maxdiv, NULL); nr = pr / tdv; diff = req->rate - nr; if (nr > req->rate) continue; if (diff < lastdiff) { lastdiff = diff; bpr = pr; bpc = pc; br = nr; } if (diff == 0) break; } /* if we couldn't get the exact rate we wanted from the enabled * parents, maybe we can tell an available disabled/inactive one * to give us a rate we can divide down to the requested rate. */ if (lastdiff && free) { for (j = (maxdiv == 4) ? 1 : scale; j <= maxdiv; j += scale) { tpr = req->rate * j; if (tpr < 0) break; pr = clk_hw_round_rate(free, tpr); tdv = alchemy_calc_div(req->rate, pr, scale, maxdiv, NULL); nr = pr / tdv; diff = req->rate - nr; if (nr > req->rate) continue; if (diff < lastdiff) { lastdiff = diff; bpr = pr; bpc = free; br = nr; } if (diff == 0) break; } } if (br < 0) return br; req->best_parent_rate = bpr; req->best_parent_hw = bpc; req->rate = br; return 0; } static int alchemy_clk_fgv1_en(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long v, flags; spin_lock_irqsave(c->reglock, flags); v = alchemy_rdsys(c->reg); v |= (1 << 1) << c->shift; alchemy_wrsys(v, c->reg); spin_unlock_irqrestore(c->reglock, flags); return 0; } static int alchemy_clk_fgv1_isen(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long v = alchemy_rdsys(c->reg) >> (c->shift + 1); return v & 1; } static void alchemy_clk_fgv1_dis(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long v, flags; spin_lock_irqsave(c->reglock, flags); v = alchemy_rdsys(c->reg); v &= ~((1 << 1) << c->shift); alchemy_wrsys(v, c->reg); spin_unlock_irqrestore(c->reglock, flags); } static int alchemy_clk_fgv1_setp(struct clk_hw *hw, u8 index) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long v, flags; spin_lock_irqsave(c->reglock, flags); v = alchemy_rdsys(c->reg); if (index) v |= (1 << c->shift); else v &= ~(1 << c->shift); alchemy_wrsys(v, c->reg); spin_unlock_irqrestore(c->reglock, flags); return 0; } static u8 alchemy_clk_fgv1_getp(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); return (alchemy_rdsys(c->reg) >> c->shift) & 1; } static int alchemy_clk_fgv1_setr(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long div, v, flags, ret; int sh = c->shift + 2; if (!rate || !parent_rate || rate > (parent_rate / 2)) return -EINVAL; ret = alchemy_calc_div(rate, parent_rate, 2, 512, &div); spin_lock_irqsave(c->reglock, flags); v = alchemy_rdsys(c->reg); v &= ~(0xff << sh); v |= div << sh; alchemy_wrsys(v, c->reg); spin_unlock_irqrestore(c->reglock, flags); return 0; } static unsigned long alchemy_clk_fgv1_recalc(struct clk_hw *hw, unsigned long parent_rate) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long v = alchemy_rdsys(c->reg) >> (c->shift + 2); v = ((v & 0xff) + 1) * 2; return parent_rate / v; } static int alchemy_clk_fgv1_detr(struct clk_hw *hw, struct clk_rate_request *req) { return alchemy_clk_fgcs_detr(hw, req, 2, 512); } /* Au1000, Au1100, Au15x0, Au12x0 */ static const struct clk_ops alchemy_clkops_fgenv1 = { .recalc_rate = alchemy_clk_fgv1_recalc, .determine_rate = alchemy_clk_fgv1_detr, .set_rate = alchemy_clk_fgv1_setr, .set_parent = alchemy_clk_fgv1_setp, .get_parent = alchemy_clk_fgv1_getp, .enable = alchemy_clk_fgv1_en, .disable = alchemy_clk_fgv1_dis, .is_enabled = alchemy_clk_fgv1_isen, }; static void __alchemy_clk_fgv2_en(struct alchemy_fgcs_clk *c) { unsigned long v = alchemy_rdsys(c->reg); v &= ~(3 << c->shift); v |= (c->parent & 3) << c->shift; alchemy_wrsys(v, c->reg); c->isen = 1; } static int alchemy_clk_fgv2_en(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long flags; /* enable by setting the previous parent clock */ spin_lock_irqsave(c->reglock, flags); __alchemy_clk_fgv2_en(c); spin_unlock_irqrestore(c->reglock, flags); return 0; } static int alchemy_clk_fgv2_isen(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); return ((alchemy_rdsys(c->reg) >> c->shift) & 3) != 0; } static void alchemy_clk_fgv2_dis(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long v, flags; spin_lock_irqsave(c->reglock, flags); v = alchemy_rdsys(c->reg); v &= ~(3 << c->shift); /* set input mux to "disabled" state */ alchemy_wrsys(v, c->reg); c->isen = 0; spin_unlock_irqrestore(c->reglock, flags); } static int alchemy_clk_fgv2_setp(struct clk_hw *hw, u8 index) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long flags; spin_lock_irqsave(c->reglock, flags); c->parent = index + 1; /* value to write to register */ if (c->isen) __alchemy_clk_fgv2_en(c); spin_unlock_irqrestore(c->reglock, flags); return 0; } static u8 alchemy_clk_fgv2_getp(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long flags, v; spin_lock_irqsave(c->reglock, flags); v = c->parent - 1; spin_unlock_irqrestore(c->reglock, flags); return v; } /* fg0-2 and fg4-6 share a "scale"-bit. With this bit cleared, the * dividers behave exactly as on previous models (dividers are multiples * of 2); with the bit set, dividers are multiples of 1, halving their * range, but making them also much more flexible. */ static int alchemy_clk_fgv2_setr(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); int sh = c->shift + 2; unsigned long div, v, flags, ret; if (!rate || !parent_rate || rate > parent_rate) return -EINVAL; v = alchemy_rdsys(c->reg) & (1 << 30); /* test "scale" bit */ ret = alchemy_calc_div(rate, parent_rate, v ? 1 : 2, v ? 256 : 512, &div); spin_lock_irqsave(c->reglock, flags); v = alchemy_rdsys(c->reg); v &= ~(0xff << sh); v |= (div & 0xff) << sh; alchemy_wrsys(v, c->reg); spin_unlock_irqrestore(c->reglock, flags); return 0; } static unsigned long alchemy_clk_fgv2_recalc(struct clk_hw *hw, unsigned long parent_rate) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); int sh = c->shift + 2; unsigned long v, t; v = alchemy_rdsys(c->reg); t = parent_rate / (((v >> sh) & 0xff) + 1); if ((v & (1 << 30)) == 0) /* test scale bit */ t /= 2; return t; } static int alchemy_clk_fgv2_detr(struct clk_hw *hw, struct clk_rate_request *req) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); int scale, maxdiv; if (alchemy_rdsys(c->reg) & (1 << 30)) { scale = 1; maxdiv = 256; } else { scale = 2; maxdiv = 512; } return alchemy_clk_fgcs_detr(hw, req, scale, maxdiv); } /* Au1300 larger input mux, no separate disable bit, flexible divider */ static const struct clk_ops alchemy_clkops_fgenv2 = { .recalc_rate = alchemy_clk_fgv2_recalc, .determine_rate = alchemy_clk_fgv2_detr, .set_rate = alchemy_clk_fgv2_setr, .set_parent = alchemy_clk_fgv2_setp, .get_parent = alchemy_clk_fgv2_getp, .enable = alchemy_clk_fgv2_en, .disable = alchemy_clk_fgv2_dis, .is_enabled = alchemy_clk_fgv2_isen, }; static const char * const alchemy_clk_fgv1_parents[] = { ALCHEMY_CPU_CLK, ALCHEMY_AUXPLL_CLK }; static const char * const alchemy_clk_fgv2_parents[] = { ALCHEMY_AUXPLL2_CLK, ALCHEMY_CPU_CLK, ALCHEMY_AUXPLL_CLK }; static const char * const alchemy_clk_fgen_names[] = { ALCHEMY_FG0_CLK, ALCHEMY_FG1_CLK, ALCHEMY_FG2_CLK, ALCHEMY_FG3_CLK, ALCHEMY_FG4_CLK, ALCHEMY_FG5_CLK }; static int __init alchemy_clk_init_fgens(int ctype) { struct clk *c; struct clk_init_data id; struct alchemy_fgcs_clk *a; unsigned long v; int i, ret; switch (ctype) { case ALCHEMY_CPU_AU1000...ALCHEMY_CPU_AU1200: id.ops = &alchemy_clkops_fgenv1; id.parent_names = alchemy_clk_fgv1_parents; id.num_parents = 2; break; case ALCHEMY_CPU_AU1300: id.ops = &alchemy_clkops_fgenv2; id.parent_names = alchemy_clk_fgv2_parents; id.num_parents = 3; break; default: return -ENODEV; } id.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE; a = kcalloc(6, sizeof(*a), GFP_KERNEL); if (!a) return -ENOMEM; spin_lock_init(&alchemy_clk_fg0_lock); spin_lock_init(&alchemy_clk_fg1_lock); ret = 0; for (i = 0; i < 6; i++) { id.name = alchemy_clk_fgen_names[i]; a->shift = 10 * (i < 3 ? i : i - 3); if (i > 2) { a->reg = AU1000_SYS_FREQCTRL1; a->reglock = &alchemy_clk_fg1_lock; } else { a->reg = AU1000_SYS_FREQCTRL0; a->reglock = &alchemy_clk_fg0_lock; } /* default to first parent if bootloader has set * the mux to disabled state. */ if (ctype == ALCHEMY_CPU_AU1300) { v = alchemy_rdsys(a->reg); a->parent = (v >> a->shift) & 3; if (!a->parent) { a->parent = 1; a->isen = 0; } else a->isen = 1; } a->hw.init = &id; c = clk_register(NULL, &a->hw); if (IS_ERR(c)) ret++; else clk_register_clkdev(c, id.name, NULL); a++; } return ret; } /* internal sources muxes *********************************************/ static int alchemy_clk_csrc_isen(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long v = alchemy_rdsys(c->reg); return (((v >> c->shift) >> 2) & 7) != 0; } static void __alchemy_clk_csrc_en(struct alchemy_fgcs_clk *c) { unsigned long v = alchemy_rdsys(c->reg); v &= ~((7 << 2) << c->shift); v |= ((c->parent & 7) << 2) << c->shift; alchemy_wrsys(v, c->reg); c->isen = 1; } static int alchemy_clk_csrc_en(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long flags; /* enable by setting the previous parent clock */ spin_lock_irqsave(c->reglock, flags); __alchemy_clk_csrc_en(c); spin_unlock_irqrestore(c->reglock, flags); return 0; } static void alchemy_clk_csrc_dis(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long v, flags; spin_lock_irqsave(c->reglock, flags); v = alchemy_rdsys(c->reg); v &= ~((3 << 2) << c->shift); /* mux to "disabled" state */ alchemy_wrsys(v, c->reg); c->isen = 0; spin_unlock_irqrestore(c->reglock, flags); } static int alchemy_clk_csrc_setp(struct clk_hw *hw, u8 index) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long flags; spin_lock_irqsave(c->reglock, flags); c->parent = index + 1; /* value to write to register */ if (c->isen) __alchemy_clk_csrc_en(c); spin_unlock_irqrestore(c->reglock, flags); return 0; } static u8 alchemy_clk_csrc_getp(struct clk_hw *hw) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); return c->parent - 1; } static unsigned long alchemy_clk_csrc_recalc(struct clk_hw *hw, unsigned long parent_rate) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long v = (alchemy_rdsys(c->reg) >> c->shift) & 3; return parent_rate / c->dt[v]; } static int alchemy_clk_csrc_setr(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); unsigned long d, v, flags; int i; if (!rate || !parent_rate || rate > parent_rate) return -EINVAL; d = (parent_rate + (rate / 2)) / rate; if (d > 4) return -EINVAL; if ((d == 3) && (c->dt[2] != 3)) d = 4; for (i = 0; i < 4; i++) if (c->dt[i] == d) break; if (i >= 4) return -EINVAL; /* oops */ spin_lock_irqsave(c->reglock, flags); v = alchemy_rdsys(c->reg); v &= ~(3 << c->shift); v |= (i & 3) << c->shift; alchemy_wrsys(v, c->reg); spin_unlock_irqrestore(c->reglock, flags); return 0; } static int alchemy_clk_csrc_detr(struct clk_hw *hw, struct clk_rate_request *req) { struct alchemy_fgcs_clk *c = to_fgcs_clk(hw); int scale = c->dt[2] == 3 ? 1 : 2; /* au1300 check */ return alchemy_clk_fgcs_detr(hw, req, scale, 4); } static const struct clk_ops alchemy_clkops_csrc = { .recalc_rate = alchemy_clk_csrc_recalc, .determine_rate = alchemy_clk_csrc_detr, .set_rate = alchemy_clk_csrc_setr, .set_parent = alchemy_clk_csrc_setp, .get_parent = alchemy_clk_csrc_getp, .enable = alchemy_clk_csrc_en, .disable = alchemy_clk_csrc_dis, .is_enabled = alchemy_clk_csrc_isen, }; static const char * const alchemy_clk_csrc_parents[] = { /* disabled at index 0 */ ALCHEMY_AUXPLL_CLK, ALCHEMY_FG0_CLK, ALCHEMY_FG1_CLK, ALCHEMY_FG2_CLK, ALCHEMY_FG3_CLK, ALCHEMY_FG4_CLK, ALCHEMY_FG5_CLK }; /* divider tables */ static int alchemy_csrc_dt1[] = { 1, 4, 1, 2 }; /* rest */ static int alchemy_csrc_dt2[] = { 1, 4, 3, 2 }; /* Au1300 */ static int __init alchemy_clk_setup_imux(int ctype) { struct alchemy_fgcs_clk *a; const char * const *names; struct clk_init_data id; unsigned long v; int i, ret, *dt; struct clk *c; id.ops = &alchemy_clkops_csrc; id.parent_names = alchemy_clk_csrc_parents; id.num_parents = 7; id.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE; dt = alchemy_csrc_dt1; switch (ctype) { case ALCHEMY_CPU_AU1000: names = alchemy_au1000_intclknames; break; case ALCHEMY_CPU_AU1500: names = alchemy_au1500_intclknames; break; case ALCHEMY_CPU_AU1100: names = alchemy_au1100_intclknames; break; case ALCHEMY_CPU_AU1550: names = alchemy_au1550_intclknames; break; case ALCHEMY_CPU_AU1200: names = alchemy_au1200_intclknames; break; case ALCHEMY_CPU_AU1300: dt = alchemy_csrc_dt2; names = alchemy_au1300_intclknames; break; default: return -ENODEV; } a = kcalloc(6, sizeof(*a), GFP_KERNEL); if (!a) return -ENOMEM; ret = 0; for (i = 0; i < 6; i++) { id.name = names[i]; if (!id.name) goto next; a->shift = i * 5; a->reg = AU1000_SYS_CLKSRC; a->reglock = &alchemy_clk_csrc_lock; a->dt = dt; /* default to first parent clock if mux is initially * set to disabled state. */ v = alchemy_rdsys(a->reg); a->parent = ((v >> a->shift) >> 2) & 7; if (!a->parent) { a->parent = 1; a->isen = 0; } else a->isen = 1; a->hw.init = &id; c = clk_register(NULL, &a->hw); if (IS_ERR(c)) ret++; else clk_register_clkdev(c, id.name, NULL); next: a++; } return ret; } /**********************************************************************/ #define ERRCK(x) \ if (IS_ERR(x)) { \ ret = PTR_ERR(x); \ goto out; \ } static int __init alchemy_clk_init(void) { int ctype = alchemy_get_cputype(), ret, i; struct clk_aliastable *t = alchemy_clk_aliases; struct clk *c; /* Root of the Alchemy clock tree: external 12MHz crystal osc */ c = clk_register_fixed_rate(NULL, ALCHEMY_ROOT_CLK, NULL, 0, ALCHEMY_ROOTCLK_RATE); ERRCK(c) /* CPU core clock */ c = alchemy_clk_setup_cpu(ALCHEMY_ROOT_CLK, ctype); ERRCK(c) /* AUXPLLs: max 1GHz on Au1300, 748MHz on older models */ i = (ctype == ALCHEMY_CPU_AU1300) ? 84 : 63; c = alchemy_clk_setup_aux(ALCHEMY_ROOT_CLK, ALCHEMY_AUXPLL_CLK, i, AU1000_SYS_AUXPLL); ERRCK(c) if (ctype == ALCHEMY_CPU_AU1300) { c = alchemy_clk_setup_aux(ALCHEMY_ROOT_CLK, ALCHEMY_AUXPLL2_CLK, i, AU1300_SYS_AUXPLL2); ERRCK(c) } /* sysbus clock: cpu core clock divided by 2, 3 or 4 */ c = alchemy_clk_setup_sysbus(ALCHEMY_CPU_CLK); ERRCK(c) /* peripheral clock: runs at half rate of sysbus clk */ c = alchemy_clk_setup_periph(ALCHEMY_SYSBUS_CLK); ERRCK(c) /* SDR/DDR memory clock */ c = alchemy_clk_setup_mem(ALCHEMY_SYSBUS_CLK, ctype); ERRCK(c) /* L/RCLK: external static bus clock for synchronous mode */ c = alchemy_clk_setup_lrclk(ALCHEMY_PERIPH_CLK, ctype); ERRCK(c) /* Frequency dividers 0-5 */ ret = alchemy_clk_init_fgens(ctype); if (ret) { ret = -ENODEV; goto out; } /* diving muxes for internal sources */ ret = alchemy_clk_setup_imux(ctype); if (ret) { ret = -ENODEV; goto out; } /* set up aliases drivers might look for */ while (t->base) { if (t->cputype == ctype) clk_add_alias(t->alias, NULL, t->base, NULL); t++; } pr_info("Alchemy clocktree installed\n"); return 0; out: return ret; } postcore_initcall(alchemy_clk_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1