Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
John David Anglin | 1607 | 44.63% | 22 | 20.75% |
Matthew Wilcox | 840 | 23.33% | 13 | 12.26% |
Helge Deller | 361 | 10.02% | 19 | 17.92% |
Linus Torvalds (pre-git) | 319 | 8.86% | 19 | 17.92% |
James Bottomley | 149 | 4.14% | 5 | 4.72% |
Randolph Chung | 80 | 2.22% | 2 | 1.89% |
Kyle McMartin | 76 | 2.11% | 2 | 1.89% |
Sven Schnelle | 40 | 1.11% | 1 | 0.94% |
Andrew Morton | 36 | 1.00% | 4 | 3.77% |
Hugh Dickins | 24 | 0.67% | 1 | 0.94% |
Arnaldo Carvalho de Melo | 15 | 0.42% | 1 | 0.94% |
Mikulas Patocka | 12 | 0.33% | 1 | 0.94% |
David S. Miller | 10 | 0.28% | 2 | 1.89% |
Stuart Brady | 4 | 0.11% | 1 | 0.94% |
Thomas Gleixner | 4 | 0.11% | 1 | 0.94% |
Linus Torvalds | 3 | 0.08% | 1 | 0.94% |
Mike Rapoport | 3 | 0.08% | 1 | 0.94% |
Greg Kroah-Hartman | 3 | 0.08% | 1 | 0.94% |
Martin Schwidefsky | 3 | 0.08% | 1 | 0.94% |
Ingo Molnar | 3 | 0.08% | 1 | 0.94% |
Fabio M. De Francesco | 2 | 0.06% | 1 | 0.94% |
Rajesh Venkatasubramanian | 2 | 0.06% | 1 | 0.94% |
Michel Lespinasse | 1 | 0.03% | 1 | 0.94% |
Christoph Hellwig | 1 | 0.03% | 1 | 0.94% |
Russell King | 1 | 0.03% | 1 | 0.94% |
Alexander Beregalov | 1 | 0.03% | 1 | 0.94% |
Al Viro | 1 | 0.03% | 1 | 0.94% |
Total | 3601 | 106 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999) * Copyright (C) 1999 SuSE GmbH Nuernberg * Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org) * * Cache and TLB management * */ #include <linux/init.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/pagemap.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/syscalls.h> #include <linux/vmalloc.h> #include <asm/pdc.h> #include <asm/cache.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/page.h> #include <asm/processor.h> #include <asm/sections.h> #include <asm/shmparam.h> #include <asm/mmu_context.h> #include <asm/cachectl.h> #define PTR_PAGE_ALIGN_DOWN(addr) PTR_ALIGN_DOWN(addr, PAGE_SIZE) /* * When nonzero, use _PAGE_ACCESSED bit to try to reduce the number * of page flushes done flush_cache_page_if_present. There are some * pros and cons in using this option. It may increase the risk of * random segmentation faults. */ #define CONFIG_FLUSH_PAGE_ACCESSED 0 int split_tlb __ro_after_init; int dcache_stride __ro_after_init; int icache_stride __ro_after_init; EXPORT_SYMBOL(dcache_stride); /* Internal implementation in arch/parisc/kernel/pacache.S */ void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr); EXPORT_SYMBOL(flush_dcache_page_asm); void purge_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr); void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr); void flush_data_cache_local(void *); /* flushes local data-cache only */ void flush_instruction_cache_local(void); /* flushes local code-cache only */ static void flush_kernel_dcache_page_addr(const void *addr); /* On some machines (i.e., ones with the Merced bus), there can be * only a single PxTLB broadcast at a time; this must be guaranteed * by software. We need a spinlock around all TLB flushes to ensure * this. */ DEFINE_SPINLOCK(pa_tlb_flush_lock); #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) int pa_serialize_tlb_flushes __ro_after_init; #endif struct pdc_cache_info cache_info __ro_after_init; #ifndef CONFIG_PA20 struct pdc_btlb_info btlb_info; #endif DEFINE_STATIC_KEY_TRUE(parisc_has_cache); DEFINE_STATIC_KEY_TRUE(parisc_has_dcache); DEFINE_STATIC_KEY_TRUE(parisc_has_icache); static void cache_flush_local_cpu(void *dummy) { if (static_branch_likely(&parisc_has_icache)) flush_instruction_cache_local(); if (static_branch_likely(&parisc_has_dcache)) flush_data_cache_local(NULL); } void flush_cache_all_local(void) { cache_flush_local_cpu(NULL); } void flush_cache_all(void) { if (static_branch_likely(&parisc_has_cache)) on_each_cpu(cache_flush_local_cpu, NULL, 1); } static inline void flush_data_cache(void) { if (static_branch_likely(&parisc_has_dcache)) on_each_cpu(flush_data_cache_local, NULL, 1); } /* Kernel virtual address of pfn. */ #define pfn_va(pfn) __va(PFN_PHYS(pfn)) void __update_cache(pte_t pte) { unsigned long pfn = pte_pfn(pte); struct folio *folio; unsigned int nr; /* We don't have pte special. As a result, we can be called with an invalid pfn and we don't need to flush the kernel dcache page. This occurs with FireGL card in C8000. */ if (!pfn_valid(pfn)) return; folio = page_folio(pfn_to_page(pfn)); pfn = folio_pfn(folio); nr = folio_nr_pages(folio); if (folio_flush_mapping(folio) && test_bit(PG_dcache_dirty, &folio->flags)) { while (nr--) flush_kernel_dcache_page_addr(pfn_va(pfn + nr)); clear_bit(PG_dcache_dirty, &folio->flags); } else if (parisc_requires_coherency()) while (nr--) flush_kernel_dcache_page_addr(pfn_va(pfn + nr)); } void show_cache_info(struct seq_file *m) { char buf[32]; seq_printf(m, "I-cache\t\t: %ld KB\n", cache_info.ic_size/1024 ); if (cache_info.dc_loop != 1) snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop); seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s, alias=%d)\n", cache_info.dc_size/1024, (cache_info.dc_conf.cc_wt ? "WT":"WB"), (cache_info.dc_conf.cc_sh ? ", shared I/D":""), ((cache_info.dc_loop == 1) ? "direct mapped" : buf), cache_info.dc_conf.cc_alias ); seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n", cache_info.it_size, cache_info.dt_size, cache_info.dt_conf.tc_sh ? " - shared with ITLB":"" ); #ifndef CONFIG_PA20 /* BTLB - Block TLB */ if (btlb_info.max_size==0) { seq_printf(m, "BTLB\t\t: not supported\n" ); } else { seq_printf(m, "BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n" "BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n" "BTLB var-entr.\t: %d instruction, %d data (%d combined)\n", btlb_info.max_size, (int)4096, btlb_info.max_size>>8, btlb_info.fixed_range_info.num_i, btlb_info.fixed_range_info.num_d, btlb_info.fixed_range_info.num_comb, btlb_info.variable_range_info.num_i, btlb_info.variable_range_info.num_d, btlb_info.variable_range_info.num_comb ); } #endif } void __init parisc_cache_init(void) { if (pdc_cache_info(&cache_info) < 0) panic("parisc_cache_init: pdc_cache_info failed"); #if 0 printk("ic_size %lx dc_size %lx it_size %lx\n", cache_info.ic_size, cache_info.dc_size, cache_info.it_size); printk("DC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n", cache_info.dc_base, cache_info.dc_stride, cache_info.dc_count, cache_info.dc_loop); printk("dc_conf = 0x%lx alias %d blk %d line %d shift %d\n", *(unsigned long *) (&cache_info.dc_conf), cache_info.dc_conf.cc_alias, cache_info.dc_conf.cc_block, cache_info.dc_conf.cc_line, cache_info.dc_conf.cc_shift); printk(" wt %d sh %d cst %d hv %d\n", cache_info.dc_conf.cc_wt, cache_info.dc_conf.cc_sh, cache_info.dc_conf.cc_cst, cache_info.dc_conf.cc_hv); printk("IC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n", cache_info.ic_base, cache_info.ic_stride, cache_info.ic_count, cache_info.ic_loop); printk("IT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n", cache_info.it_sp_base, cache_info.it_sp_stride, cache_info.it_sp_count, cache_info.it_loop, cache_info.it_off_base, cache_info.it_off_stride, cache_info.it_off_count); printk("DT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n", cache_info.dt_sp_base, cache_info.dt_sp_stride, cache_info.dt_sp_count, cache_info.dt_loop, cache_info.dt_off_base, cache_info.dt_off_stride, cache_info.dt_off_count); printk("ic_conf = 0x%lx alias %d blk %d line %d shift %d\n", *(unsigned long *) (&cache_info.ic_conf), cache_info.ic_conf.cc_alias, cache_info.ic_conf.cc_block, cache_info.ic_conf.cc_line, cache_info.ic_conf.cc_shift); printk(" wt %d sh %d cst %d hv %d\n", cache_info.ic_conf.cc_wt, cache_info.ic_conf.cc_sh, cache_info.ic_conf.cc_cst, cache_info.ic_conf.cc_hv); printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n", cache_info.dt_conf.tc_sh, cache_info.dt_conf.tc_page, cache_info.dt_conf.tc_cst, cache_info.dt_conf.tc_aid, cache_info.dt_conf.tc_sr); printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n", cache_info.it_conf.tc_sh, cache_info.it_conf.tc_page, cache_info.it_conf.tc_cst, cache_info.it_conf.tc_aid, cache_info.it_conf.tc_sr); #endif split_tlb = 0; if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) { if (cache_info.dt_conf.tc_sh == 2) printk(KERN_WARNING "Unexpected TLB configuration. " "Will flush I/D separately (could be optimized).\n"); split_tlb = 1; } /* "New and Improved" version from Jim Hull * (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift)) * The following CAFL_STRIDE is an optimized version, see * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html * http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html */ #define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift)) dcache_stride = CAFL_STRIDE(cache_info.dc_conf); icache_stride = CAFL_STRIDE(cache_info.ic_conf); #undef CAFL_STRIDE /* stride needs to be non-zero, otherwise cache flushes will not work */ WARN_ON(cache_info.dc_size && dcache_stride == 0); WARN_ON(cache_info.ic_size && icache_stride == 0); if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) == PDC_MODEL_NVA_UNSUPPORTED) { printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n"); #if 0 panic("SMP kernel required to avoid non-equivalent aliasing"); #endif } } void disable_sr_hashing(void) { int srhash_type, retval; unsigned long space_bits; switch (boot_cpu_data.cpu_type) { case pcx: /* We shouldn't get this far. setup.c should prevent it. */ BUG(); return; case pcxs: case pcxt: case pcxt_: srhash_type = SRHASH_PCXST; break; case pcxl: srhash_type = SRHASH_PCXL; break; case pcxl2: /* pcxl2 doesn't support space register hashing */ return; default: /* Currently all PA2.0 machines use the same ins. sequence */ srhash_type = SRHASH_PA20; break; } disable_sr_hashing_asm(srhash_type); retval = pdc_spaceid_bits(&space_bits); /* If this procedure isn't implemented, don't panic. */ if (retval < 0 && retval != PDC_BAD_OPTION) panic("pdc_spaceid_bits call failed.\n"); if (space_bits != 0) panic("SpaceID hashing is still on!\n"); } static inline void __flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long physaddr) { if (!static_branch_likely(&parisc_has_cache)) return; /* * The TLB is the engine of coherence on parisc. The CPU is * entitled to speculate any page with a TLB mapping, so here * we kill the mapping then flush the page along a special flush * only alias mapping. This guarantees that the page is no-longer * in the cache for any process and nor may it be speculatively * read in (until the user or kernel specifically accesses it, * of course). */ flush_tlb_page(vma, vmaddr); preempt_disable(); flush_dcache_page_asm(physaddr, vmaddr); if (vma->vm_flags & VM_EXEC) flush_icache_page_asm(physaddr, vmaddr); preempt_enable(); } static void flush_kernel_dcache_page_addr(const void *addr) { unsigned long vaddr = (unsigned long)addr; unsigned long flags; /* Purge TLB entry to remove translation on all CPUs */ purge_tlb_start(flags); pdtlb(SR_KERNEL, addr); purge_tlb_end(flags); /* Use tmpalias flush to prevent data cache move-in */ preempt_disable(); flush_dcache_page_asm(__pa(vaddr), vaddr); preempt_enable(); } static void flush_kernel_icache_page_addr(const void *addr) { unsigned long vaddr = (unsigned long)addr; unsigned long flags; /* Purge TLB entry to remove translation on all CPUs */ purge_tlb_start(flags); pdtlb(SR_KERNEL, addr); purge_tlb_end(flags); /* Use tmpalias flush to prevent instruction cache move-in */ preempt_disable(); flush_icache_page_asm(__pa(vaddr), vaddr); preempt_enable(); } void kunmap_flush_on_unmap(const void *addr) { flush_kernel_dcache_page_addr(addr); } EXPORT_SYMBOL(kunmap_flush_on_unmap); void flush_icache_pages(struct vm_area_struct *vma, struct page *page, unsigned int nr) { void *kaddr = page_address(page); for (;;) { flush_kernel_dcache_page_addr(kaddr); flush_kernel_icache_page_addr(kaddr); if (--nr == 0) break; kaddr += PAGE_SIZE; } } /* * Walk page directory for MM to find PTEP pointer for address ADDR. */ static inline pte_t *get_ptep(struct mm_struct *mm, unsigned long addr) { pte_t *ptep = NULL; pgd_t *pgd = mm->pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; if (!pgd_none(*pgd)) { p4d = p4d_offset(pgd, addr); if (!p4d_none(*p4d)) { pud = pud_offset(p4d, addr); if (!pud_none(*pud)) { pmd = pmd_offset(pud, addr); if (!pmd_none(*pmd)) ptep = pte_offset_map(pmd, addr); } } } return ptep; } static inline bool pte_needs_flush(pte_t pte) { return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE)) == (_PAGE_PRESENT | _PAGE_ACCESSED); } /* * Return user physical address. Returns 0 if page is not present. */ static inline unsigned long get_upa(struct mm_struct *mm, unsigned long addr) { unsigned long flags, space, pgd, prot, pa; #ifdef CONFIG_TLB_PTLOCK unsigned long pgd_lock; #endif /* Save context */ local_irq_save(flags); prot = mfctl(8); space = mfsp(SR_USER); pgd = mfctl(25); #ifdef CONFIG_TLB_PTLOCK pgd_lock = mfctl(28); #endif /* Set context for lpa_user */ switch_mm_irqs_off(NULL, mm, NULL); pa = lpa_user(addr); /* Restore previous context */ #ifdef CONFIG_TLB_PTLOCK mtctl(pgd_lock, 28); #endif mtctl(pgd, 25); mtsp(space, SR_USER); mtctl(prot, 8); local_irq_restore(flags); return pa; } void flush_dcache_folio(struct folio *folio) { struct address_space *mapping = folio_flush_mapping(folio); struct vm_area_struct *vma; unsigned long addr, old_addr = 0; void *kaddr; unsigned long count = 0; unsigned long i, nr, flags; pgoff_t pgoff; if (mapping && !mapping_mapped(mapping)) { set_bit(PG_dcache_dirty, &folio->flags); return; } nr = folio_nr_pages(folio); kaddr = folio_address(folio); for (i = 0; i < nr; i++) flush_kernel_dcache_page_addr(kaddr + i * PAGE_SIZE); if (!mapping) return; pgoff = folio->index; /* * We have carefully arranged in arch_get_unmapped_area() that * *any* mappings of a file are always congruently mapped (whether * declared as MAP_PRIVATE or MAP_SHARED), so we only need * to flush one address here for them all to become coherent * on machines that support equivalent aliasing */ flush_dcache_mmap_lock_irqsave(mapping, flags); vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff + nr - 1) { unsigned long offset = pgoff - vma->vm_pgoff; unsigned long pfn = folio_pfn(folio); addr = vma->vm_start; nr = folio_nr_pages(folio); if (offset > -nr) { pfn -= offset; nr += offset; } else { addr += offset * PAGE_SIZE; } if (addr + nr * PAGE_SIZE > vma->vm_end) nr = (vma->vm_end - addr) / PAGE_SIZE; if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1)) != (addr & (SHM_COLOUR - 1))) { for (i = 0; i < nr; i++) __flush_cache_page(vma, addr + i * PAGE_SIZE, (pfn + i) * PAGE_SIZE); /* * Software is allowed to have any number * of private mappings to a page. */ if (!(vma->vm_flags & VM_SHARED)) continue; if (old_addr) pr_err("INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %pD\n", old_addr, addr, vma->vm_file); if (nr == folio_nr_pages(folio)) old_addr = addr; } WARN_ON(++count == 4096); } flush_dcache_mmap_unlock_irqrestore(mapping, flags); } EXPORT_SYMBOL(flush_dcache_folio); /* Defined in arch/parisc/kernel/pacache.S */ EXPORT_SYMBOL(flush_kernel_dcache_range_asm); EXPORT_SYMBOL(flush_kernel_icache_range_asm); #define FLUSH_THRESHOLD 0x80000 /* 0.5MB */ static unsigned long parisc_cache_flush_threshold __ro_after_init = FLUSH_THRESHOLD; #define FLUSH_TLB_THRESHOLD (16*1024) /* 16 KiB minimum TLB threshold */ static unsigned long parisc_tlb_flush_threshold __ro_after_init = ~0UL; void __init parisc_setup_cache_timing(void) { unsigned long rangetime, alltime; unsigned long size; unsigned long threshold, threshold2; alltime = mfctl(16); flush_data_cache(); alltime = mfctl(16) - alltime; size = (unsigned long)(_end - _text); rangetime = mfctl(16); flush_kernel_dcache_range((unsigned long)_text, size); rangetime = mfctl(16) - rangetime; printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n", alltime, size, rangetime); threshold = L1_CACHE_ALIGN((unsigned long)((uint64_t)size * alltime / rangetime)); pr_info("Calculated flush threshold is %lu KiB\n", threshold/1024); /* * The threshold computed above isn't very reliable. The following * heuristic works reasonably well on c8000/rp3440. */ threshold2 = cache_info.dc_size * num_online_cpus(); parisc_cache_flush_threshold = threshold2; printk(KERN_INFO "Cache flush threshold set to %lu KiB\n", parisc_cache_flush_threshold/1024); /* calculate TLB flush threshold */ /* On SMP machines, skip the TLB measure of kernel text which * has been mapped as huge pages. */ if (num_online_cpus() > 1 && !parisc_requires_coherency()) { threshold = max(cache_info.it_size, cache_info.dt_size); threshold *= PAGE_SIZE; threshold /= num_online_cpus(); goto set_tlb_threshold; } size = (unsigned long)_end - (unsigned long)_text; rangetime = mfctl(16); flush_tlb_kernel_range((unsigned long)_text, (unsigned long)_end); rangetime = mfctl(16) - rangetime; alltime = mfctl(16); flush_tlb_all(); alltime = mfctl(16) - alltime; printk(KERN_INFO "Whole TLB flush %lu cycles, Range flush %lu bytes %lu cycles\n", alltime, size, rangetime); threshold = PAGE_ALIGN((num_online_cpus() * size * alltime) / rangetime); printk(KERN_INFO "Calculated TLB flush threshold %lu KiB\n", threshold/1024); set_tlb_threshold: if (threshold > FLUSH_TLB_THRESHOLD) parisc_tlb_flush_threshold = threshold; else parisc_tlb_flush_threshold = FLUSH_TLB_THRESHOLD; printk(KERN_INFO "TLB flush threshold set to %lu KiB\n", parisc_tlb_flush_threshold/1024); } extern void purge_kernel_dcache_page_asm(unsigned long); extern void clear_user_page_asm(void *, unsigned long); extern void copy_user_page_asm(void *, void *, unsigned long); static void flush_cache_page_if_present(struct vm_area_struct *vma, unsigned long vmaddr) { #if CONFIG_FLUSH_PAGE_ACCESSED bool needs_flush = false; pte_t *ptep, pte; ptep = get_ptep(vma->vm_mm, vmaddr); if (ptep) { pte = ptep_get(ptep); needs_flush = pte_needs_flush(pte); pte_unmap(ptep); } if (needs_flush) __flush_cache_page(vma, vmaddr, PFN_PHYS(pte_pfn(pte))); #else struct mm_struct *mm = vma->vm_mm; unsigned long physaddr = get_upa(mm, vmaddr); if (physaddr) __flush_cache_page(vma, vmaddr, PAGE_ALIGN_DOWN(physaddr)); #endif } void copy_user_highpage(struct page *to, struct page *from, unsigned long vaddr, struct vm_area_struct *vma) { void *kto, *kfrom; kfrom = kmap_local_page(from); kto = kmap_local_page(to); __flush_cache_page(vma, vaddr, PFN_PHYS(page_to_pfn(from))); copy_page_asm(kto, kfrom); kunmap_local(kto); kunmap_local(kfrom); } void copy_to_user_page(struct vm_area_struct *vma, struct page *page, unsigned long user_vaddr, void *dst, void *src, int len) { __flush_cache_page(vma, user_vaddr, PFN_PHYS(page_to_pfn(page))); memcpy(dst, src, len); flush_kernel_dcache_page_addr(PTR_PAGE_ALIGN_DOWN(dst)); } void copy_from_user_page(struct vm_area_struct *vma, struct page *page, unsigned long user_vaddr, void *dst, void *src, int len) { __flush_cache_page(vma, user_vaddr, PFN_PHYS(page_to_pfn(page))); memcpy(dst, src, len); flush_kernel_dcache_page_addr(PTR_PAGE_ALIGN_DOWN(src)); } /* __flush_tlb_range() * * returns 1 if all TLBs were flushed. */ int __flush_tlb_range(unsigned long sid, unsigned long start, unsigned long end) { unsigned long flags; if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) && end - start >= parisc_tlb_flush_threshold) { flush_tlb_all(); return 1; } /* Purge TLB entries for small ranges using the pdtlb and pitlb instructions. These instructions execute locally but cause a purge request to be broadcast to other TLBs. */ while (start < end) { purge_tlb_start(flags); mtsp(sid, SR_TEMP1); pdtlb(SR_TEMP1, start); pitlb(SR_TEMP1, start); purge_tlb_end(flags); start += PAGE_SIZE; } return 0; } static void flush_cache_pages(struct vm_area_struct *vma, unsigned long start, unsigned long end) { unsigned long addr; for (addr = start; addr < end; addr += PAGE_SIZE) flush_cache_page_if_present(vma, addr); } static inline unsigned long mm_total_size(struct mm_struct *mm) { struct vm_area_struct *vma; unsigned long usize = 0; VMA_ITERATOR(vmi, mm, 0); for_each_vma(vmi, vma) { if (usize >= parisc_cache_flush_threshold) break; usize += vma->vm_end - vma->vm_start; } return usize; } void flush_cache_mm(struct mm_struct *mm) { struct vm_area_struct *vma; VMA_ITERATOR(vmi, mm, 0); /* * Flushing the whole cache on each cpu takes forever on * rp3440, etc. So, avoid it if the mm isn't too big. * * Note that we must flush the entire cache on machines * with aliasing caches to prevent random segmentation * faults. */ if (!parisc_requires_coherency() || mm_total_size(mm) >= parisc_cache_flush_threshold) { if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) return; flush_tlb_all(); flush_cache_all(); return; } /* Flush mm */ for_each_vma(vmi, vma) flush_cache_pages(vma, vma->vm_start, vma->vm_end); } void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { if (!parisc_requires_coherency() || end - start >= parisc_cache_flush_threshold) { if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) return; flush_tlb_range(vma, start, end); if (vma->vm_flags & VM_EXEC) flush_cache_all(); else flush_data_cache(); return; } flush_cache_pages(vma, start & PAGE_MASK, end); } void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn) { __flush_cache_page(vma, vmaddr, PFN_PHYS(pfn)); } void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) { if (!PageAnon(page)) return; __flush_cache_page(vma, vmaddr, PFN_PHYS(page_to_pfn(page))); } int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { pte_t pte = ptep_get(ptep); if (!pte_young(pte)) return 0; set_pte(ptep, pte_mkold(pte)); #if CONFIG_FLUSH_PAGE_ACCESSED __flush_cache_page(vma, addr, PFN_PHYS(pte_pfn(pte))); #endif return 1; } /* * After a PTE is cleared, we have no way to flush the cache for * the physical page. On PA8800 and PA8900 processors, these lines * can cause random cache corruption. Thus, we must flush the cache * as well as the TLB when clearing a PTE that's valid. */ pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) { struct mm_struct *mm = (vma)->vm_mm; pte_t pte = ptep_get_and_clear(mm, addr, ptep); unsigned long pfn = pte_pfn(pte); if (pfn_valid(pfn)) __flush_cache_page(vma, addr, PFN_PHYS(pfn)); else if (pte_accessible(mm, pte)) flush_tlb_page(vma, addr); return pte; } /* * The physical address for pages in the ioremap case can be obtained * from the vm_struct struct. I wasn't able to successfully handle the * vmalloc and vmap cases. We have an array of struct page pointers in * the uninitialized vmalloc case but the flush failed using page_to_pfn. */ void flush_cache_vmap(unsigned long start, unsigned long end) { unsigned long addr, physaddr; struct vm_struct *vm; /* Prevent cache move-in */ flush_tlb_kernel_range(start, end); if (end - start >= parisc_cache_flush_threshold) { flush_cache_all(); return; } if (WARN_ON_ONCE(!is_vmalloc_addr((void *)start))) { flush_cache_all(); return; } vm = find_vm_area((void *)start); if (WARN_ON_ONCE(!vm)) { flush_cache_all(); return; } /* The physical addresses of IOREMAP regions are contiguous */ if (vm->flags & VM_IOREMAP) { physaddr = vm->phys_addr; for (addr = start; addr < end; addr += PAGE_SIZE) { preempt_disable(); flush_dcache_page_asm(physaddr, start); flush_icache_page_asm(physaddr, start); preempt_enable(); physaddr += PAGE_SIZE; } return; } flush_cache_all(); } EXPORT_SYMBOL(flush_cache_vmap); /* * The vm_struct has been retired and the page table is set up. The * last page in the range is a guard page. Its physical address can't * be determined using lpa, so there is no way to flush the range * using flush_dcache_page_asm. */ void flush_cache_vunmap(unsigned long start, unsigned long end) { /* Prevent cache move-in */ flush_tlb_kernel_range(start, end); flush_data_cache(); } EXPORT_SYMBOL(flush_cache_vunmap); /* * On systems with PA8800/PA8900 processors, there is no way to flush * a vmap range other than using the architected loop to flush the * entire cache. The page directory is not set up, so we can't use * fdc, etc. FDCE/FICE don't work to flush a portion of the cache. * L2 is physically indexed but FDCE/FICE instructions in virtual * mode output their virtual address on the core bus, not their * real address. As a result, the L2 cache index formed from the * virtual address will most likely not be the same as the L2 index * formed from the real address. */ void flush_kernel_vmap_range(void *vaddr, int size) { unsigned long start = (unsigned long)vaddr; unsigned long end = start + size; flush_tlb_kernel_range(start, end); if (!static_branch_likely(&parisc_has_dcache)) return; /* If interrupts are disabled, we can only do local flush */ if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) { flush_data_cache_local(NULL); return; } flush_data_cache(); } EXPORT_SYMBOL(flush_kernel_vmap_range); void invalidate_kernel_vmap_range(void *vaddr, int size) { unsigned long start = (unsigned long)vaddr; unsigned long end = start + size; /* Ensure DMA is complete */ asm_syncdma(); flush_tlb_kernel_range(start, end); if (!static_branch_likely(&parisc_has_dcache)) return; /* If interrupts are disabled, we can only do local flush */ if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled())) { flush_data_cache_local(NULL); return; } flush_data_cache(); } EXPORT_SYMBOL(invalidate_kernel_vmap_range); SYSCALL_DEFINE3(cacheflush, unsigned long, addr, unsigned long, bytes, unsigned int, cache) { unsigned long start, end; ASM_EXCEPTIONTABLE_VAR(error); if (bytes == 0) return 0; if (!access_ok((void __user *) addr, bytes)) return -EFAULT; end = addr + bytes; if (cache & DCACHE) { start = addr; __asm__ __volatile__ ( #ifdef CONFIG_64BIT "1: cmpb,*<<,n %0,%2,1b\n" #else "1: cmpb,<<,n %0,%2,1b\n" #endif " fic,m %3(%4,%0)\n" "2: sync\n" ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1") : "+r" (start), "+r" (error) : "r" (end), "r" (dcache_stride), "i" (SR_USER)); } if (cache & ICACHE && error == 0) { start = addr; __asm__ __volatile__ ( #ifdef CONFIG_64BIT "1: cmpb,*<<,n %0,%2,1b\n" #else "1: cmpb,<<,n %0,%2,1b\n" #endif " fdc,m %3(%4,%0)\n" "2: sync\n" ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1") : "+r" (start), "+r" (error) : "r" (end), "r" (icache_stride), "i" (SR_USER)); } return error; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1