Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew Wilcox | 2906 | 95.40% | 7 | 26.92% |
Helge Deller | 34 | 1.12% | 6 | 23.08% |
Christoph Hellwig | 34 | 1.12% | 2 | 7.69% |
Arvind Yadav | 26 | 0.85% | 1 | 3.85% |
Chris Wilson | 17 | 0.56% | 1 | 3.85% |
Kyle McMartin | 12 | 0.39% | 1 | 3.85% |
Simon Arlott | 5 | 0.16% | 1 | 3.85% |
Randy Dunlap | 3 | 0.10% | 1 | 3.85% |
Thomas Gleixner | 2 | 0.07% | 1 | 3.85% |
Dan Carpenter | 2 | 0.07% | 1 | 3.85% |
Alexey Budankov | 2 | 0.07% | 1 | 3.85% |
Paul Gortmaker | 1 | 0.03% | 1 | 3.85% |
Linus Torvalds | 1 | 0.03% | 1 | 3.85% |
Arjan van de Ven | 1 | 0.03% | 1 | 3.85% |
Total | 3046 | 26 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Parisc performance counters * Copyright (C) 2001 Randolph Chung <tausq@debian.org> * * This code is derived, with permission, from HP/UX sources. */ /* * Edited comment from original sources: * * This driver programs the PCX-U/PCX-W performance counters * on the PA-RISC 2.0 chips. The driver keeps all images now * internally to the kernel to hopefully eliminate the possibility * of a bad image halting the CPU. Also, there are different * images for the PCX-W and later chips vs the PCX-U chips. * * Only 1 process is allowed to access the driver at any time, * so the only protection that is needed is at open and close. * A variable "perf_enabled" is used to hold the state of the * driver. The spinlock "perf_lock" is used to protect the * modification of the state during open/close operations so * multiple processes don't get into the driver simultaneously. * * This driver accesses the processor directly vs going through * the PDC INTRIGUE calls. This is done to eliminate bugs introduced * in various PDC revisions. The code is much more maintainable * and reliable this way vs having to debug on every version of PDC * on every box. */ #include <linux/capability.h> #include <linux/init.h> #include <linux/proc_fs.h> #include <linux/miscdevice.h> #include <linux/spinlock.h> #include <linux/uaccess.h> #include <asm/perf.h> #include <asm/parisc-device.h> #include <asm/processor.h> #include <asm/runway.h> #include <asm/io.h> /* for __raw_read() */ #include "perf_images.h" #define MAX_RDR_WORDS 24 #define PERF_VERSION 2 /* derived from hpux's PI v2 interface */ /* definition of RDR regs */ struct rdr_tbl_ent { uint16_t width; uint8_t num_words; uint8_t write_control; }; static int perf_processor_interface __read_mostly = UNKNOWN_INTF; static int perf_enabled __read_mostly; static DEFINE_SPINLOCK(perf_lock); static struct parisc_device *cpu_device __read_mostly; /* RDRs to write for PCX-W */ static const int perf_rdrs_W[] = { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 }; /* RDRs to write for PCX-U */ static const int perf_rdrs_U[] = { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 }; /* RDR register descriptions for PCX-W */ static const struct rdr_tbl_ent perf_rdr_tbl_W[] = { { 19, 1, 8 }, /* RDR 0 */ { 16, 1, 16 }, /* RDR 1 */ { 72, 2, 0 }, /* RDR 2 */ { 81, 2, 0 }, /* RDR 3 */ { 328, 6, 0 }, /* RDR 4 */ { 160, 3, 0 }, /* RDR 5 */ { 336, 6, 0 }, /* RDR 6 */ { 164, 3, 0 }, /* RDR 7 */ { 0, 0, 0 }, /* RDR 8 */ { 35, 1, 0 }, /* RDR 9 */ { 6, 1, 0 }, /* RDR 10 */ { 18, 1, 0 }, /* RDR 11 */ { 13, 1, 0 }, /* RDR 12 */ { 8, 1, 0 }, /* RDR 13 */ { 8, 1, 0 }, /* RDR 14 */ { 8, 1, 0 }, /* RDR 15 */ { 1530, 24, 0 }, /* RDR 16 */ { 16, 1, 0 }, /* RDR 17 */ { 4, 1, 0 }, /* RDR 18 */ { 0, 0, 0 }, /* RDR 19 */ { 152, 3, 24 }, /* RDR 20 */ { 152, 3, 24 }, /* RDR 21 */ { 233, 4, 48 }, /* RDR 22 */ { 233, 4, 48 }, /* RDR 23 */ { 71, 2, 0 }, /* RDR 24 */ { 71, 2, 0 }, /* RDR 25 */ { 11, 1, 0 }, /* RDR 26 */ { 18, 1, 0 }, /* RDR 27 */ { 128, 2, 0 }, /* RDR 28 */ { 0, 0, 0 }, /* RDR 29 */ { 16, 1, 0 }, /* RDR 30 */ { 16, 1, 0 }, /* RDR 31 */ }; /* RDR register descriptions for PCX-U */ static const struct rdr_tbl_ent perf_rdr_tbl_U[] = { { 19, 1, 8 }, /* RDR 0 */ { 32, 1, 16 }, /* RDR 1 */ { 20, 1, 0 }, /* RDR 2 */ { 0, 0, 0 }, /* RDR 3 */ { 344, 6, 0 }, /* RDR 4 */ { 176, 3, 0 }, /* RDR 5 */ { 336, 6, 0 }, /* RDR 6 */ { 0, 0, 0 }, /* RDR 7 */ { 0, 0, 0 }, /* RDR 8 */ { 0, 0, 0 }, /* RDR 9 */ { 28, 1, 0 }, /* RDR 10 */ { 33, 1, 0 }, /* RDR 11 */ { 0, 0, 0 }, /* RDR 12 */ { 230, 4, 0 }, /* RDR 13 */ { 32, 1, 0 }, /* RDR 14 */ { 128, 2, 0 }, /* RDR 15 */ { 1494, 24, 0 }, /* RDR 16 */ { 18, 1, 0 }, /* RDR 17 */ { 4, 1, 0 }, /* RDR 18 */ { 0, 0, 0 }, /* RDR 19 */ { 158, 3, 24 }, /* RDR 20 */ { 158, 3, 24 }, /* RDR 21 */ { 194, 4, 48 }, /* RDR 22 */ { 194, 4, 48 }, /* RDR 23 */ { 71, 2, 0 }, /* RDR 24 */ { 71, 2, 0 }, /* RDR 25 */ { 28, 1, 0 }, /* RDR 26 */ { 33, 1, 0 }, /* RDR 27 */ { 88, 2, 0 }, /* RDR 28 */ { 32, 1, 0 }, /* RDR 29 */ { 24, 1, 0 }, /* RDR 30 */ { 16, 1, 0 }, /* RDR 31 */ }; /* * A non-zero write_control in the above tables is a byte offset into * this array. */ static const uint64_t perf_bitmasks[] = { 0x0000000000000000ul, /* first dbl word must be zero */ 0xfdffe00000000000ul, /* RDR0 bitmask */ 0x003f000000000000ul, /* RDR1 bitmask */ 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (152 bits) */ 0xfffffffffffffffful, 0xfffffffc00000000ul, 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (233 bits) */ 0xfffffffffffffffful, 0xfffffffffffffffcul, 0xff00000000000000ul }; /* * Write control bitmasks for Pa-8700 processor given * some things have changed slightly. */ static const uint64_t perf_bitmasks_piranha[] = { 0x0000000000000000ul, /* first dbl word must be zero */ 0xfdffe00000000000ul, /* RDR0 bitmask */ 0x003f000000000000ul, /* RDR1 bitmask */ 0x00fffffffffffffful, /* RDR20-RDR21 bitmask (158 bits) */ 0xfffffffffffffffful, 0xfffffffc00000000ul, 0xfffffffffffffffful, /* RDR22-RDR23 bitmask (210 bits) */ 0xfffffffffffffffful, 0xfffffffffffffffful, 0xfffc000000000000ul }; static const uint64_t *bitmask_array; /* array of bitmasks to use */ /****************************************************************************** * Function Prototypes *****************************************************************************/ static int perf_config(uint32_t *image_ptr); static int perf_release(struct inode *inode, struct file *file); static int perf_open(struct inode *inode, struct file *file); static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos); static ssize_t perf_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos); static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg); static void perf_start_counters(void); static int perf_stop_counters(uint32_t *raddr); static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num); static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer); static int perf_rdr_clear(uint32_t rdr_num); static int perf_write_image(uint64_t *memaddr); static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer); /* External Assembly Routines */ extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width); extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width); extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer); extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer); extern void perf_intrigue_enable_perf_counters (void); extern void perf_intrigue_disable_perf_counters (void); /****************************************************************************** * Function Definitions *****************************************************************************/ /* * configure: * * Configure the cpu with a given data image. First turn off the counters, * then download the image, then turn the counters back on. */ static int perf_config(uint32_t *image_ptr) { long error; uint32_t raddr[4]; /* Stop the counters*/ error = perf_stop_counters(raddr); if (error != 0) { printk("perf_config: perf_stop_counters = %ld\n", error); return -EINVAL; } printk("Preparing to write image\n"); /* Write the image to the chip */ error = perf_write_image((uint64_t *)image_ptr); if (error != 0) { printk("perf_config: DOWNLOAD = %ld\n", error); return -EINVAL; } printk("Preparing to start counters\n"); /* Start the counters */ perf_start_counters(); return sizeof(uint32_t); } /* * Open the device and initialize all of its memory. The device is only * opened once, but can be "queried" by multiple processes that know its * file descriptor. */ static int perf_open(struct inode *inode, struct file *file) { spin_lock(&perf_lock); if (perf_enabled) { spin_unlock(&perf_lock); return -EBUSY; } perf_enabled = 1; spin_unlock(&perf_lock); return 0; } /* * Close the device. */ static int perf_release(struct inode *inode, struct file *file) { spin_lock(&perf_lock); perf_enabled = 0; spin_unlock(&perf_lock); return 0; } /* * Read does nothing for this driver */ static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos) { return 0; } /* * write: * * This routine downloads the image to the chip. It must be * called on the processor that the download should happen * on. */ static ssize_t perf_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { size_t image_size __maybe_unused; uint32_t image_type; uint32_t interface_type; uint32_t test; if (perf_processor_interface == ONYX_INTF) image_size = PCXU_IMAGE_SIZE; else if (perf_processor_interface == CUDA_INTF) image_size = PCXW_IMAGE_SIZE; else return -EFAULT; if (!perfmon_capable()) return -EACCES; if (count != sizeof(uint32_t)) return -EIO; if (copy_from_user(&image_type, buf, sizeof(uint32_t))) return -EFAULT; /* Get the interface type and test type */ interface_type = (image_type >> 16) & 0xffff; test = (image_type & 0xffff); /* Make sure everything makes sense */ /* First check the machine type is correct for the requested image */ if (((perf_processor_interface == CUDA_INTF) && (interface_type != CUDA_INTF)) || ((perf_processor_interface == ONYX_INTF) && (interface_type != ONYX_INTF))) return -EINVAL; /* Next check to make sure the requested image is valid */ if (((interface_type == CUDA_INTF) && (test >= MAX_CUDA_IMAGES)) || ((interface_type == ONYX_INTF) && (test >= MAX_ONYX_IMAGES))) return -EINVAL; /* Copy the image into the processor */ if (interface_type == CUDA_INTF) return perf_config(cuda_images[test]); else return perf_config(onyx_images[test]); return count; } /* * Patch the images that need to know the IVA addresses. */ static void perf_patch_images(void) { #if 0 /* FIXME!! */ /* * NOTE: this routine is VERY specific to the current TLB image. * If the image is changed, this routine might also need to be changed. */ extern void $i_itlb_miss_2_0(); extern void $i_dtlb_miss_2_0(); extern void PA2_0_iva(); /* * We can only use the lower 32-bits, the upper 32-bits should be 0 * anyway given this is in the kernel */ uint32_t itlb_addr = (uint32_t)&($i_itlb_miss_2_0); uint32_t dtlb_addr = (uint32_t)&($i_dtlb_miss_2_0); uint32_t IVAaddress = (uint32_t)&PA2_0_iva; if (perf_processor_interface == ONYX_INTF) { /* clear last 2 bytes */ onyx_images[TLBMISS][15] &= 0xffffff00; /* set 2 bytes */ onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24)); onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00; onyx_images[TLBMISS][17] = itlb_addr; /* clear last 2 bytes */ onyx_images[TLBHANDMISS][15] &= 0xffffff00; /* set 2 bytes */ onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24)); onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00; onyx_images[TLBHANDMISS][17] = itlb_addr; /* clear last 2 bytes */ onyx_images[BIG_CPI][15] &= 0xffffff00; /* set 2 bytes */ onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24)); onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00; onyx_images[BIG_CPI][17] = itlb_addr; onyx_images[PANIC][15] &= 0xffffff00; /* clear last 2 bytes */ onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */ onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00; } else if (perf_processor_interface == CUDA_INTF) { /* Cuda interface */ cuda_images[TLBMISS][16] = (cuda_images[TLBMISS][16]&0xffff0000) | ((dtlb_addr >> 8)&0x0000ffff); cuda_images[TLBMISS][17] = ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff); cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000; cuda_images[TLBHANDMISS][16] = (cuda_images[TLBHANDMISS][16]&0xffff0000) | ((dtlb_addr >> 8)&0x0000ffff); cuda_images[TLBHANDMISS][17] = ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff); cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000; cuda_images[BIG_CPI][16] = (cuda_images[BIG_CPI][16]&0xffff0000) | ((dtlb_addr >> 8)&0x0000ffff); cuda_images[BIG_CPI][17] = ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff); cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000; } else { /* Unknown type */ } #endif } /* * ioctl routine * All routines effect the processor that they are executed on. Thus you * must be running on the processor that you wish to change. */ static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { long error_start; uint32_t raddr[4]; int error = 0; switch (cmd) { case PA_PERF_ON: /* Start the counters */ perf_start_counters(); break; case PA_PERF_OFF: error_start = perf_stop_counters(raddr); if (error_start != 0) { printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start); error = -EFAULT; break; } /* copy out the Counters */ if (copy_to_user((void __user *)arg, raddr, sizeof (raddr)) != 0) { error = -EFAULT; break; } break; case PA_PERF_VERSION: /* Return the version # */ error = put_user(PERF_VERSION, (int *)arg); break; default: error = -ENOTTY; } return error; } static const struct file_operations perf_fops = { .llseek = no_llseek, .read = perf_read, .write = perf_write, .unlocked_ioctl = perf_ioctl, .compat_ioctl = perf_ioctl, .open = perf_open, .release = perf_release }; static struct miscdevice perf_dev = { MISC_DYNAMIC_MINOR, PA_PERF_DEV, &perf_fops }; /* * Initialize the module */ static int __init perf_init(void) { int ret; /* Determine correct processor interface to use */ bitmask_array = perf_bitmasks; if (boot_cpu_data.cpu_type == pcxu || boot_cpu_data.cpu_type == pcxu_) { perf_processor_interface = ONYX_INTF; } else if (boot_cpu_data.cpu_type == pcxw || boot_cpu_data.cpu_type == pcxw_ || boot_cpu_data.cpu_type == pcxw2 || boot_cpu_data.cpu_type == mako || boot_cpu_data.cpu_type == mako2) { perf_processor_interface = CUDA_INTF; if (boot_cpu_data.cpu_type == pcxw2 || boot_cpu_data.cpu_type == mako || boot_cpu_data.cpu_type == mako2) bitmask_array = perf_bitmasks_piranha; } else { perf_processor_interface = UNKNOWN_INTF; printk("Performance monitoring counters not supported on this processor\n"); return -ENODEV; } ret = misc_register(&perf_dev); if (ret) { printk(KERN_ERR "Performance monitoring counters: " "cannot register misc device.\n"); return ret; } /* Patch the images to match the system */ perf_patch_images(); /* TODO: this only lets us access the first cpu.. what to do for SMP? */ cpu_device = per_cpu(cpu_data, 0).dev; printk("Performance monitoring counters enabled for %s\n", per_cpu(cpu_data, 0).dev->name); return 0; } device_initcall(perf_init); /* * perf_start_counters(void) * * Start the counters. */ static void perf_start_counters(void) { /* Enable performance monitor counters */ perf_intrigue_enable_perf_counters(); } /* * perf_stop_counters * * Stop the performance counters and save counts * in a per_processor array. */ static int perf_stop_counters(uint32_t *raddr) { uint64_t userbuf[MAX_RDR_WORDS]; /* Disable performance counters */ perf_intrigue_disable_perf_counters(); if (perf_processor_interface == ONYX_INTF) { uint64_t tmp64; /* * Read the counters */ if (!perf_rdr_read_ubuf(16, userbuf)) return -13; /* Counter0 is bits 1398 to 1429 */ tmp64 = (userbuf[21] << 22) & 0x00000000ffc00000; tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff; /* OR sticky0 (bit 1430) to counter0 bit 32 */ tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000; raddr[0] = (uint32_t)tmp64; /* Counter1 is bits 1431 to 1462 */ tmp64 = (userbuf[22] >> 9) & 0x00000000ffffffff; /* OR sticky1 (bit 1463) to counter1 bit 32 */ tmp64 |= (userbuf[22] << 23) & 0x0000000080000000; raddr[1] = (uint32_t)tmp64; /* Counter2 is bits 1464 to 1495 */ tmp64 = (userbuf[22] << 24) & 0x00000000ff000000; tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff; /* OR sticky2 (bit 1496) to counter2 bit 32 */ tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000; raddr[2] = (uint32_t)tmp64; /* Counter3 is bits 1497 to 1528 */ tmp64 = (userbuf[23] >> 7) & 0x00000000ffffffff; /* OR sticky3 (bit 1529) to counter3 bit 32 */ tmp64 |= (userbuf[23] << 25) & 0x0000000080000000; raddr[3] = (uint32_t)tmp64; /* * Zero out the counters */ /* * The counters and sticky-bits comprise the last 132 bits * (1398 - 1529) of RDR16 on a U chip. We'll zero these * out the easy way: zero out last 10 bits of dword 21, * all of dword 22 and 58 bits (plus 6 don't care bits) of * dword 23. */ userbuf[21] &= 0xfffffffffffffc00ul; /* 0 to last 10 bits */ userbuf[22] = 0; userbuf[23] = 0; /* * Write back the zeroed bytes + the image given * the read was destructive. */ perf_rdr_write(16, userbuf); } else { /* * Read RDR-15 which contains the counters and sticky bits */ if (!perf_rdr_read_ubuf(15, userbuf)) { return -13; } /* * Clear out the counters */ perf_rdr_clear(15); /* * Copy the counters */ raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL); raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL); raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL); raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL); } return 0; } /* * perf_rdr_get_entry * * Retrieve a pointer to the description of what this * RDR contains. */ static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num) { if (perf_processor_interface == ONYX_INTF) { return &perf_rdr_tbl_U[rdr_num]; } else { return &perf_rdr_tbl_W[rdr_num]; } } /* * perf_rdr_read_ubuf * * Read the RDR value into the buffer specified. */ static int perf_rdr_read_ubuf(uint32_t rdr_num, uint64_t *buffer) { uint64_t data, data_mask = 0; uint32_t width, xbits, i; const struct rdr_tbl_ent *tentry; tentry = perf_rdr_get_entry(rdr_num); if ((width = tentry->width) == 0) return 0; /* Clear out buffer */ i = tentry->num_words; while (i--) { buffer[i] = 0; } /* Check for bits an even number of 64 */ if ((xbits = width & 0x03f) != 0) { data_mask = 1; data_mask <<= (64 - xbits); data_mask--; } /* Grab all of the data */ i = tentry->num_words; while (i--) { if (perf_processor_interface == ONYX_INTF) { data = perf_rdr_shift_in_U(rdr_num, width); } else { data = perf_rdr_shift_in_W(rdr_num, width); } if (xbits) { buffer[i] |= (data << (64 - xbits)); if (i) { buffer[i-1] |= ((data >> xbits) & data_mask); } } else { buffer[i] = data; } } return 1; } /* * perf_rdr_clear * * Zero out the given RDR register */ static int perf_rdr_clear(uint32_t rdr_num) { const struct rdr_tbl_ent *tentry; int32_t i; tentry = perf_rdr_get_entry(rdr_num); if (tentry->width == 0) { return -1; } i = tentry->num_words; while (i--) { if (perf_processor_interface == ONYX_INTF) { perf_rdr_shift_out_U(rdr_num, 0UL); } else { perf_rdr_shift_out_W(rdr_num, 0UL); } } return 0; } /* * perf_write_image * * Write the given image out to the processor */ static int perf_write_image(uint64_t *memaddr) { uint64_t buffer[MAX_RDR_WORDS]; uint64_t *bptr; uint32_t dwords; const uint32_t *intrigue_rdr; const uint64_t *intrigue_bitmask; uint64_t tmp64; void __iomem *runway; const struct rdr_tbl_ent *tentry; int i; /* Clear out counters */ if (perf_processor_interface == ONYX_INTF) { perf_rdr_clear(16); /* Toggle performance monitor */ perf_intrigue_enable_perf_counters(); perf_intrigue_disable_perf_counters(); intrigue_rdr = perf_rdrs_U; } else { perf_rdr_clear(15); intrigue_rdr = perf_rdrs_W; } /* Write all RDRs */ while (*intrigue_rdr != -1) { tentry = perf_rdr_get_entry(*intrigue_rdr); perf_rdr_read_ubuf(*intrigue_rdr, buffer); bptr = &buffer[0]; dwords = tentry->num_words; if (tentry->write_control) { intrigue_bitmask = &bitmask_array[tentry->write_control >> 3]; while (dwords--) { tmp64 = *intrigue_bitmask & *memaddr++; tmp64 |= (~(*intrigue_bitmask++)) & *bptr; *bptr++ = tmp64; } } else { while (dwords--) { *bptr++ = *memaddr++; } } perf_rdr_write(*intrigue_rdr, buffer); intrigue_rdr++; } /* * Now copy out the Runway stuff which is not in RDRs */ if (cpu_device == NULL) { printk(KERN_ERR "write_image: cpu_device not yet initialized!\n"); return -1; } runway = ioremap(cpu_device->hpa.start, 4096); if (!runway) { pr_err("perf_write_image: ioremap failed!\n"); return -ENOMEM; } /* Merge intrigue bits into Runway STATUS 0 */ tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful; __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul), runway + RUNWAY_STATUS); /* Write RUNWAY DEBUG registers */ for (i = 0; i < 8; i++) { __raw_writeq(*memaddr++, runway + RUNWAY_DEBUG); } return 0; } /* * perf_rdr_write * * Write the given RDR register with the contents * of the given buffer. */ static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer) { const struct rdr_tbl_ent *tentry; int32_t i; printk("perf_rdr_write\n"); tentry = perf_rdr_get_entry(rdr_num); if (tentry->width == 0) { return; } i = tentry->num_words; while (i--) { if (perf_processor_interface == ONYX_INTF) { perf_rdr_shift_out_U(rdr_num, buffer[i]); } else { perf_rdr_shift_out_W(rdr_num, buffer[i]); } } printk("perf_rdr_write done\n"); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1