Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Aneesh Kumar K.V | 3679 | 67.31% | 92 | 45.32% |
Christophe Leroy | 263 | 4.81% | 13 | 6.40% |
Anton Blanchard | 201 | 3.68% | 5 | 2.46% |
David S. Miller | 187 | 3.42% | 3 | 1.48% |
David Gibson | 182 | 3.33% | 5 | 2.46% |
Benjamin Herrenschmidt | 140 | 2.56% | 14 | 6.90% |
Nicholas Piggin | 112 | 2.05% | 9 | 4.43% |
Paul Mackerras | 109 | 1.99% | 9 | 4.43% |
Oliver O'Halloran | 108 | 1.98% | 2 | 0.99% |
Laurent Dufour | 82 | 1.50% | 1 | 0.49% |
Mike Rapoport | 75 | 1.37% | 3 | 1.48% |
David Hildenbrand | 74 | 1.35% | 3 | 1.48% |
Ram Pai | 54 | 0.99% | 3 | 1.48% |
Michael Ellerman | 29 | 0.53% | 5 | 2.46% |
Li Zhong | 26 | 0.48% | 3 | 1.48% |
Linus Torvalds | 21 | 0.38% | 2 | 0.99% |
Hugh Dickins | 15 | 0.27% | 2 | 0.99% |
Mel Gorman | 13 | 0.24% | 2 | 0.99% |
Daniel Axtens | 12 | 0.22% | 1 | 0.49% |
Andy Whitcroft | 9 | 0.16% | 2 | 0.99% |
Kirill A. Shutemov | 9 | 0.16% | 2 | 0.99% |
Andrew Morton | 8 | 0.15% | 2 | 0.99% |
Catalin Marinas | 7 | 0.13% | 1 | 0.49% |
Johannes Weiner | 6 | 0.11% | 1 | 0.49% |
Steven Price | 6 | 0.11% | 1 | 0.49% |
Shawn Anastasio | 4 | 0.07% | 1 | 0.49% |
Peter Xu | 4 | 0.07% | 1 | 0.49% |
Tang Chen | 4 | 0.07% | 1 | 0.49% |
Gerald Schaefer | 4 | 0.07% | 1 | 0.49% |
Rick Edgecombe | 3 | 0.05% | 1 | 0.49% |
Michael Neuling | 3 | 0.05% | 1 | 0.49% |
Alexandre Ghiti | 3 | 0.05% | 1 | 0.49% |
MinChan Kim | 3 | 0.05% | 1 | 0.49% |
Jan Kara | 2 | 0.04% | 1 | 0.49% |
Sam Ravnborg | 2 | 0.04% | 1 | 0.49% |
Aneesh Kumar K.V (IBM) | 1 | 0.02% | 1 | 0.49% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 0.49% |
Darren Stevens | 1 | 0.02% | 1 | 0.49% |
Benjamin Gray | 1 | 0.02% | 1 | 0.49% |
Ingo Molnar | 1 | 0.02% | 1 | 0.49% |
Matthew Wilcox | 1 | 0.02% | 1 | 0.49% |
Reza Arbab | 1 | 0.02% | 1 | 0.49% |
Total | 5466 | 203 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ #include <asm-generic/pgtable-nop4d.h> #ifndef __ASSEMBLY__ #include <linux/mmdebug.h> #include <linux/bug.h> #include <linux/sizes.h> #endif /* * Common bits between hash and Radix page table */ #define _PAGE_EXEC 0x00001 /* execute permission */ #define _PAGE_WRITE 0x00002 /* write access allowed */ #define _PAGE_READ 0x00004 /* read access allowed */ #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */ #define _PAGE_SAO 0x00010 /* Strong access order */ #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */ #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */ #define _PAGE_DIRTY 0x00080 /* C: page changed */ #define _PAGE_ACCESSED 0x00100 /* R: page referenced */ /* * Software bits */ #define _RPAGE_SW0 0x2000000000000000UL #define _RPAGE_SW1 0x00800 #define _RPAGE_SW2 0x00400 #define _RPAGE_SW3 0x00200 #define _RPAGE_RSV1 0x00040UL #define _RPAGE_PKEY_BIT4 0x1000000000000000UL #define _RPAGE_PKEY_BIT3 0x0800000000000000UL #define _RPAGE_PKEY_BIT2 0x0400000000000000UL #define _RPAGE_PKEY_BIT1 0x0200000000000000UL #define _RPAGE_PKEY_BIT0 0x0100000000000000UL #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */ #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */ /* * We need to mark a pmd pte invalid while splitting. We can do that by clearing * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to * differentiate between two use a SW field when invalidating. * * We do that temporary invalidate for regular pte entry in ptep_set_access_flags * * This is used only when _PAGE_PRESENT is cleared. */ #define _PAGE_INVALID _RPAGE_SW0 /* * Top and bottom bits of RPN which can be used by hash * translation mode, because we expect them to be zero * otherwise. */ #define _RPAGE_RPN0 0x01000 #define _RPAGE_RPN1 0x02000 #define _RPAGE_RPN43 0x0080000000000000UL #define _RPAGE_RPN42 0x0040000000000000UL #define _RPAGE_RPN41 0x0020000000000000UL /* Max physical address bit as per radix table */ #define _RPAGE_PA_MAX 56 /* * Max physical address bit we will use for now. * * This is mostly a hardware limitation and for now Power9 has * a 51 bit limit. * * This is different from the number of physical bit required to address * the last byte of memory. That is defined by MAX_PHYSMEM_BITS. * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum * number of sections we can support (SECTIONS_SHIFT). * * This is different from Radix page table limitation above and * should always be less than that. The limit is done such that * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX * for hash linux page table specific bits. * * In order to be compatible with future hardware generations we keep * some offsets and limit this for now to 53 */ #define _PAGE_PA_MAX 53 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */ #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */ #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */ /* * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE * Instead of fixing all of them, add an alternate define which * maps CI pte mapping. */ #define _PAGE_NO_CACHE _PAGE_TOLERANT /* * We support _RPAGE_PA_MAX bit real address in pte. On the linux side * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX * and every thing below PAGE_SHIFT; */ #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK)) #define PTE_RPN_SHIFT PAGE_SHIFT /* * set of bits not changed in pmd_modify. Even though we have hash specific bits * in here, on radix we expect them to be zero. */ #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \ _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) /* * user access blocked by key */ #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY) #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ) #define _PAGE_KERNEL_ROX (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC) #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC) /* * _PAGE_CHG_MASK masks of bits that are to be preserved across * pgprot changes */ #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \ _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) /* * We define 2 sets of base prot bits, one for basic pages (ie, * cacheable kernel and user pages) and one for non cacheable * pages. We always set _PAGE_COHERENT when SMP is enabled or * the processor might need it for DMA coherency. */ #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED) #define _PAGE_BASE (_PAGE_BASE_NC) #include <asm/pgtable-masks.h> /* Permission masks used for kernel mappings */ #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT) #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT) #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) #ifndef __ASSEMBLY__ /* * page table defines */ extern unsigned long __pte_index_size; extern unsigned long __pmd_index_size; extern unsigned long __pud_index_size; extern unsigned long __pgd_index_size; extern unsigned long __pud_cache_index; #define PTE_INDEX_SIZE __pte_index_size #define PMD_INDEX_SIZE __pmd_index_size #define PUD_INDEX_SIZE __pud_index_size #define PGD_INDEX_SIZE __pgd_index_size /* pmd table use page table fragments */ #define PMD_CACHE_INDEX 0 #define PUD_CACHE_INDEX __pud_cache_index /* * Because of use of pte fragments and THP, size of page table * are not always derived out of index size above. */ extern unsigned long __pte_table_size; extern unsigned long __pmd_table_size; extern unsigned long __pud_table_size; extern unsigned long __pgd_table_size; #define PTE_TABLE_SIZE __pte_table_size #define PMD_TABLE_SIZE __pmd_table_size #define PUD_TABLE_SIZE __pud_table_size #define PGD_TABLE_SIZE __pgd_table_size extern unsigned long __pmd_val_bits; extern unsigned long __pud_val_bits; extern unsigned long __pgd_val_bits; #define PMD_VAL_BITS __pmd_val_bits #define PUD_VAL_BITS __pud_val_bits #define PGD_VAL_BITS __pgd_val_bits extern unsigned long __pte_frag_nr; #define PTE_FRAG_NR __pte_frag_nr extern unsigned long __pte_frag_size_shift; #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT) extern unsigned long __pmd_frag_nr; #define PMD_FRAG_NR __pmd_frag_nr extern unsigned long __pmd_frag_size_shift; #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT) #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE) #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) #define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE) #define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD) #define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD) #define MAX_PTRS_PER_PGD (1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \ H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE)) /* PMD_SHIFT determines what a second-level page table entry can map */ #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PUD_SHIFT determines what a third-level page table entry can map */ #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE) #define PUD_SIZE (1UL << PUD_SHIFT) #define PUD_MASK (~(PUD_SIZE-1)) /* PGDIR_SHIFT determines what a fourth-level page table entry can map */ #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* Bits to mask out from a PMD to get to the PTE page */ #define PMD_MASKED_BITS 0xc0000000000000ffUL /* Bits to mask out from a PUD to get to the PMD page */ #define PUD_MASKED_BITS 0xc0000000000000ffUL /* Bits to mask out from a PGD to get to the PUD page */ #define P4D_MASKED_BITS 0xc0000000000000ffUL /* * Used as an indicator for rcu callback functions */ enum pgtable_index { PTE_INDEX = 0, PMD_INDEX, PUD_INDEX, PGD_INDEX, /* * Below are used with 4k page size and hugetlb */ HTLB_16M_INDEX, HTLB_16G_INDEX, }; extern unsigned long __vmalloc_start; extern unsigned long __vmalloc_end; #define VMALLOC_START __vmalloc_start #define VMALLOC_END __vmalloc_end static inline unsigned int ioremap_max_order(void) { if (radix_enabled()) return PUD_SHIFT; return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */ } #define IOREMAP_MAX_ORDER ioremap_max_order() extern unsigned long __kernel_virt_start; extern unsigned long __kernel_io_start; extern unsigned long __kernel_io_end; #define KERN_VIRT_START __kernel_virt_start #define KERN_IO_START __kernel_io_start #define KERN_IO_END __kernel_io_end extern struct page *vmemmap; extern unsigned long pci_io_base; #define pmd_leaf pmd_leaf static inline bool pmd_leaf(pmd_t pmd) { return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)); } #define pud_leaf pud_leaf static inline bool pud_leaf(pud_t pud) { return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE)); } #endif /* __ASSEMBLY__ */ #include <asm/book3s/64/hash.h> #include <asm/book3s/64/radix.h> #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS #define MAX_PHYSMEM_BITS H_MAX_PHYSMEM_BITS #else #define MAX_PHYSMEM_BITS R_MAX_PHYSMEM_BITS #endif #ifdef CONFIG_PPC_64K_PAGES #include <asm/book3s/64/pgtable-64k.h> #else #include <asm/book3s/64/pgtable-4k.h> #endif #include <asm/barrier.h> /* * IO space itself carved into the PIO region (ISA and PHB IO space) and * the ioremap space * * ISA_IO_BASE = KERN_IO_START, 64K reserved area * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE */ #define FULL_IO_SIZE 0x80000000ul #define ISA_IO_BASE (KERN_IO_START) #define ISA_IO_END (KERN_IO_START + 0x10000ul) #define PHB_IO_BASE (ISA_IO_END) #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) #define IOREMAP_BASE (PHB_IO_END) #define IOREMAP_START (ioremap_bot) #define IOREMAP_END (KERN_IO_END - FIXADDR_SIZE) #define FIXADDR_SIZE SZ_32M #define FIXADDR_TOP (IOREMAP_END + FIXADDR_SIZE) #ifndef __ASSEMBLY__ /* * This is the default implementation of various PTE accessors, it's * used in all cases except Book3S with 64K pages where we have a * concept of sub-pages */ #ifndef __real_pte #define __real_pte(e, p, o) ((real_pte_t){(e)}) #define __rpte_to_pte(r) ((r).pte) #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT) #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ do { \ index = 0; \ shift = mmu_psize_defs[psize].shift; \ #define pte_iterate_hashed_end() } while(0) /* * We expect this to be called only for user addresses or kernel virtual * addresses other than the linear mapping. */ #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K #endif /* __real_pte */ static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long clr, unsigned long set, int huge) { if (radix_enabled()) return radix__pte_update(mm, addr, ptep, clr, set, huge); return hash__pte_update(mm, addr, ptep, clr, set, huge); } /* * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update. * We currently remove entries from the hashtable regardless of whether * the entry was young or dirty. * * We should be more intelligent about this but for the moment we override * these functions and force a tlb flush unconditionally * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same * function for both hash and radix. */ static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old; if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) return 0; old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); return (old & _PAGE_ACCESSED) != 0; } #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ ({ \ __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ }) /* * On Book3S CPUs, clearing the accessed bit without a TLB flush * doesn't cause data corruption. [ It could cause incorrect * page aging and the (mistaken) reclaim of hot pages, but the * chance of that should be relatively low. ] * * So as a performance optimization don't flush the TLB when * clearing the accessed bit, it will eventually be flushed by * a context switch or a VM operation anyway. [ In the rare * event of it not getting flushed for a long time the delay * shouldn't really matter because there's no real memory * pressure for swapout to react to. ] * * Note: this optimisation also exists in pte_needs_flush() and * huge_pmd_needs_flush(). */ #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH #define ptep_clear_flush_young ptep_test_and_clear_young #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH #define pmdp_clear_flush_young pmdp_test_and_clear_young static inline int pte_write(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE)); } static inline int pte_read(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ)); } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { if (pte_write(*ptep)) pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0); } #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { if (pte_write(*ptep)) pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1); } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); return __pte(old); } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { if (full && radix_enabled()) { /* * We know that this is a full mm pte clear and * hence can be sure there is no parallel set_pte. */ return radix__ptep_get_and_clear_full(mm, addr, ptep, full); } return ptep_get_and_clear(mm, addr, ptep); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep) { pte_update(mm, addr, ptep, ~0UL, 0, 0); } static inline int pte_dirty(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY)); } static inline int pte_young(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED)); } static inline int pte_special(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL)); } static inline bool pte_exec(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC)); } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline bool pte_soft_dirty(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY)); } static inline pte_t pte_mksoft_dirty(pte_t pte) { return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY)); } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY)); } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ #ifdef CONFIG_NUMA_BALANCING static inline int pte_protnone(pte_t pte) { return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) == cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE); } #endif /* CONFIG_NUMA_BALANCING */ static inline bool pte_hw_valid(pte_t pte) { return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) == cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE); } static inline int pte_present(pte_t pte) { /* * A pte is considerent present if _PAGE_PRESENT is set. * We also need to consider the pte present which is marked * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID * if we find _PAGE_PRESENT cleared. */ if (pte_hw_valid(pte)) return true; return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) == cpu_to_be64(_PAGE_INVALID | _PAGE_PTE); } #ifdef CONFIG_PPC_MEM_KEYS extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute); #else static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute) { return true; } #endif /* CONFIG_PPC_MEM_KEYS */ static inline bool pte_user(pte_t pte) { return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED)); } #define pte_access_permitted pte_access_permitted static inline bool pte_access_permitted(pte_t pte, bool write) { /* * _PAGE_READ is needed for any access and will be cleared for * PROT_NONE. Execute-only mapping via PROT_EXEC also returns false. */ if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte)) return false; if (write && !pte_write(pte)) return false; return arch_pte_access_permitted(pte_val(pte), write, 0); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * Even if PTEs can be unsigned long long, a PFN is always an unsigned * long for now. */ static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { VM_BUG_ON(pfn >> (64 - PAGE_SHIFT)); VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK); return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE); } /* Generic modifiers for PTE bits */ static inline pte_t pte_wrprotect(pte_t pte) { return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE)); } static inline pte_t pte_exprotect(pte_t pte) { return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC)); } static inline pte_t pte_mkclean(pte_t pte) { return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY)); } static inline pte_t pte_mkold(pte_t pte) { return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED)); } static inline pte_t pte_mkexec(pte_t pte) { return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC)); } static inline pte_t pte_mkwrite_novma(pte_t pte) { /* * write implies read, hence set both */ return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW)); } static inline pte_t pte_mkdirty(pte_t pte) { return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY)); } static inline pte_t pte_mkyoung(pte_t pte) { return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED)); } static inline pte_t pte_mkspecial(pte_t pte) { return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL)); } static inline pte_t pte_mkhuge(pte_t pte) { return pte; } static inline pte_t pte_mkdevmap(pte_t pte) { return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP)); } /* * This is potentially called with a pmd as the argument, in which case it's not * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set. * That's because the bit we use for _PAGE_DEVMAP is not reserved for software * use in page directory entries (ie. non-ptes). */ static inline int pte_devmap(pte_t pte) { __be64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE); return (pte_raw(pte) & mask) == mask; } static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { /* FIXME!! check whether this need to be a conditional */ return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) | cpu_to_be64(pgprot_val(newprot))); } /* Encode and de-code a swap entry */ #define MAX_SWAPFILES_CHECK() do { \ BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ /* \ * Don't have overlapping bits with _PAGE_HPTEFLAGS \ * We filter HPTEFLAGS on set_pte. \ */ \ BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \ BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \ BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE); \ } while (0) #define SWP_TYPE_BITS 5 #define SWP_TYPE_MASK ((1UL << SWP_TYPE_BITS) - 1) #define __swp_type(x) ((x).val & SWP_TYPE_MASK) #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT) #define __swp_entry(type, offset) ((swp_entry_t) { \ (type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)}) /* * swp_entry_t must be independent of pte bits. We build a swp_entry_t from * swap type and offset we get from swap and convert that to pte to find a * matching pte in linux page table. * Clear bits not found in swap entries here. */ #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE }) #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE) #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd))) #define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x))) #ifdef CONFIG_MEM_SOFT_DIRTY #define _PAGE_SWP_SOFT_DIRTY _PAGE_SOFT_DIRTY #else #define _PAGE_SWP_SOFT_DIRTY 0UL #endif /* CONFIG_MEM_SOFT_DIRTY */ #define _PAGE_SWP_EXCLUSIVE _PAGE_NON_IDEMPOTENT #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); } static inline bool pte_swp_soft_dirty(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY)); } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ static inline pte_t pte_swp_mkexclusive(pte_t pte) { return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE)); } static inline int pte_swp_exclusive(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE)); } static inline pte_t pte_swp_clear_exclusive(pte_t pte) { return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE)); } static inline bool check_pte_access(unsigned long access, unsigned long ptev) { /* * This check for _PAGE_RWX and _PAGE_PRESENT bits */ if (access & ~ptev) return false; /* * This check for access to privilege space */ if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED)) return false; return true; } /* * Generic functions with hash/radix callbacks */ static inline void __ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, pte_t entry, unsigned long address, int psize) { if (radix_enabled()) return radix__ptep_set_access_flags(vma, ptep, entry, address, psize); return hash__ptep_set_access_flags(ptep, entry); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t pte_a, pte_t pte_b) { if (radix_enabled()) return radix__pte_same(pte_a, pte_b); return hash__pte_same(pte_a, pte_b); } static inline int pte_none(pte_t pte) { if (radix_enabled()) return radix__pte_none(pte); return hash__pte_none(pte); } static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, int percpu) { VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE))); /* * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE * in all the callers. */ pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE)); if (radix_enabled()) return radix__set_pte_at(mm, addr, ptep, pte, percpu); return hash__set_pte_at(mm, addr, ptep, pte, percpu); } #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT) #define pgprot_noncached pgprot_noncached static inline pgprot_t pgprot_noncached(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | _PAGE_NON_IDEMPOTENT); } #define pgprot_noncached_wc pgprot_noncached_wc static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | _PAGE_TOLERANT); } #define pgprot_cached pgprot_cached static inline pgprot_t pgprot_cached(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL)); } #define pgprot_writecombine pgprot_writecombine static inline pgprot_t pgprot_writecombine(pgprot_t prot) { return pgprot_noncached_wc(prot); } /* * check a pte mapping have cache inhibited property */ static inline bool pte_ci(pte_t pte) { __be64 pte_v = pte_raw(pte); if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) || ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT))) return true; return false; } static inline void pmd_clear(pmd_t *pmdp) { if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) { /* * Don't use this if we can possibly have a hash page table * entry mapping this. */ WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE)); } *pmdp = __pmd(0); } static inline int pmd_none(pmd_t pmd) { return !pmd_raw(pmd); } static inline int pmd_present(pmd_t pmd) { /* * A pmd is considerent present if _PAGE_PRESENT is set. * We also need to consider the pmd present which is marked * invalid during a split. Hence we look for _PAGE_INVALID * if we find _PAGE_PRESENT cleared. */ if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) return true; return false; } static inline int pmd_is_serializing(pmd_t pmd) { /* * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate). * * This condition may also occur when flushing a pmd while flushing * it (see ptep_modify_prot_start), so callers must ensure this * case is fine as well. */ if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) == cpu_to_be64(_PAGE_INVALID)) return true; return false; } static inline int pmd_bad(pmd_t pmd) { if (radix_enabled()) return radix__pmd_bad(pmd); return hash__pmd_bad(pmd); } static inline void pud_clear(pud_t *pudp) { if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) { /* * Don't use this if we can possibly have a hash page table * entry mapping this. */ WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE)); } *pudp = __pud(0); } static inline int pud_none(pud_t pud) { return !pud_raw(pud); } static inline int pud_present(pud_t pud) { return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT)); } extern struct page *pud_page(pud_t pud); extern struct page *pmd_page(pmd_t pmd); static inline pte_t pud_pte(pud_t pud) { return __pte_raw(pud_raw(pud)); } static inline pud_t pte_pud(pte_t pte) { return __pud_raw(pte_raw(pte)); } static inline pte_t *pudp_ptep(pud_t *pud) { return (pte_t *)pud; } #define pud_pfn(pud) pte_pfn(pud_pte(pud)) #define pud_dirty(pud) pte_dirty(pud_pte(pud)) #define pud_young(pud) pte_young(pud_pte(pud)) #define pud_mkold(pud) pte_pud(pte_mkold(pud_pte(pud))) #define pud_wrprotect(pud) pte_pud(pte_wrprotect(pud_pte(pud))) #define pud_mkdirty(pud) pte_pud(pte_mkdirty(pud_pte(pud))) #define pud_mkclean(pud) pte_pud(pte_mkclean(pud_pte(pud))) #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) #define pud_mkwrite(pud) pte_pud(pte_mkwrite_novma(pud_pte(pud))) #define pud_write(pud) pte_write(pud_pte(pud)) #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY #define pud_soft_dirty(pmd) pte_soft_dirty(pud_pte(pud)) #define pud_mksoft_dirty(pmd) pte_pud(pte_mksoft_dirty(pud_pte(pud))) #define pud_clear_soft_dirty(pmd) pte_pud(pte_clear_soft_dirty(pud_pte(pud))) #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ static inline int pud_bad(pud_t pud) { if (radix_enabled()) return radix__pud_bad(pud); return hash__pud_bad(pud); } #define pud_access_permitted pud_access_permitted static inline bool pud_access_permitted(pud_t pud, bool write) { return pte_access_permitted(pud_pte(pud), write); } #define __p4d_raw(x) ((p4d_t) { __pgd_raw(x) }) static inline __be64 p4d_raw(p4d_t x) { return pgd_raw(x.pgd); } #define p4d_write(p4d) pte_write(p4d_pte(p4d)) static inline void p4d_clear(p4d_t *p4dp) { *p4dp = __p4d(0); } static inline int p4d_none(p4d_t p4d) { return !p4d_raw(p4d); } static inline int p4d_present(p4d_t p4d) { return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT)); } static inline pte_t p4d_pte(p4d_t p4d) { return __pte_raw(p4d_raw(p4d)); } static inline p4d_t pte_p4d(pte_t pte) { return __p4d_raw(pte_raw(pte)); } static inline int p4d_bad(p4d_t p4d) { if (radix_enabled()) return radix__p4d_bad(p4d); return hash__p4d_bad(p4d); } #define p4d_access_permitted p4d_access_permitted static inline bool p4d_access_permitted(p4d_t p4d, bool write) { return pte_access_permitted(p4d_pte(p4d), write); } extern struct page *p4d_page(p4d_t p4d); /* Pointers in the page table tree are physical addresses */ #define __pgtable_ptr_val(ptr) __pa(ptr) static inline pud_t *p4d_pgtable(p4d_t p4d) { return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS); } static inline pmd_t *pud_pgtable(pud_t pud) { return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS); } #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e)) #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot) { if (radix_enabled()) { #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM) unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift; WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE"); #endif return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE); } return hash__map_kernel_page(ea, pa, prot); } void unmap_kernel_page(unsigned long va); static inline int __meminit vmemmap_create_mapping(unsigned long start, unsigned long page_size, unsigned long phys) { if (radix_enabled()) return radix__vmemmap_create_mapping(start, page_size, phys); return hash__vmemmap_create_mapping(start, page_size, phys); } #ifdef CONFIG_MEMORY_HOTPLUG static inline void vmemmap_remove_mapping(unsigned long start, unsigned long page_size) { if (radix_enabled()) return radix__vmemmap_remove_mapping(start, page_size); return hash__vmemmap_remove_mapping(start, page_size); } #endif static inline pte_t pmd_pte(pmd_t pmd) { return __pte_raw(pmd_raw(pmd)); } static inline pmd_t pte_pmd(pte_t pte) { return __pmd_raw(pte_raw(pte)); } static inline pte_t *pmdp_ptep(pmd_t *pmd) { return (pte_t *)pmd; } #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) #define pmd_young(pmd) pte_young(pmd_pte(pmd)) #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))) #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd)) #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd))) #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd))) #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION #define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd))) #define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd)) #define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd))) #endif #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ #ifdef CONFIG_NUMA_BALANCING static inline int pmd_protnone(pmd_t pmd) { return pte_protnone(pmd_pte(pmd)); } #endif /* CONFIG_NUMA_BALANCING */ #define pmd_write(pmd) pte_write(pmd_pte(pmd)) #define pmd_access_permitted pmd_access_permitted static inline bool pmd_access_permitted(pmd_t pmd, bool write) { /* * pmdp_invalidate sets this combination (which is not caught by * !pte_present() check in pte_access_permitted), to prevent * lock-free lookups, as part of the serialize_against_pte_lookup() * synchronisation. * * This also catches the case where the PTE's hardware PRESENT bit is * cleared while TLB is flushed, which is suboptimal but should not * be frequent. */ if (pmd_is_serializing(pmd)) return false; return pte_access_permitted(pmd_pte(pmd), write); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot); extern pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot); extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot); extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot); extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd); extern void set_pud_at(struct mm_struct *mm, unsigned long addr, pud_t *pudp, pud_t pud); static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd) { } static inline void update_mmu_cache_pud(struct vm_area_struct *vma, unsigned long addr, pud_t *pud) { } extern int hash__has_transparent_hugepage(void); static inline int has_transparent_hugepage(void) { if (radix_enabled()) return radix__has_transparent_hugepage(); return hash__has_transparent_hugepage(); } #define has_transparent_hugepage has_transparent_hugepage static inline int has_transparent_pud_hugepage(void) { if (radix_enabled()) return radix__has_transparent_pud_hugepage(); return 0; } #define has_transparent_pud_hugepage has_transparent_pud_hugepage static inline unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, unsigned long clr, unsigned long set) { if (radix_enabled()) return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set); return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set); } static inline unsigned long pud_hugepage_update(struct mm_struct *mm, unsigned long addr, pud_t *pudp, unsigned long clr, unsigned long set) { if (radix_enabled()) return radix__pud_hugepage_update(mm, addr, pudp, clr, set); BUG(); return pud_val(*pudp); } /* * For radix we should always find H_PAGE_HASHPTE zero. Hence * the below will work for radix too */ static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { unsigned long old; if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) return 0; old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); return ((old & _PAGE_ACCESSED) != 0); } static inline int __pudp_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pud_t *pudp) { unsigned long old; if ((pud_raw(*pudp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) return 0; old = pud_hugepage_update(mm, addr, pudp, _PAGE_ACCESSED, 0); return ((old & _PAGE_ACCESSED) != 0); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { if (pmd_write(*pmdp)) pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0); } #define __HAVE_ARCH_PUDP_SET_WRPROTECT static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pud_t *pudp) { if (pud_write(*pudp)) pud_hugepage_update(mm, addr, pudp, _PAGE_WRITE, 0); } /* * Only returns true for a THP. False for pmd migration entry. * We also need to return true when we come across a pte that * in between a thp split. While splitting THP, we mark the pmd * invalid (pmdp_invalidate()) before we set it with pte page * address. A pmd_trans_huge() check against a pmd entry during that time * should return true. * We should not call this on a hugetlb entry. We should check for HugeTLB * entry using vma->vm_flags * The page table walk rule is explained in Documentation/mm/transhuge.rst */ static inline int pmd_trans_huge(pmd_t pmd) { if (!pmd_present(pmd)) return false; if (radix_enabled()) return radix__pmd_trans_huge(pmd); return hash__pmd_trans_huge(pmd); } static inline int pud_trans_huge(pud_t pud) { if (!pud_present(pud)) return false; if (radix_enabled()) return radix__pud_trans_huge(pud); return 0; } #define __HAVE_ARCH_PMD_SAME static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) { if (radix_enabled()) return radix__pmd_same(pmd_a, pmd_b); return hash__pmd_same(pmd_a, pmd_b); } #define pud_same pud_same static inline int pud_same(pud_t pud_a, pud_t pud_b) { if (radix_enabled()) return radix__pud_same(pud_a, pud_b); return hash__pud_same(pud_a, pud_b); } static inline pmd_t __pmd_mkhuge(pmd_t pmd) { if (radix_enabled()) return radix__pmd_mkhuge(pmd); return hash__pmd_mkhuge(pmd); } static inline pud_t __pud_mkhuge(pud_t pud) { if (radix_enabled()) return radix__pud_mkhuge(pud); BUG(); return pud; } /* * pfn_pmd return a pmd_t that can be used as pmd pte entry. */ static inline pmd_t pmd_mkhuge(pmd_t pmd) { #ifdef CONFIG_DEBUG_VM if (radix_enabled()) WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0); else WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) != cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)); #endif return pmd; } static inline pud_t pud_mkhuge(pud_t pud) { #ifdef CONFIG_DEBUG_VM if (radix_enabled()) WARN_ON((pud_raw(pud) & cpu_to_be64(_PAGE_PTE)) == 0); else WARN_ON(1); #endif return pud; } #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); #define __HAVE_ARCH_PUDP_SET_ACCESS_FLAGS extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PUDP_TEST_AND_CLEAR_YOUNG extern int pudp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pud_t *pudp); #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { if (radix_enabled()) return radix__pmdp_huge_get_and_clear(mm, addr, pmdp); return hash__pmdp_huge_get_and_clear(mm, addr, pmdp); } #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pud_t *pudp) { if (radix_enabled()) return radix__pudp_huge_get_and_clear(mm, addr, pudp); BUG(); return *pudp; } static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { if (radix_enabled()) return radix__pmdp_collapse_flush(vma, address, pmdp); return hash__pmdp_collapse_flush(vma, address, pmdp); } #define pmdp_collapse_flush pmdp_collapse_flush #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmdp, int full); #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, unsigned long addr, pud_t *pudp, int full); #define __HAVE_ARCH_PGTABLE_DEPOSIT static inline void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable) { if (radix_enabled()) return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable); return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable); } #define __HAVE_ARCH_PGTABLE_WITHDRAW static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) { if (radix_enabled()) return radix__pgtable_trans_huge_withdraw(mm, pmdp); return hash__pgtable_trans_huge_withdraw(mm, pmdp); } #define __HAVE_ARCH_PMDP_INVALIDATE extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define pmd_move_must_withdraw pmd_move_must_withdraw struct spinlock; extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, struct spinlock *old_pmd_ptl, struct vm_area_struct *vma); /* * Hash translation mode use the deposited table to store hash pte * slot information. */ #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit static inline bool arch_needs_pgtable_deposit(void) { if (radix_enabled()) return false; return true; } extern void serialize_against_pte_lookup(struct mm_struct *mm); static inline pmd_t pmd_mkdevmap(pmd_t pmd) { if (radix_enabled()) return radix__pmd_mkdevmap(pmd); return hash__pmd_mkdevmap(pmd); } static inline pud_t pud_mkdevmap(pud_t pud) { if (radix_enabled()) return radix__pud_mkdevmap(pud); BUG(); return pud; } static inline int pmd_devmap(pmd_t pmd) { return pte_devmap(pmd_pte(pmd)); } static inline int pud_devmap(pud_t pud) { return pte_devmap(pud_pte(pud)); } static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, pte_t *, pte_t, pte_t); /* * Returns true for a R -> RW upgrade of pte */ static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val) { if (!(old_val & _PAGE_READ)) return false; if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE)) return true; return false; } #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1