Contributors: 83
Author Tokens Token Proportion Commits Commit Proportion
Paul Mackerras 2709 28.13% 13 3.78%
Anton Blanchard 1284 13.33% 37 10.76%
Nicholas Piggin 1100 11.42% 39 11.34%
Michael Neuling 822 8.54% 25 7.27%
Christophe Leroy 592 6.15% 31 9.01%
Cyril Bur 477 4.95% 15 4.36%
Ravi Bangoria 394 4.09% 9 2.62%
Dave Kleikamp 287 2.98% 2 0.58%
Michael Ellerman 254 2.64% 22 6.40%
Benjamin Gray 195 2.03% 3 0.87%
Benjamin Herrenschmidt 140 1.45% 11 3.20%
Jordan Niethe 140 1.45% 2 0.58%
Aneesh Kumar K.V 128 1.33% 5 1.45%
Murilo Opsfelder Araujo 90 0.93% 1 0.29%
Peter Zijlstra 79 0.82% 2 0.58%
Kumar Gala 73 0.76% 6 1.74%
Al Viro 67 0.70% 6 1.74%
Sukadev Bhattiprolu 67 0.70% 1 0.29%
Linus Torvalds (pre-git) 49 0.51% 16 4.65%
Bharat Bhushan 42 0.44% 2 0.58%
Rusty Russell 39 0.41% 1 0.29%
K.Prasad 35 0.36% 2 0.58%
Breno Leitão 30 0.31% 3 0.87%
Liu Yu 29 0.30% 1 0.29%
Steven Rostedt 28 0.29% 3 0.87%
Naveen N. Rao 28 0.29% 2 0.58%
Scott Wood 27 0.28% 2 0.58%
Alexey Kardashevskiy 26 0.27% 1 0.29%
Leonidas Da Silva Barbosa 23 0.24% 1 0.29%
Stephen Rothwell 22 0.23% 3 0.87%
Luis Machado 21 0.22% 1 0.29%
Suresh B. Siddha 19 0.20% 2 0.58%
Eric W. Biedermann 17 0.18% 6 1.74%
Roland McGrath 16 0.17% 1 0.29%
Dmitry Safonov 16 0.17% 2 0.58%
Andrew Morton 16 0.17% 2 0.58%
Ananth N. Mavinakayanahalli 15 0.16% 1 0.29%
Joseph S. Myers 14 0.15% 1 0.29%
Vaibhav Jain 13 0.14% 2 0.58%
Oleg Nesterov 13 0.14% 1 0.29%
Ingo Molnar 12 0.12% 5 1.45%
Kevin Hao 10 0.10% 2 0.58%
Sam Bobroff 10 0.10% 1 0.29%
David Howells 9 0.09% 1 0.29%
Alastair D'Silva 9 0.09% 2 0.58%
Christopher M. Riedl 9 0.09% 1 0.29%
Max Filippov 8 0.08% 1 0.29%
Paul Gortmaker 8 0.08% 3 0.87%
Daniel Axtens 7 0.07% 3 0.87%
Christoph Hellwig 7 0.07% 3 0.87%
Li Zhong 6 0.06% 1 0.29%
Mark Cave-Ayland 6 0.06% 1 0.29%
He Ying 6 0.06% 1 0.29%
Christophe Lombard 5 0.05% 1 0.29%
Gustavo Romero 5 0.05% 1 0.29%
Xiongwei Song 5 0.05% 3 0.87%
Felipe Rechia 5 0.05% 1 0.29%
Simon Guo 5 0.05% 1 0.29%
Chris Zankel 4 0.04% 1 0.29%
Arnaldo Carvalho de Melo 4 0.04% 1 0.29%
Tom Rini 4 0.04% 1 0.29%
Jason A. Donenfeld 4 0.04% 2 0.58%
Christoph Lameter 4 0.04% 1 0.29%
Anshuman Khandual 4 0.04% 1 0.29%
Denis Kirjanov 4 0.04% 1 0.29%
Serge E. Hallyn 3 0.03% 1 0.29%
Mathieu Malaterre 3 0.03% 1 0.29%
Kees Cook 3 0.03% 1 0.29%
Andrew Donnellan 3 0.03% 1 0.29%
Ram Pai 3 0.03% 1 0.29%
Arnd Bergmann 3 0.03% 1 0.29%
Thomas Gleixner 2 0.02% 1 0.29%
Julia Lawall 2 0.02% 1 0.29%
Kautuk Consul 2 0.02% 1 0.29%
Christian Brauner 1 0.01% 1 0.29%
Frédéric Weisbecker 1 0.01% 1 0.29%
Amanieu d'Antras 1 0.01% 1 0.29%
Björn Helgaas 1 0.01% 1 0.29%
Linus Torvalds 1 0.01% 1 0.29%
Madhavan Srinivasan 1 0.01% 1 0.29%
Johannes Berg 1 0.01% 1 0.29%
Alex Dowad 1 0.01% 1 0.29%
Valentin Rothberg 1 0.01% 1 0.29%
Total 9629 344


// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/export.h>
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
#include <linux/utsname.h>
#include <linux/ftrace.h>
#include <linux/kernel_stat.h>
#include <linux/personality.h>
#include <linux/hw_breakpoint.h>
#include <linux/uaccess.h>
#include <linux/pkeys.h>
#include <linux/seq_buf.h>

#include <asm/interrupt.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/machdep.h>
#include <asm/time.h>
#include <asm/runlatch.h>
#include <asm/syscalls.h>
#include <asm/switch_to.h>
#include <asm/tm.h>
#include <asm/debug.h>
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#include <asm/hw_irq.h>
#endif
#include <asm/code-patching.h>
#include <asm/exec.h>
#include <asm/livepatch.h>
#include <asm/cpu_has_feature.h>
#include <asm/asm-prototypes.h>
#include <asm/stacktrace.h>
#include <asm/hw_breakpoint.h>

#include <linux/kprobes.h>
#include <linux/kdebug.h>

/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

extern unsigned long _get_SP(void);

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
/*
 * Are we running in "Suspend disabled" mode? If so we have to block any
 * sigreturn that would get us into suspended state, and we also warn in some
 * other paths that we should never reach with suspend disabled.
 */
bool tm_suspend_disabled __ro_after_init = false;

static void check_if_tm_restore_required(struct task_struct *tsk)
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
		regs_set_return_msr(&tsk->thread.ckpt_regs,
						tsk->thread.regs->msr);
		set_thread_flag(TIF_RESTORE_TM);
	}
}

#else
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

/* notrace because it's called by restore_math */
unsigned long notrace msr_check_and_set(unsigned long bits)
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr | bits;

	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr |= MSR_VSX;

	if (oldmsr != newmsr)
		newmsr = mtmsr_isync_irqsafe(newmsr);

	return newmsr;
}
EXPORT_SYMBOL_GPL(msr_check_and_set);

/* notrace because it's called by restore_math */
void notrace __msr_check_and_clear(unsigned long bits)
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;

	if (oldmsr != newmsr)
		mtmsr_isync_irqsafe(newmsr);
}
EXPORT_SYMBOL(__msr_check_and_clear);

#ifdef CONFIG_PPC_FPU
static void __giveup_fpu(struct task_struct *tsk)
{
	unsigned long msr;

	save_fpu(tsk);
	msr = tsk->thread.regs->msr;
	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
	if (cpu_has_feature(CPU_FTR_VSX))
		msr &= ~MSR_VSX;
	regs_set_return_msr(tsk->thread.regs, msr);
}

void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
	__giveup_fpu(tsk);
	msr_check_and_clear(MSR_FP);
}
EXPORT_SYMBOL(giveup_fpu);

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
			giveup_fpu(tsk);
		}
		preempt_enable();
	}
}
EXPORT_SYMBOL_GPL(flush_fp_to_thread);

void enable_kernel_fp(void)
{
	unsigned long cpumsr;

	WARN_ON(preemptible());

	cpumsr = msr_check_and_set(MSR_FP);

	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if (!MSR_TM_ACTIVE(cpumsr) &&
		     MSR_TM_ACTIVE(current->thread.regs->msr))
			return;
		__giveup_fpu(current);
	}
}
EXPORT_SYMBOL(enable_kernel_fp);
#else
static inline void __giveup_fpu(struct task_struct *tsk) { }
#endif /* CONFIG_PPC_FPU */

#ifdef CONFIG_ALTIVEC
static void __giveup_altivec(struct task_struct *tsk)
{
	unsigned long msr;

	save_altivec(tsk);
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
	if (cpu_has_feature(CPU_FTR_VSX))
		msr &= ~MSR_VSX;
	regs_set_return_msr(tsk->thread.regs, msr);
}

void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_VEC);
	__giveup_altivec(tsk);
	msr_check_and_clear(MSR_VEC);
}
EXPORT_SYMBOL(giveup_altivec);

void enable_kernel_altivec(void)
{
	unsigned long cpumsr;

	WARN_ON(preemptible());

	cpumsr = msr_check_and_set(MSR_VEC);

	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if (!MSR_TM_ACTIVE(cpumsr) &&
		     MSR_TM_ACTIVE(current->thread.regs->msr))
			return;
		__giveup_altivec(current);
	}
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
			giveup_altivec(tsk);
		}
		preempt_enable();
	}
}
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
#endif /* CONFIG_ALTIVEC */

#ifdef CONFIG_VSX
static void __giveup_vsx(struct task_struct *tsk)
{
	unsigned long msr = tsk->thread.regs->msr;

	/*
	 * We should never be setting MSR_VSX without also setting
	 * MSR_FP and MSR_VEC
	 */
	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));

	/* __giveup_fpu will clear MSR_VSX */
	if (msr & MSR_FP)
		__giveup_fpu(tsk);
	if (msr & MSR_VEC)
		__giveup_altivec(tsk);
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
	__giveup_vsx(tsk);
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
}

void enable_kernel_vsx(void)
{
	unsigned long cpumsr;

	WARN_ON(preemptible());

	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);

	if (current->thread.regs &&
	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
		check_if_tm_restore_required(current);
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if (!MSR_TM_ACTIVE(cpumsr) &&
		     MSR_TM_ACTIVE(current->thread.regs->msr))
			return;
		__giveup_vsx(current);
	}
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
#endif /* CONFIG_VSX */

#ifdef CONFIG_SPE
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_SPE);
	__giveup_spe(tsk);
	msr_check_and_clear(MSR_SPE);
}
EXPORT_SYMBOL(giveup_spe);

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

	msr_check_and_set(MSR_SPE);

	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
		__giveup_spe(current);
	}
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
			giveup_spe(tsk);
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
	if (IS_ENABLED(CONFIG_PPC_FPU))
		msr_all_available |= MSR_FP;
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	check_if_tm_restore_required(tsk);

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

#ifdef CONFIG_PPC_BOOK3S_64
#ifdef CONFIG_PPC_FPU
static bool should_restore_fp(void)
{
	if (current->thread.load_fp) {
		current->thread.load_fp++;
		return true;
	}
	return false;
}

static void do_restore_fp(void)
{
	load_fp_state(&current->thread.fp_state);
}
#else
static bool should_restore_fp(void) { return false; }
static void do_restore_fp(void) { }
#endif /* CONFIG_PPC_FPU */

#ifdef CONFIG_ALTIVEC
static bool should_restore_altivec(void)
{
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
		current->thread.load_vec++;
		return true;
	}
	return false;
}

static void do_restore_altivec(void)
{
	load_vr_state(&current->thread.vr_state);
	current->thread.used_vr = 1;
}
#else
static bool should_restore_altivec(void) { return false; }
static void do_restore_altivec(void) { }
#endif /* CONFIG_ALTIVEC */

static bool should_restore_vsx(void)
{
	if (cpu_has_feature(CPU_FTR_VSX))
		return true;
	return false;
}
#ifdef CONFIG_VSX
static void do_restore_vsx(void)
{
	current->thread.used_vsr = 1;
}
#else
static void do_restore_vsx(void) { }
#endif /* CONFIG_VSX */

/*
 * The exception exit path calls restore_math() with interrupts hard disabled
 * but the soft irq state not "reconciled". ftrace code that calls
 * local_irq_save/restore causes warnings.
 *
 * Rather than complicate the exit path, just don't trace restore_math. This
 * could be done by having ftrace entry code check for this un-reconciled
 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
 * temporarily fix it up for the duration of the ftrace call.
 */
void notrace restore_math(struct pt_regs *regs)
{
	unsigned long msr;
	unsigned long new_msr = 0;

	msr = regs->msr;

	/*
	 * new_msr tracks the facilities that are to be restored. Only reload
	 * if the bit is not set in the user MSR (if it is set, the registers
	 * are live for the user thread).
	 */
	if ((!(msr & MSR_FP)) && should_restore_fp())
		new_msr |= MSR_FP;

	if ((!(msr & MSR_VEC)) && should_restore_altivec())
		new_msr |= MSR_VEC;

	if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
		if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
			new_msr |= MSR_VSX;
	}

	if (new_msr) {
		unsigned long fpexc_mode = 0;

		msr_check_and_set(new_msr);

		if (new_msr & MSR_FP) {
			do_restore_fp();

			// This also covers VSX, because VSX implies FP
			fpexc_mode = current->thread.fpexc_mode;
		}

		if (new_msr & MSR_VEC)
			do_restore_altivec();

		if (new_msr & MSR_VSX)
			do_restore_vsx();

		msr_check_and_clear(new_msr);

		regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
	}
}
#endif /* CONFIG_PPC_BOOK3S_64 */

static void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

	if (usermsr & MSR_FP)
		save_fpu(tsk);

	if (usermsr & MSR_VEC)
		save_altivec(tsk);

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif
		save_all(tsk);

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int breakpt)
{
	current->thread.trap_nr = TRAP_HWBKPT;
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
				    (void __user *)address);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */

static void do_break_handler(struct pt_regs *regs)
{
	struct arch_hw_breakpoint null_brk = {0};
	struct arch_hw_breakpoint *info;
	ppc_inst_t instr = ppc_inst(0);
	int type = 0;
	int size = 0;
	unsigned long ea;
	int i;

	/*
	 * If underneath hw supports only one watchpoint, we know it
	 * caused exception. 8xx also falls into this category.
	 */
	if (nr_wp_slots() == 1) {
		__set_breakpoint(0, &null_brk);
		current->thread.hw_brk[0] = null_brk;
		current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
		return;
	}

	/* Otherwise find out which DAWR caused exception and disable it. */
	wp_get_instr_detail(regs, &instr, &type, &size, &ea);

	for (i = 0; i < nr_wp_slots(); i++) {
		info = &current->thread.hw_brk[i];
		if (!info->address)
			continue;

		if (wp_check_constraints(regs, instr, ea, type, size, info)) {
			__set_breakpoint(i, &null_brk);
			current->thread.hw_brk[i] = null_brk;
			current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
		}
	}
}

DEFINE_INTERRUPT_HANDLER(do_break)
{
	current->thread.trap_nr = TRAP_HWBKPT;
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	if (debugger_break_match(regs))
		return;

	/*
	 * We reach here only when watchpoint exception is generated by ptrace
	 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
	 * watchpoint is already handled by hw_breakpoint_handler() so we don't
	 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
	 * we need to manually handle the watchpoint here.
	 */
	if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
		do_break_handler(regs);

	/* Deliver the signal to userspace */
	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
}
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);

#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
	thread->debug.iac1 = thread->debug.iac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	thread->debug.iac3 = thread->debug.iac4 = 0;
#endif
	thread->debug.dac1 = thread->debug.dac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
#endif
	thread->debug.dbcr0 = 0;
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#else
	thread->debug.dbcr1 = 0;
#endif
}

static void prime_debug_regs(struct debug_reg *debug)
{
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
#endif
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
#endif
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
#ifdef CONFIG_BOOKE
	mtspr(SPRN_DBCR2, debug->dbcr2);
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
void switch_booke_debug_regs(struct debug_reg *new_debug)
{
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
}
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(i, brk);
	preempt_enable();
}

static void set_debug_reg_defaults(struct thread_struct *thread)
{
	int i;
	struct arch_hw_breakpoint null_brk = {0};

	for (i = 0; i < nr_wp_slots(); i++) {
		thread->hw_brk[i] = null_brk;
		if (ppc_breakpoint_available())
			set_breakpoint(i, &thread->hw_brk[i]);
	}
}

static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
				struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	/* no need to check hw_len. it's calculated from address and len */
	return true;
}

static void switch_hw_breakpoint(struct task_struct *new)
{
	int i;

	for (i = 0; i < nr_wp_slots(); i++) {
		if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
					&new->thread.hw_brk[i])))
			continue;

		__set_breakpoint(i, &new->thread.hw_brk[i]);
	}
}
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
		mtspr(SPRN_DAC1, dabr);
		if (IS_ENABLED(CONFIG_PPC_47x))
			isync();
		return 0;
	} else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
		mtspr(SPRN_DABR, dabr);
		if (cpu_has_feature(CPU_FTR_DABRX))
			mtspr(SPRN_DABRX, dabrx);
		return 0;
	} else {
		return -EINVAL;
	}
}

static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
{
	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
			       LCTRL1_CRWF_RW;
	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
	unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
	unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);

	if (start_addr == 0)
		lctrl2 |= LCTRL2_LW0LA_F;
	else if (end_addr == 0)
		lctrl2 |= LCTRL2_LW0LA_E;
	else
		lctrl2 |= LCTRL2_LW0LA_EandF;

	mtspr(SPRN_LCTRL2, 0);

	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
		return 0;

	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;

	mtspr(SPRN_CMPE, start_addr - 1);
	mtspr(SPRN_CMPF, end_addr);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}

static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk)
{
	if (dawr_enabled())
		// Power8 or later
		set_dawr(nr, brk);
	else if (IS_ENABLED(CONFIG_PPC_8xx))
		set_breakpoint_8xx(brk);
	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		// Power7 or earlier
		set_dabr(brk);
	else
		// Shouldn't happen due to higher level checks
		WARN_ON_ONCE(1);
}

void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
{
	memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
	set_hw_breakpoint(nr, brk);
}

/* Check if we have DAWR or DABR hardware */
bool ppc_breakpoint_available(void)
{
	if (dawr_enabled())
		return true; /* POWER8 DAWR or POWER9 forced DAWR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		return false; /* POWER9 with DAWR disabled */
	/* DABR: Everything but POWER8 and POWER9 */
	return true;
}
EXPORT_SYMBOL_GPL(ppc_breakpoint_available);

/* Disable the breakpoint in hardware without touching current_brk[] */
void suspend_breakpoints(void)
{
	struct arch_hw_breakpoint brk = {0};
	int i;

	if (!ppc_breakpoint_available())
		return;

	for (i = 0; i < nr_wp_slots(); i++)
		set_hw_breakpoint(i, &brk);
}

/*
 * Re-enable breakpoints suspended by suspend_breakpoints() in hardware
 * from current_brk[]
 */
void restore_breakpoints(void)
{
	int i;

	if (!ppc_breakpoint_available())
		return;

	for (i = 0; i < nr_wp_slots(); i++)
		set_hw_breakpoint(i, this_cpu_ptr(&current_brk[i]));
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
{
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
	 * benefit of checking for a potential TM bad thing exception.
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

	giveup_all(container_of(thr, struct task_struct, thread));

	tm_reclaim(thr, cause);

	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, cause);
}

static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	WARN_ON(tm_suspend_disabled);

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

extern void __tm_recheckpoint(struct thread_struct *thread);

void tm_recheckpoint(struct thread_struct *thread)
{
	unsigned long flags;

	if (!(thread->regs->msr & MSR_TM))
		return;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread);

	local_irq_restore(flags);
}

static inline void tm_recheckpoint_new_task(struct task_struct *new)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavailable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!tm_enabled(new))
		return;

	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
		return;
	}
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
		 new->pid, new->thread.regs->msr);

	tm_recheckpoint(&new->thread);

	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

		tm_recheckpoint_new_task(new);
	}
}

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;

	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
	restore_math(regs);

	regs_set_return_msr(regs, regs->msr | msr_diff);
}

#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev, new)
void tm_reclaim_current(uint8_t cause) {}
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		t->spefscr = mfspr(SPRN_SPEFSCR);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}

	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
		t->hashkeyr = mfspr(SPRN_HASHKEYR);

	if (cpu_has_feature(CPU_FTR_ARCH_31))
		t->dexcr = mfspr(SPRN_DEXCR);
#endif
}

#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
void kvmppc_save_user_regs(void)
{
	unsigned long usermsr;

	if (!current->thread.regs)
		return;

	usermsr = current->thread.regs->msr;

	/* Caller has enabled FP/VEC/VSX/TM in MSR */
	if (usermsr & MSR_FP)
		__giveup_fpu(current);
	if (usermsr & MSR_VEC)
		__giveup_altivec(current);

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (usermsr & MSR_TM) {
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif
}
EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);

void kvmppc_save_current_sprs(void)
{
	save_sprs(&current->thread);
}
EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE) &&
	    old_thread->spefscr != new_thread->spefscr)
		mtspr(SPRN_SPEFSCR, new_thread->spefscr);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
		if (new_thread->dscr_inherit)
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}

	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
	    old_thread->tidr != new_thread->tidr)
		mtspr(SPRN_TIDR, new_thread->tidr);

	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) &&
	    old_thread->hashkeyr != new_thread->hashkeyr)
		mtspr(SPRN_HASHKEYR, new_thread->hashkeyr);

	if (cpu_has_feature(CPU_FTR_ARCH_31) &&
	    old_thread->dexcr != new_thread->dexcr)
		mtspr(SPRN_DEXCR, new_thread->dexcr);
#endif

}

struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
#ifdef CONFIG_PPC_64S_HASH_MMU
	struct ppc64_tlb_batch *batch;
#endif

	new_thread = &new->thread;
	old_thread = &current->thread;

	WARN_ON(!irqs_disabled());

#ifdef CONFIG_PPC_64S_HASH_MMU
	batch = this_cpu_ptr(&ppc64_tlb_batch);
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}

	/*
	 * On POWER9 the copy-paste buffer can only paste into
	 * foreign real addresses, so unprivileged processes can not
	 * see the data or use it in any way unless they have
	 * foreign real mappings. If the new process has the foreign
	 * real address mappings, we must issue a cp_abort to clear
	 * any state and prevent snooping, corruption or a covert
	 * channel. ISA v3.1 supports paste into local memory.
	 */
	if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
			atomic_read(&new->mm->context.vas_windows)))
		asm volatile(PPC_CP_ABORT);
#endif /* CONFIG_PPC_BOOK3S_64 */

#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	switch_hw_breakpoint(new);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

	__switch_to_tm(prev, new);

	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}

	/*
	 * Call restore_sprs() and set_return_regs_changed() before calling
	 * _switch(). If we move it after _switch() then we miss out on calling
	 * it for new tasks. The reason for this is we manually create a stack
	 * frame for new tasks that directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
	restore_sprs(old_thread, new_thread);

	set_return_regs_changed(); /* _switch changes stack (and regs) */

	if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
		kuap_assert_locked();

	last = _switch(old_thread, new_thread);

	/*
	 * Nothing after _switch will be run for newly created tasks,
	 * because they switch directly to ret_from_fork/ret_from_kernel_thread
	 * etc. Code added here should have a comment explaining why that is
	 * okay.
	 */

#ifdef CONFIG_PPC_BOOK3S_64
#ifdef CONFIG_PPC_64S_HASH_MMU
	/*
	 * This applies to a process that was context switched while inside
	 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
	 * deactivated above, before _switch(). This will never be the case
	 * for new tasks.
	 */
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
		batch = this_cpu_ptr(&ppc64_tlb_batch);
		batch->active = 1;
	}
#endif

	/*
	 * Math facilities are masked out of the child MSR in copy_thread.
	 * A new task does not need to restore_math because it will
	 * demand fault them.
	 */
	if (current->thread.regs)
		restore_math(current->thread.regs);
#endif /* CONFIG_PPC_BOOK3S_64 */

	return last;
}

#define NR_INSN_TO_PRINT	16

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long nip = regs->nip;
	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));

	printk("Code: ");

	/*
	 * If we were executing with the MMU off for instructions, adjust pc
	 * rather than printing XXXXXXXX.
	 */
	if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
		pc = (unsigned long)phys_to_virt(pc);
		nip = (unsigned long)phys_to_virt(regs->nip);
	}

	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
		int instr;

		if (get_kernel_nofault(instr, (const void *)pc)) {
			pr_cont("XXXXXXXX ");
		} else {
			if (nip == pc)
				pr_cont("<%08x> ", instr);
			else
				pr_cont("%08x ", instr);
		}

		pc += sizeof(int);
	}

	pr_cont("\n");
}

void show_user_instructions(struct pt_regs *regs)
{
	unsigned long pc;
	int n = NR_INSN_TO_PRINT;
	struct seq_buf s;
	char buf[96]; /* enough for 8 times 9 + 2 chars */

	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));

	seq_buf_init(&s, buf, sizeof(buf));

	while (n) {
		int i;

		seq_buf_clear(&s);

		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
			int instr;

			if (copy_from_user_nofault(&instr, (void __user *)pc,
					sizeof(instr))) {
				seq_buf_printf(&s, "XXXXXXXX ");
				continue;
			}
			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
		}

		if (!seq_buf_has_overflowed(&s))
			pr_info("%s[%d]: code: %s\n", current->comm,
				current->pid, s.buffer);
	}
}

struct regbit {
	unsigned long bit;
	const char *name;
};

static struct regbit msr_bits[] = {
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
#ifdef CONFIG_BOOKE
	{MSR_DE,	"DE"},
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
	{0,		NULL}
};

static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
{
	const char *s = "";

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			pr_cont("%s%s", s, bits->name);
			s = sep;
		}
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
		pr_cont(",TM[");
		print_bits(val, msr_tm_bits, "");
		pr_cont("]");
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
	pr_cont("<");
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
	pr_cont(">");
}

#ifdef CONFIG_PPC64
#define REG		"%016lx"
#define REGS_PER_LINE	4
#else
#define REG		"%08lx"
#define REGS_PER_LINE	8
#endif

static void __show_regs(struct pt_regs *regs)
{
	int i, trap;

	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
	       regs, regs->trap, print_tainted(), init_utsname()->release);
	printk("MSR:  "REG" ", regs->msr);
	print_msr_bits(regs->msr);
	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
	trap = TRAP(regs);
	if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
	if (trap == INTERRUPT_MACHINE_CHECK ||
	    trap == INTERRUPT_DATA_STORAGE ||
	    trap == INTERRUPT_ALIGNMENT) {
		if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
			pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
		else
			pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
	}

#ifdef CONFIG_PPC64
	pr_cont("IRQMASK: %lx ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (MSR_TM_ACTIVE(regs->msr))
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
#endif

	for (i = 0;  i < 32;  i++) {
		if ((i % REGS_PER_LINE) == 0)
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
	}
	pr_cont("\n");
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
	if (IS_ENABLED(CONFIG_KALLSYMS)) {
		printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
		printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
	}
}

void show_regs(struct pt_regs *regs)
{
	show_regs_print_info(KERN_DEFAULT);
	__show_regs(regs);
	show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
	if (!user_mode(regs))
		show_instructions(regs);
}

void flush_thread(void)
{
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	flush_ptrace_hw_breakpoint(current);
#else /* CONFIG_HAVE_HW_BREAKPOINT */
	set_debug_reg_defaults(&current->thread);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
}

void arch_setup_new_exec(void)
{

#ifdef CONFIG_PPC_BOOK3S_64
	if (!radix_enabled())
		hash__setup_new_exec();
#endif
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
	}

#ifdef CONFIG_PPC_MEM_KEYS
	current->thread.regs->amr  = default_amr;
	current->thread.regs->iamr  = default_iamr;
#endif

#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
		current->thread.dexcr = current->thread.dexcr_onexec;
		mtspr(SPRN_DEXCR, current->thread.dexcr);
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
}

#ifdef CONFIG_PPC64
/*
 * Assign a TIDR (thread ID) for task @t and set it in the thread
 * structure. For now, we only support setting TIDR for 'current' task.
 *
 * Since the TID value is a truncated form of it PID, it is possible
 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
 * that 2 threads share the same TID and are waiting, one of the following
 * cases will happen:
 *
 * 1. The correct thread is running, the wrong thread is not
 * In this situation, the correct thread is woken and proceeds to pass its
 * condition check.
 *
 * 2. Neither threads are running
 * In this situation, neither thread will be woken. When scheduled, the waiting
 * threads will execute either a wait, which will return immediately, followed
 * by a condition check, which will pass for the correct thread and fail
 * for the wrong thread, or they will execute the condition check immediately.
 *
 * 3. The wrong thread is running, the correct thread is not
 * The wrong thread will be woken, but will fail its condition check and
 * re-execute wait. The correct thread, when scheduled, will execute either
 * its condition check (which will pass), or wait, which returns immediately
 * when called the first time after the thread is scheduled, followed by its
 * condition check (which will pass).
 *
 * 4. Both threads are running
 * Both threads will be woken. The wrong thread will fail its condition check
 * and execute another wait, while the correct thread will pass its condition
 * check.
 *
 * @t: the task to set the thread ID for
 */
int set_thread_tidr(struct task_struct *t)
{
	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
		return -EINVAL;

	if (t != current)
		return -EINVAL;

	if (t->thread.tidr)
		return 0;

	t->thread.tidr = (u16)task_pid_nr(t);
	mtspr(SPRN_TIDR, t->thread.tidr);

	return 0;
}
EXPORT_SYMBOL_GPL(set_thread_tidr);

#endif /* CONFIG_PPC64 */

/*
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
 */
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
	flush_all_to_thread(src);
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
	 */
	__switch_to_tm(src, src);

	*dst = *src;

	clear_task_ebb(dst);

	return 0;
}

static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_64S_HASH_MMU
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

	if (radix_enabled())
		return;

	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

/*
 * Copy a thread..
 */

/*
 * Copy architecture-specific thread state
 */
int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
{
	struct pt_regs *kregs; /* Switch frame regs */
	extern void ret_from_fork(void);
	extern void ret_from_fork_scv(void);
	extern void ret_from_kernel_user_thread(void);
	extern void start_kernel_thread(void);
	void (*f)(void);
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	int i;
#endif

	klp_init_thread_info(p);

	if (unlikely(p->flags & PF_KTHREAD)) {
		/* kernel thread */

		/* Create initial minimum stack frame. */
		sp -= STACK_FRAME_MIN_SIZE;
		((unsigned long *)sp)[0] = 0;

		f = start_kernel_thread;
		p->thread.regs = NULL;	/* no user register state */
		clear_tsk_compat_task(p);
	} else {
		/* user thread */
		struct pt_regs *childregs;

		/* Create initial user return stack frame. */
		sp -= STACK_USER_INT_FRAME_SIZE;
		*(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER;

		childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS);

		if (unlikely(args->fn)) {
			/*
			 * A user space thread, but it first runs a kernel
			 * thread, and then returns as though it had called
			 * execve rather than fork, so user regs will be
			 * filled in (e.g., by kernel_execve()).
			 */
			((unsigned long *)sp)[0] = 0;
			memset(childregs, 0, sizeof(struct pt_regs));
#ifdef CONFIG_PPC64
			childregs->softe = IRQS_ENABLED;
#endif
			f = ret_from_kernel_user_thread;
		} else {
			struct pt_regs *regs = current_pt_regs();
			unsigned long clone_flags = args->flags;
			unsigned long usp = args->stack;

			/* Copy registers */
			*childregs = *regs;
			if (usp)
				childregs->gpr[1] = usp;
			((unsigned long *)sp)[0] = childregs->gpr[1];
#ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
			WARN_ON_ONCE(childregs->softe != IRQS_ENABLED);
#endif
			if (clone_flags & CLONE_SETTLS) {
				unsigned long tls = args->tls;

				if (!is_32bit_task())
					childregs->gpr[13] = tls;
				else
					childregs->gpr[2] = tls;
			}

			if (trap_is_scv(regs))
				f = ret_from_fork_scv;
			else
				f = ret_from_fork;
		}

		childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
		p->thread.regs = childregs;
	}

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
	((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f;
	sp -= STACK_SWITCH_FRAME_SIZE;
	((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE;
	kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS);
	kregs->nip = ppc_function_entry(f);
	if (unlikely(args->fn)) {
		/*
		 * Put kthread fn, arg parameters in non-volatile GPRs in the
		 * switch frame so they are loaded by _switch before it returns
		 * to ret_from_kernel_thread.
		 */
		kregs->gpr[14] = ppc_function_entry((void *)args->fn);
		kregs->gpr[15] = (unsigned long)args->fn_arg;
	}
	p->thread.ksp = sp;

#ifdef CONFIG_HAVE_HW_BREAKPOINT
	for (i = 0; i < nr_wp_slots(); i++)
		p->thread.ptrace_bps[i] = NULL;
#endif

#ifdef CONFIG_PPC_FPU_REGS
	p->thread.fp_save_area = NULL;
#endif
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif
#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
	p->thread.kuap = KUAP_NONE;
#endif
#if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
	p->thread.pid = MMU_NO_CONTEXT;
#endif

	setup_ksp_vsid(p, sp);

#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		p->thread.dscr_inherit = current->thread.dscr_inherit;
		p->thread.dscr = mfspr(SPRN_DSCR);
	}

	p->thread.tidr = 0;
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
		p->thread.hashkeyr = current->thread.hashkeyr;

	if (cpu_has_feature(CPU_FTR_ARCH_31))
		p->thread.dexcr = mfspr(SPRN_DEXCR);
#endif
	return 0;
}

void preload_new_slb_context(unsigned long start, unsigned long sp);

/*
 * Set up a thread for executing a new program
 */
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
{
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */

	if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
		preload_new_slb_context(start, sp);
#endif

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

	memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;

#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
	regs->msr = MSR_USER;
#else
	if (!is_32bit_task()) {
		unsigned long entry;

		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;

			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
		}
		regs_set_return_ip(regs, entry);
		regs_set_return_msr(regs, MSR_USER64);
	} else {
		regs->gpr[2] = 0;
		regs_set_return_ip(regs, start);
		regs_set_return_msr(regs, MSR_USER32);
	}

#endif
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
	current->thread.load_slb = 0;
	current->thread.load_fp = 0;
#ifdef CONFIG_PPC_FPU_REGS
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
	current->thread.fp_save_area = NULL;
#endif
#ifdef CONFIG_ALTIVEC
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
	current->thread.vr_save_area = NULL;
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
	current->thread.load_vec = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
	current->thread.load_tm = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
		current->thread.hashkeyr = get_random_long();
		mtspr(SPRN_HASHKEYR, current->thread.hashkeyr);
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
}
EXPORT_SYMBOL(start_thread);

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
#ifdef CONFIG_SPE
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
#endif
			return 0;
		} else {
			return -EINVAL;
		}
	}

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0) {
		regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
						| tsk->thread.fpexc_mode);
	}
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val = 0;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
#ifdef CONFIG_SPE
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
			val = tsk->thread.fpexc_mode;
#endif
		} else
			return -EINVAL;
	} else {
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	}
	return put_user(val, (unsigned int __user *) adr);
}

int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs_set_return_msr(regs, regs->msr & ~MSR_LE);
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs_set_return_msr(regs, regs->msr | MSR_LE);
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	if (!hardirq_ctx[cpu] || !softirq_ctx[cpu])
		return 0;

	stack_page = (unsigned long)hardirq_ctx[cpu];
	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

	stack_page = (unsigned long)softirq_ctx[cpu];
	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

	return 0;
}

static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
					unsigned long nbytes)
{
#ifdef CONFIG_PPC64
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	if (!paca_ptrs)
		return 0;

	if (!paca_ptrs[cpu]->emergency_sp)
		return 0;

# ifdef CONFIG_PPC_BOOK3S_64
	if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp)
		return 0;
#endif

	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

# ifdef CONFIG_PPC_BOOK3S_64
	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;
# endif
#endif

	return 0;
}

/*
 * validate the stack frame of a particular minimum size, used for when we are
 * looking at a certain object in the stack beyond the minimum.
 */
int validate_sp_size(unsigned long sp, struct task_struct *p,
		     unsigned long nbytes)
{
	unsigned long stack_page = (unsigned long)task_stack_page(p);

	if (sp < THREAD_SIZE)
		return 0;

	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

	if (valid_irq_stack(sp, p, nbytes))
		return 1;

	return valid_emergency_stack(sp, p, nbytes);
}

int validate_sp(unsigned long sp, struct task_struct *p)
{
	return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE);
}

static unsigned long ___get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	sp = p->thread.ksp;
	if (!validate_sp(sp, p))
		return 0;

	do {
		sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
		if (!validate_sp(sp, p) || task_is_running(p))
			return 0;
		if (count > 0) {
			ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}

unsigned long __get_wchan(struct task_struct *p)
{
	unsigned long ret;

	if (!try_get_task_stack(p))
		return 0;

	ret = ___get_wchan(p);

	put_task_stack(p);

	return ret;
}

static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk)
{
	unsigned long stack_page;

	// A non-empty pt_regs should never have a zero MSR or TRAP value.
	if (regs->msr || regs->trap)
		return false;

	// Check it sits at the very base of the stack
	stack_page = (unsigned long)task_stack_page(tsk);
	if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE)
		return false;

	return true;
}

static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;

void __no_sanitize_address show_stack(struct task_struct *tsk,
				      unsigned long *stack,
				      const char *loglvl)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
	unsigned long ret_addr;
	int ftrace_idx = 0;

	if (tsk == NULL)
		tsk = current;

	if (!try_get_task_stack(tsk))
		return;

	sp = (unsigned long) stack;
	if (sp == 0) {
		if (tsk == current)
			sp = current_stack_frame();
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("%sCall Trace:\n", loglvl);
	do {
		if (!validate_sp(sp, tsk))
			break;

		stack = (unsigned long *) sp;
		newsp = stack[0];
		ip = stack[STACK_FRAME_LR_SAVE];
		if (!firstframe || ip != lr) {
			printk("%s["REG"] ["REG"] %pS",
				loglvl, sp, ip, (void *)ip);
			ret_addr = ftrace_graph_ret_addr(current,
						&ftrace_idx, ip, stack);
			if (ret_addr != ip)
				pr_cont(" (%pS)", (void *)ret_addr);
			if (firstframe)
				pr_cont(" (unreliable)");
			pr_cont("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regs" marker in the current frame.
		 *
		 * STACK_SWITCH_FRAME_SIZE being the smallest frame that
		 * could hold a pt_regs, if that does not fit then it can't
		 * have regs.
		 */
		if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE)
		    && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) {
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_INT_FRAME_REGS);

			lr = regs->link;
			printk("%s--- interrupt: %lx at %pS\n",
			       loglvl, regs->trap, (void *)regs->nip);

			// Detect the case of an empty pt_regs at the very base
			// of the stack and suppress showing it in full.
			if (!empty_user_regs(regs, tsk)) {
				__show_regs(regs);
				printk("%s--- interrupt: %lx\n", loglvl, regs->trap);
			}

			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);

	put_task_stack(tsk);
}

#ifdef CONFIG_PPC64
/* Called with hard IRQs off */
void notrace __ppc64_runlatch_on(void)
{
	struct thread_info *ti = current_thread_info();

	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		/*
		 * Least significant bit (RUN) is the only writable bit of
		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
		 * earliest ISA where this is the case, but it's convenient.
		 */
		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
	} else {
		unsigned long ctrl;

		/*
		 * Some architectures (e.g., Cell) have writable fields other
		 * than RUN, so do the read-modify-write.
		 */
		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}

	ti->local_flags |= _TLF_RUNLATCH;
}

/* Called with hard IRQs off */
void notrace __ppc64_runlatch_off(void)
{
	struct thread_info *ti = current_thread_info();

	ti->local_flags &= ~_TLF_RUNLATCH;

	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		mtspr(SPRN_CTRLT, 0);
	} else {
		unsigned long ctrl;

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
}
#endif /* CONFIG_PPC64 */

unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_u32_below(PAGE_SIZE);
	return sp & ~0xf;
}