Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anton Blanchard | 2524 | 70.54% | 5 | 12.82% |
Al Viro | 750 | 20.96% | 1 | 2.56% |
Andrew Morton | 140 | 3.91% | 6 | 15.38% |
Alexey Dobriyan | 40 | 1.12% | 1 | 2.56% |
Arnd Bergmann | 19 | 0.53% | 2 | 5.13% |
Denis V. Lunev | 19 | 0.53% | 1 | 2.56% |
Nathan T. Lynch | 14 | 0.39% | 3 | 7.69% |
Jeremy Kerr | 10 | 0.28% | 1 | 2.56% |
Paul Mackerras | 8 | 0.22% | 3 | 7.69% |
Nathan Fontenot | 7 | 0.20% | 1 | 2.56% |
Russell Currey | 7 | 0.20% | 1 | 2.56% |
Michael Ellerman | 6 | 0.17% | 2 | 5.13% |
Arjan van de Ven | 5 | 0.14% | 1 | 2.56% |
Benjamin Herrenschmidt | 5 | 0.14% | 1 | 2.56% |
Chen Huang | 4 | 0.11% | 1 | 2.56% |
Christophe Leroy | 4 | 0.11% | 1 | 2.56% |
Christoph Hellwig | 4 | 0.11% | 1 | 2.56% |
Todd Inglett | 3 | 0.08% | 1 | 2.56% |
Segher Boessenkool | 3 | 0.08% | 1 | 2.56% |
Stephen Rothwell | 2 | 0.06% | 1 | 2.56% |
Adrian Bunk | 1 | 0.03% | 1 | 2.56% |
Jon Mason | 1 | 0.03% | 1 | 2.56% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 2.56% |
Colin Ian King | 1 | 0.03% | 1 | 2.56% |
Total | 3578 | 39 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2000 Tilmann Bitterberg * (tilmann@bitterberg.de) * * RTAS (Runtime Abstraction Services) stuff * Intention is to provide a clean user interface * to use the RTAS. * * TODO: * Split off a header file and maybe move it to a different * location. Write Documentation on what the /proc/rtas/ entries * actually do. */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/proc_fs.h> #include <linux/stat.h> #include <linux/ctype.h> #include <linux/time.h> #include <linux/string.h> #include <linux/init.h> #include <linux/seq_file.h> #include <linux/bitops.h> #include <linux/rtc.h> #include <linux/of.h> #include <linux/uaccess.h> #include <asm/processor.h> #include <asm/io.h> #include <asm/rtas.h> #include <asm/machdep.h> /* for ppc_md */ #include <asm/time.h> /* Token for Sensors */ #define KEY_SWITCH 0x0001 #define ENCLOSURE_SWITCH 0x0002 #define THERMAL_SENSOR 0x0003 #define LID_STATUS 0x0004 #define POWER_SOURCE 0x0005 #define BATTERY_VOLTAGE 0x0006 #define BATTERY_REMAINING 0x0007 #define BATTERY_PERCENTAGE 0x0008 #define EPOW_SENSOR 0x0009 #define BATTERY_CYCLESTATE 0x000a #define BATTERY_CHARGING 0x000b /* IBM specific sensors */ #define IBM_SURVEILLANCE 0x2328 /* 9000 */ #define IBM_FANRPM 0x2329 /* 9001 */ #define IBM_VOLTAGE 0x232a /* 9002 */ #define IBM_DRCONNECTOR 0x232b /* 9003 */ #define IBM_POWERSUPPLY 0x232c /* 9004 */ /* Status return values */ #define SENSOR_CRITICAL_HIGH 13 #define SENSOR_WARNING_HIGH 12 #define SENSOR_NORMAL 11 #define SENSOR_WARNING_LOW 10 #define SENSOR_CRITICAL_LOW 9 #define SENSOR_SUCCESS 0 #define SENSOR_HW_ERROR -1 #define SENSOR_BUSY -2 #define SENSOR_NOT_EXIST -3 #define SENSOR_DR_ENTITY -9000 /* Location Codes */ #define LOC_SCSI_DEV_ADDR 'A' #define LOC_SCSI_DEV_LOC 'B' #define LOC_CPU 'C' #define LOC_DISKETTE 'D' #define LOC_ETHERNET 'E' #define LOC_FAN 'F' #define LOC_GRAPHICS 'G' /* reserved / not used 'H' */ #define LOC_IO_ADAPTER 'I' /* reserved / not used 'J' */ #define LOC_KEYBOARD 'K' #define LOC_LCD 'L' #define LOC_MEMORY 'M' #define LOC_NV_MEMORY 'N' #define LOC_MOUSE 'O' #define LOC_PLANAR 'P' #define LOC_OTHER_IO 'Q' #define LOC_PARALLEL 'R' #define LOC_SERIAL 'S' #define LOC_DEAD_RING 'T' #define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */ #define LOC_VOLTAGE 'V' #define LOC_SWITCH_ADAPTER 'W' #define LOC_OTHER 'X' #define LOC_FIRMWARE 'Y' #define LOC_SCSI 'Z' /* Tokens for indicators */ #define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/ #define TONE_VOLUME 0x0002 /* 0 - 100 (%) */ #define SYSTEM_POWER_STATE 0x0003 #define WARNING_LIGHT 0x0004 #define DISK_ACTIVITY_LIGHT 0x0005 #define HEX_DISPLAY_UNIT 0x0006 #define BATTERY_WARNING_TIME 0x0007 #define CONDITION_CYCLE_REQUEST 0x0008 #define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */ #define DR_ACTION 0x2329 /* 9001 */ #define DR_INDICATOR 0x232a /* 9002 */ /* 9003 - 9004: Vendor specific */ /* 9006 - 9999: Vendor specific */ /* other */ #define MAX_SENSORS 17 /* I only know of 17 sensors */ #define MAX_LINELENGTH 256 #define SENSOR_PREFIX "ibm,sensor-" #define cel_to_fahr(x) ((x*9/5)+32) struct individual_sensor { unsigned int token; unsigned int quant; }; struct rtas_sensors { struct individual_sensor sensor[MAX_SENSORS]; unsigned int quant; }; /* Globals */ static struct rtas_sensors sensors; static struct device_node *rtas_node = NULL; static unsigned long power_on_time = 0; /* Save the time the user set */ static char progress_led[MAX_LINELENGTH]; static unsigned long rtas_tone_frequency = 1000; static unsigned long rtas_tone_volume = 0; /* ****************************************************************** */ /* Declarations */ static int ppc_rtas_sensors_show(struct seq_file *m, void *v); static int ppc_rtas_clock_show(struct seq_file *m, void *v); static ssize_t ppc_rtas_clock_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos); static int ppc_rtas_progress_show(struct seq_file *m, void *v); static ssize_t ppc_rtas_progress_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos); static int ppc_rtas_poweron_show(struct seq_file *m, void *v); static ssize_t ppc_rtas_poweron_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos); static ssize_t ppc_rtas_tone_freq_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos); static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v); static ssize_t ppc_rtas_tone_volume_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos); static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v); static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v); static int poweron_open(struct inode *inode, struct file *file) { return single_open(file, ppc_rtas_poweron_show, NULL); } static const struct proc_ops ppc_rtas_poweron_proc_ops = { .proc_open = poweron_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_write = ppc_rtas_poweron_write, .proc_release = single_release, }; static int progress_open(struct inode *inode, struct file *file) { return single_open(file, ppc_rtas_progress_show, NULL); } static const struct proc_ops ppc_rtas_progress_proc_ops = { .proc_open = progress_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_write = ppc_rtas_progress_write, .proc_release = single_release, }; static int clock_open(struct inode *inode, struct file *file) { return single_open(file, ppc_rtas_clock_show, NULL); } static const struct proc_ops ppc_rtas_clock_proc_ops = { .proc_open = clock_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_write = ppc_rtas_clock_write, .proc_release = single_release, }; static int tone_freq_open(struct inode *inode, struct file *file) { return single_open(file, ppc_rtas_tone_freq_show, NULL); } static const struct proc_ops ppc_rtas_tone_freq_proc_ops = { .proc_open = tone_freq_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_write = ppc_rtas_tone_freq_write, .proc_release = single_release, }; static int tone_volume_open(struct inode *inode, struct file *file) { return single_open(file, ppc_rtas_tone_volume_show, NULL); } static const struct proc_ops ppc_rtas_tone_volume_proc_ops = { .proc_open = tone_volume_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_write = ppc_rtas_tone_volume_write, .proc_release = single_release, }; static int ppc_rtas_find_all_sensors(void); static void ppc_rtas_process_sensor(struct seq_file *m, struct individual_sensor *s, int state, int error, const char *loc); static char *ppc_rtas_process_error(int error); static void get_location_code(struct seq_file *m, struct individual_sensor *s, const char *loc); static void check_location_string(struct seq_file *m, const char *c); static void check_location(struct seq_file *m, const char *c); static int __init proc_rtas_init(void) { if (!machine_is(pseries)) return -ENODEV; rtas_node = of_find_node_by_name(NULL, "rtas"); if (rtas_node == NULL) return -ENODEV; proc_create("powerpc/rtas/progress", 0644, NULL, &ppc_rtas_progress_proc_ops); proc_create("powerpc/rtas/clock", 0644, NULL, &ppc_rtas_clock_proc_ops); proc_create("powerpc/rtas/poweron", 0644, NULL, &ppc_rtas_poweron_proc_ops); proc_create_single("powerpc/rtas/sensors", 0444, NULL, ppc_rtas_sensors_show); proc_create("powerpc/rtas/frequency", 0644, NULL, &ppc_rtas_tone_freq_proc_ops); proc_create("powerpc/rtas/volume", 0644, NULL, &ppc_rtas_tone_volume_proc_ops); proc_create_single("powerpc/rtas/rmo_buffer", 0400, NULL, ppc_rtas_rmo_buf_show); return 0; } __initcall(proc_rtas_init); static int parse_number(const char __user *p, size_t count, u64 *val) { char buf[40]; if (count > 39) return -EINVAL; if (copy_from_user(buf, p, count)) return -EFAULT; buf[count] = 0; return kstrtoull(buf, 10, val); } /* ****************************************************************** */ /* POWER-ON-TIME */ /* ****************************************************************** */ static ssize_t ppc_rtas_poweron_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct rtc_time tm; time64_t nowtime; int error = parse_number(buf, count, &nowtime); if (error) return error; power_on_time = nowtime; /* save the time */ rtc_time64_to_tm(nowtime, &tm); error = rtas_call(rtas_function_token(RTAS_FN_SET_TIME_FOR_POWER_ON), 7, 1, NULL, tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */); if (error) printk(KERN_WARNING "error: setting poweron time returned: %s\n", ppc_rtas_process_error(error)); return count; } /* ****************************************************************** */ static int ppc_rtas_poweron_show(struct seq_file *m, void *v) { if (power_on_time == 0) seq_printf(m, "Power on time not set\n"); else seq_printf(m, "%lu\n",power_on_time); return 0; } /* ****************************************************************** */ /* PROGRESS */ /* ****************************************************************** */ static ssize_t ppc_rtas_progress_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { unsigned long hex; if (count >= MAX_LINELENGTH) count = MAX_LINELENGTH -1; if (copy_from_user(progress_led, buf, count)) { /* save the string */ return -EFAULT; } progress_led[count] = 0; /* Lets see if the user passed hexdigits */ hex = simple_strtoul(progress_led, NULL, 10); rtas_progress ((char *)progress_led, hex); return count; /* clear the line */ /* rtas_progress(" ", 0xffff);*/ } /* ****************************************************************** */ static int ppc_rtas_progress_show(struct seq_file *m, void *v) { if (progress_led[0]) seq_printf(m, "%s\n", progress_led); return 0; } /* ****************************************************************** */ /* CLOCK */ /* ****************************************************************** */ static ssize_t ppc_rtas_clock_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { struct rtc_time tm; time64_t nowtime; int error = parse_number(buf, count, &nowtime); if (error) return error; rtc_time64_to_tm(nowtime, &tm); error = rtas_call(rtas_function_token(RTAS_FN_SET_TIME_OF_DAY), 7, 1, NULL, tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, 0); if (error) printk(KERN_WARNING "error: setting the clock returned: %s\n", ppc_rtas_process_error(error)); return count; } /* ****************************************************************** */ static int ppc_rtas_clock_show(struct seq_file *m, void *v) { int ret[8]; int error = rtas_call(rtas_function_token(RTAS_FN_GET_TIME_OF_DAY), 0, 8, ret); if (error) { printk(KERN_WARNING "error: reading the clock returned: %s\n", ppc_rtas_process_error(error)); seq_printf(m, "0"); } else { unsigned int year, mon, day, hour, min, sec; year = ret[0]; mon = ret[1]; day = ret[2]; hour = ret[3]; min = ret[4]; sec = ret[5]; seq_printf(m, "%lld\n", mktime64(year, mon, day, hour, min, sec)); } return 0; } /* ****************************************************************** */ /* SENSOR STUFF */ /* ****************************************************************** */ static int ppc_rtas_sensors_show(struct seq_file *m, void *v) { int i,j; int state, error; int get_sensor_state = rtas_function_token(RTAS_FN_GET_SENSOR_STATE); seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n"); seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n"); seq_printf(m, "********************************************************\n"); if (ppc_rtas_find_all_sensors() != 0) { seq_printf(m, "\nNo sensors are available\n"); return 0; } for (i=0; i<sensors.quant; i++) { struct individual_sensor *p = &sensors.sensor[i]; char rstr[64]; const char *loc; int llen, offs; sprintf (rstr, SENSOR_PREFIX"%04d", p->token); loc = of_get_property(rtas_node, rstr, &llen); /* A sensor may have multiple instances */ for (j = 0, offs = 0; j <= p->quant; j++) { error = rtas_call(get_sensor_state, 2, 2, &state, p->token, j); ppc_rtas_process_sensor(m, p, state, error, loc); seq_putc(m, '\n'); if (loc) { offs += strlen(loc) + 1; loc += strlen(loc) + 1; if (offs >= llen) loc = NULL; } } } return 0; } /* ****************************************************************** */ static int ppc_rtas_find_all_sensors(void) { const unsigned int *utmp; int len, i; utmp = of_get_property(rtas_node, "rtas-sensors", &len); if (utmp == NULL) { printk (KERN_ERR "error: could not get rtas-sensors\n"); return 1; } sensors.quant = len / 8; /* int + int */ for (i=0; i<sensors.quant; i++) { sensors.sensor[i].token = *utmp++; sensors.sensor[i].quant = *utmp++; } return 0; } /* ****************************************************************** */ /* * Builds a string of what rtas returned */ static char *ppc_rtas_process_error(int error) { switch (error) { case SENSOR_CRITICAL_HIGH: return "(critical high)"; case SENSOR_WARNING_HIGH: return "(warning high)"; case SENSOR_NORMAL: return "(normal)"; case SENSOR_WARNING_LOW: return "(warning low)"; case SENSOR_CRITICAL_LOW: return "(critical low)"; case SENSOR_SUCCESS: return "(read ok)"; case SENSOR_HW_ERROR: return "(hardware error)"; case SENSOR_BUSY: return "(busy)"; case SENSOR_NOT_EXIST: return "(non existent)"; case SENSOR_DR_ENTITY: return "(dr entity removed)"; default: return "(UNKNOWN)"; } } /* ****************************************************************** */ /* * Builds a string out of what the sensor said */ static void ppc_rtas_process_sensor(struct seq_file *m, struct individual_sensor *s, int state, int error, const char *loc) { /* Defined return vales */ const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t", "Maintenance" }; const char * enclosure_switch[] = { "Closed", "Open" }; const char * lid_status[] = { " ", "Open", "Closed" }; const char * power_source[] = { "AC\t", "Battery", "AC & Battery" }; const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" }; const char * epow_sensor[] = { "EPOW Reset", "Cooling warning", "Power warning", "System shutdown", "System halt", "EPOW main enclosure", "EPOW power off" }; const char * battery_cyclestate[] = { "None", "In progress", "Requested" }; const char * battery_charging[] = { "Charging", "Discharging", "No current flow" }; const char * ibm_drconnector[] = { "Empty", "Present", "Unusable", "Exchange" }; int have_strings = 0; int num_states = 0; int temperature = 0; int unknown = 0; /* What kind of sensor do we have here? */ switch (s->token) { case KEY_SWITCH: seq_printf(m, "Key switch:\t"); num_states = sizeof(key_switch) / sizeof(char *); if (state < num_states) { seq_printf(m, "%s\t", key_switch[state]); have_strings = 1; } break; case ENCLOSURE_SWITCH: seq_printf(m, "Enclosure switch:\t"); num_states = sizeof(enclosure_switch) / sizeof(char *); if (state < num_states) { seq_printf(m, "%s\t", enclosure_switch[state]); have_strings = 1; } break; case THERMAL_SENSOR: seq_printf(m, "Temp. (C/F):\t"); temperature = 1; break; case LID_STATUS: seq_printf(m, "Lid status:\t"); num_states = sizeof(lid_status) / sizeof(char *); if (state < num_states) { seq_printf(m, "%s\t", lid_status[state]); have_strings = 1; } break; case POWER_SOURCE: seq_printf(m, "Power source:\t"); num_states = sizeof(power_source) / sizeof(char *); if (state < num_states) { seq_printf(m, "%s\t", power_source[state]); have_strings = 1; } break; case BATTERY_VOLTAGE: seq_printf(m, "Battery voltage:\t"); break; case BATTERY_REMAINING: seq_printf(m, "Battery remaining:\t"); num_states = sizeof(battery_remaining) / sizeof(char *); if (state < num_states) { seq_printf(m, "%s\t", battery_remaining[state]); have_strings = 1; } break; case BATTERY_PERCENTAGE: seq_printf(m, "Battery percentage:\t"); break; case EPOW_SENSOR: seq_printf(m, "EPOW Sensor:\t"); num_states = sizeof(epow_sensor) / sizeof(char *); if (state < num_states) { seq_printf(m, "%s\t", epow_sensor[state]); have_strings = 1; } break; case BATTERY_CYCLESTATE: seq_printf(m, "Battery cyclestate:\t"); num_states = sizeof(battery_cyclestate) / sizeof(char *); if (state < num_states) { seq_printf(m, "%s\t", battery_cyclestate[state]); have_strings = 1; } break; case BATTERY_CHARGING: seq_printf(m, "Battery Charging:\t"); num_states = sizeof(battery_charging) / sizeof(char *); if (state < num_states) { seq_printf(m, "%s\t", battery_charging[state]); have_strings = 1; } break; case IBM_SURVEILLANCE: seq_printf(m, "Surveillance:\t"); break; case IBM_FANRPM: seq_printf(m, "Fan (rpm):\t"); break; case IBM_VOLTAGE: seq_printf(m, "Voltage (mv):\t"); break; case IBM_DRCONNECTOR: seq_printf(m, "DR connector:\t"); num_states = sizeof(ibm_drconnector) / sizeof(char *); if (state < num_states) { seq_printf(m, "%s\t", ibm_drconnector[state]); have_strings = 1; } break; case IBM_POWERSUPPLY: seq_printf(m, "Powersupply:\t"); break; default: seq_printf(m, "Unknown sensor (type %d), ignoring it\n", s->token); unknown = 1; have_strings = 1; break; } if (have_strings == 0) { if (temperature) { seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state)); } else seq_printf(m, "%10d\t", state); } if (unknown == 0) { seq_printf(m, "%s\t", ppc_rtas_process_error(error)); get_location_code(m, s, loc); } } /* ****************************************************************** */ static void check_location(struct seq_file *m, const char *c) { switch (c[0]) { case LOC_PLANAR: seq_printf(m, "Planar #%c", c[1]); break; case LOC_CPU: seq_printf(m, "CPU #%c", c[1]); break; case LOC_FAN: seq_printf(m, "Fan #%c", c[1]); break; case LOC_RACKMOUNTED: seq_printf(m, "Rack #%c", c[1]); break; case LOC_VOLTAGE: seq_printf(m, "Voltage #%c", c[1]); break; case LOC_LCD: seq_printf(m, "LCD #%c", c[1]); break; case '.': seq_printf(m, "- %c", c[1]); break; default: seq_printf(m, "Unknown location"); break; } } /* ****************************************************************** */ /* * Format: * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ] * the '.' may be an abbreviation */ static void check_location_string(struct seq_file *m, const char *c) { while (*c) { if (isalpha(*c) || *c == '.') check_location(m, c); else if (*c == '/' || *c == '-') seq_printf(m, " at "); c++; } } /* ****************************************************************** */ static void get_location_code(struct seq_file *m, struct individual_sensor *s, const char *loc) { if (!loc || !*loc) { seq_printf(m, "---");/* does not have a location */ } else { check_location_string(m, loc); } seq_putc(m, ' '); } /* ****************************************************************** */ /* INDICATORS - Tone Frequency */ /* ****************************************************************** */ static ssize_t ppc_rtas_tone_freq_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { u64 freq; int error = parse_number(buf, count, &freq); if (error) return error; rtas_tone_frequency = freq; /* save it for later */ error = rtas_call(rtas_function_token(RTAS_FN_SET_INDICATOR), 3, 1, NULL, TONE_FREQUENCY, 0, freq); if (error) printk(KERN_WARNING "error: setting tone frequency returned: %s\n", ppc_rtas_process_error(error)); return count; } /* ****************************************************************** */ static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v) { seq_printf(m, "%lu\n", rtas_tone_frequency); return 0; } /* ****************************************************************** */ /* INDICATORS - Tone Volume */ /* ****************************************************************** */ static ssize_t ppc_rtas_tone_volume_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { u64 volume; int error = parse_number(buf, count, &volume); if (error) return error; if (volume > 100) volume = 100; rtas_tone_volume = volume; /* save it for later */ error = rtas_call(rtas_function_token(RTAS_FN_SET_INDICATOR), 3, 1, NULL, TONE_VOLUME, 0, volume); if (error) printk(KERN_WARNING "error: setting tone volume returned: %s\n", ppc_rtas_process_error(error)); return count; } /* ****************************************************************** */ static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v) { seq_printf(m, "%lu\n", rtas_tone_volume); return 0; } /** * ppc_rtas_rmo_buf_show() - Describe RTAS-addressable region for user space. * @m: seq_file output target. * @v: Unused. * * Base + size description of a range of RTAS-addressable memory set * aside for user space to use as work area(s) for certain RTAS * functions. User space accesses this region via /dev/mem. Apart from * security policies, the kernel does not arbitrate or serialize * access to this region, and user space must ensure that concurrent * users do not interfere with each other. */ static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v) { seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_USER_REGION_SIZE); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1