Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benjamin Herrenschmidt | 7559 | 69.66% | 13 | 9.56% |
Alexey Kardashevskiy | 775 | 7.14% | 2 | 1.47% |
Cédric Le Goater | 773 | 7.12% | 22 | 16.18% |
Paul Mackerras | 540 | 4.98% | 24 | 17.65% |
Greg Kurz | 287 | 2.64% | 7 | 5.15% |
Nicholas Piggin | 282 | 2.60% | 5 | 3.68% |
Hollis Blanchard | 119 | 1.10% | 3 | 2.21% |
Avi Kivity | 84 | 0.77% | 4 | 2.94% |
Alexander Graf | 65 | 0.60% | 7 | 5.15% |
Michael Ellerman | 64 | 0.59% | 3 | 2.21% |
Mahesh Salgaonkar | 53 | 0.49% | 2 | 1.47% |
Scott Wood | 50 | 0.46% | 3 | 2.21% |
Gleb Natapov | 30 | 0.28% | 1 | 0.74% |
Raghavendra K T | 29 | 0.27% | 1 | 0.74% |
Marc Zyngier | 20 | 0.18% | 2 | 1.47% |
Jordan Niethe | 16 | 0.15% | 3 | 2.21% |
Sam Bobroff | 11 | 0.10% | 2 | 1.47% |
Suresh E. Warrier | 8 | 0.07% | 2 | 1.47% |
Aneesh Kumar K.V | 8 | 0.07% | 2 | 1.47% |
Laurent Vivier | 7 | 0.06% | 1 | 0.74% |
Sheng Yang | 6 | 0.06% | 1 | 0.74% |
David Gibson | 6 | 0.06% | 1 | 0.74% |
Cornelia Huck | 6 | 0.06% | 1 | 0.74% |
Radim Krčmář | 5 | 0.05% | 1 | 0.74% |
Anton Blanchard | 5 | 0.05% | 2 | 1.47% |
Alistair Popple | 4 | 0.04% | 1 | 0.74% |
Michael S. Tsirkin | 4 | 0.04% | 1 | 0.74% |
Xiantao Zhang | 4 | 0.04% | 2 | 1.47% |
Zhang Jiaming | 3 | 0.03% | 1 | 0.74% |
Yangtao Li | 3 | 0.03% | 1 | 0.74% |
Christoffer Dall | 3 | 0.03% | 1 | 0.74% |
Julia Lawall | 3 | 0.03% | 1 | 0.74% |
Andrew Morton | 3 | 0.03% | 1 | 0.74% |
Gregory Haskins | 2 | 0.02% | 1 | 0.74% |
Paolo Bonzini | 2 | 0.02% | 1 | 0.74% |
Jiapeng Chong | 2 | 0.02% | 1 | 0.74% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.74% |
Björn Helgaas | 1 | 0.01% | 1 | 0.74% |
Xiubo Li | 1 | 0.01% | 1 | 0.74% |
Asias He | 1 | 0.01% | 1 | 0.74% |
Christian Bornträger | 1 | 0.01% | 1 | 0.74% |
Juergen Gross | 1 | 0.01% | 1 | 0.74% |
Carsten Otte | 1 | 0.01% | 1 | 0.74% |
Russell Currey | 1 | 0.01% | 1 | 0.74% |
Al Viro | 1 | 0.01% | 1 | 0.74% |
Total | 10851 | 136 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation. */ #define pr_fmt(fmt) "xive-kvm: " fmt #include <linux/kernel.h> #include <linux/kvm_host.h> #include <linux/err.h> #include <linux/gfp.h> #include <linux/spinlock.h> #include <linux/delay.h> #include <linux/percpu.h> #include <linux/cpumask.h> #include <linux/uaccess.h> #include <linux/irqdomain.h> #include <asm/kvm_book3s.h> #include <asm/kvm_ppc.h> #include <asm/hvcall.h> #include <asm/xics.h> #include <asm/xive.h> #include <asm/xive-regs.h> #include <asm/debug.h> #include <asm/time.h> #include <asm/opal.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include "book3s_xive.h" #define __x_eoi_page(xd) ((void __iomem *)((xd)->eoi_mmio)) #define __x_trig_page(xd) ((void __iomem *)((xd)->trig_mmio)) /* Dummy interrupt used when taking interrupts out of a queue in H_CPPR */ #define XICS_DUMMY 1 static void xive_vm_ack_pending(struct kvmppc_xive_vcpu *xc) { u8 cppr; u16 ack; /* * Ensure any previous store to CPPR is ordered vs. * the subsequent loads from PIPR or ACK. */ eieio(); /* Perform the acknowledge OS to register cycle. */ ack = be16_to_cpu(__raw_readw(xive_tima + TM_SPC_ACK_OS_REG)); /* Synchronize subsequent queue accesses */ mb(); /* XXX Check grouping level */ /* Anything ? */ if (!((ack >> 8) & TM_QW1_NSR_EO)) return; /* Grab CPPR of the most favored pending interrupt */ cppr = ack & 0xff; if (cppr < 8) xc->pending |= 1 << cppr; /* Check consistency */ if (cppr >= xc->hw_cppr) pr_warn("KVM-XIVE: CPU %d odd ack CPPR, got %d at %d\n", smp_processor_id(), cppr, xc->hw_cppr); /* * Update our image of the HW CPPR. We don't yet modify * xc->cppr, this will be done as we scan for interrupts * in the queues. */ xc->hw_cppr = cppr; } static u8 xive_vm_esb_load(struct xive_irq_data *xd, u32 offset) { u64 val; if (offset == XIVE_ESB_SET_PQ_10 && xd->flags & XIVE_IRQ_FLAG_STORE_EOI) offset |= XIVE_ESB_LD_ST_MO; val = __raw_readq(__x_eoi_page(xd) + offset); #ifdef __LITTLE_ENDIAN__ val >>= 64-8; #endif return (u8)val; } static void xive_vm_source_eoi(u32 hw_irq, struct xive_irq_data *xd) { /* If the XIVE supports the new "store EOI facility, use it */ if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI) __raw_writeq(0, __x_eoi_page(xd) + XIVE_ESB_STORE_EOI); else if (xd->flags & XIVE_IRQ_FLAG_LSI) { /* * For LSIs the HW EOI cycle is used rather than PQ bits, * as they are automatically re-triggred in HW when still * pending. */ __raw_readq(__x_eoi_page(xd) + XIVE_ESB_LOAD_EOI); } else { uint64_t eoi_val; /* * Otherwise for EOI, we use the special MMIO that does * a clear of both P and Q and returns the old Q, * except for LSIs where we use the "EOI cycle" special * load. * * This allows us to then do a re-trigger if Q was set * rather than synthetizing an interrupt in software */ eoi_val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_00); /* Re-trigger if needed */ if ((eoi_val & 1) && __x_trig_page(xd)) __raw_writeq(0, __x_trig_page(xd)); } } enum { scan_fetch, scan_poll, scan_eoi, }; static u32 xive_vm_scan_interrupts(struct kvmppc_xive_vcpu *xc, u8 pending, int scan_type) { u32 hirq = 0; u8 prio = 0xff; /* Find highest pending priority */ while ((xc->mfrr != 0xff || pending != 0) && hirq == 0) { struct xive_q *q; u32 idx, toggle; __be32 *qpage; /* * If pending is 0 this will return 0xff which is what * we want */ prio = ffs(pending) - 1; /* Don't scan past the guest cppr */ if (prio >= xc->cppr || prio > 7) { if (xc->mfrr < xc->cppr) { prio = xc->mfrr; hirq = XICS_IPI; } break; } /* Grab queue and pointers */ q = &xc->queues[prio]; idx = q->idx; toggle = q->toggle; /* * Snapshot the queue page. The test further down for EOI * must use the same "copy" that was used by __xive_read_eq * since qpage can be set concurrently and we don't want * to miss an EOI. */ qpage = READ_ONCE(q->qpage); skip_ipi: /* * Try to fetch from the queue. Will return 0 for a * non-queueing priority (ie, qpage = 0). */ hirq = __xive_read_eq(qpage, q->msk, &idx, &toggle); /* * If this was a signal for an MFFR change done by * H_IPI we skip it. Additionally, if we were fetching * we EOI it now, thus re-enabling reception of a new * such signal. * * We also need to do that if prio is 0 and we had no * page for the queue. In this case, we have non-queued * IPI that needs to be EOId. * * This is safe because if we have another pending MFRR * change that wasn't observed above, the Q bit will have * been set and another occurrence of the IPI will trigger. */ if (hirq == XICS_IPI || (prio == 0 && !qpage)) { if (scan_type == scan_fetch) { xive_vm_source_eoi(xc->vp_ipi, &xc->vp_ipi_data); q->idx = idx; q->toggle = toggle; } /* Loop back on same queue with updated idx/toggle */ WARN_ON(hirq && hirq != XICS_IPI); if (hirq) goto skip_ipi; } /* If it's the dummy interrupt, continue searching */ if (hirq == XICS_DUMMY) goto skip_ipi; /* Clear the pending bit if the queue is now empty */ if (!hirq) { pending &= ~(1 << prio); /* * Check if the queue count needs adjusting due to * interrupts being moved away. */ if (atomic_read(&q->pending_count)) { int p = atomic_xchg(&q->pending_count, 0); if (p) { WARN_ON(p > atomic_read(&q->count)); atomic_sub(p, &q->count); } } } /* * If the most favoured prio we found pending is less * favored (or equal) than a pending IPI, we return * the IPI instead. */ if (prio >= xc->mfrr && xc->mfrr < xc->cppr) { prio = xc->mfrr; hirq = XICS_IPI; break; } /* If fetching, update queue pointers */ if (scan_type == scan_fetch) { q->idx = idx; q->toggle = toggle; } } /* If we are just taking a "peek", do nothing else */ if (scan_type == scan_poll) return hirq; /* Update the pending bits */ xc->pending = pending; /* * If this is an EOI that's it, no CPPR adjustment done here, * all we needed was cleanup the stale pending bits and check * if there's anything left. */ if (scan_type == scan_eoi) return hirq; /* * If we found an interrupt, adjust what the guest CPPR should * be as if we had just fetched that interrupt from HW. * * Note: This can only make xc->cppr smaller as the previous * loop will only exit with hirq != 0 if prio is lower than * the current xc->cppr. Thus we don't need to re-check xc->mfrr * for pending IPIs. */ if (hirq) xc->cppr = prio; /* * If it was an IPI the HW CPPR might have been lowered too much * as the HW interrupt we use for IPIs is routed to priority 0. * * We re-sync it here. */ if (xc->cppr != xc->hw_cppr) { xc->hw_cppr = xc->cppr; __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR); } return hirq; } static unsigned long xive_vm_h_xirr(struct kvm_vcpu *vcpu) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; u8 old_cppr; u32 hirq; pr_devel("H_XIRR\n"); xc->stat_vm_h_xirr++; /* First collect pending bits from HW */ xive_vm_ack_pending(xc); pr_devel(" new pending=0x%02x hw_cppr=%d cppr=%d\n", xc->pending, xc->hw_cppr, xc->cppr); /* Grab previous CPPR and reverse map it */ old_cppr = xive_prio_to_guest(xc->cppr); /* Scan for actual interrupts */ hirq = xive_vm_scan_interrupts(xc, xc->pending, scan_fetch); pr_devel(" got hirq=0x%x hw_cppr=%d cppr=%d\n", hirq, xc->hw_cppr, xc->cppr); /* That should never hit */ if (hirq & 0xff000000) pr_warn("XIVE: Weird guest interrupt number 0x%08x\n", hirq); /* * XXX We could check if the interrupt is masked here and * filter it. If we chose to do so, we would need to do: * * if (masked) { * lock(); * if (masked) { * old_Q = true; * hirq = 0; * } * unlock(); * } */ /* Return interrupt and old CPPR in GPR4 */ kvmppc_set_gpr(vcpu, 4, hirq | (old_cppr << 24)); return H_SUCCESS; } static unsigned long xive_vm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; u8 pending = xc->pending; u32 hirq; pr_devel("H_IPOLL(server=%ld)\n", server); xc->stat_vm_h_ipoll++; /* Grab the target VCPU if not the current one */ if (xc->server_num != server) { vcpu = kvmppc_xive_find_server(vcpu->kvm, server); if (!vcpu) return H_PARAMETER; xc = vcpu->arch.xive_vcpu; /* Scan all priorities */ pending = 0xff; } else { /* Grab pending interrupt if any */ __be64 qw1 = __raw_readq(xive_tima + TM_QW1_OS); u8 pipr = be64_to_cpu(qw1) & 0xff; if (pipr < 8) pending |= 1 << pipr; } hirq = xive_vm_scan_interrupts(xc, pending, scan_poll); /* Return interrupt and old CPPR in GPR4 */ kvmppc_set_gpr(vcpu, 4, hirq | (xc->cppr << 24)); return H_SUCCESS; } static void xive_vm_push_pending_to_hw(struct kvmppc_xive_vcpu *xc) { u8 pending, prio; pending = xc->pending; if (xc->mfrr != 0xff) { if (xc->mfrr < 8) pending |= 1 << xc->mfrr; else pending |= 0x80; } if (!pending) return; prio = ffs(pending) - 1; __raw_writeb(prio, xive_tima + TM_SPC_SET_OS_PENDING); } static void xive_vm_scan_for_rerouted_irqs(struct kvmppc_xive *xive, struct kvmppc_xive_vcpu *xc) { unsigned int prio; /* For each priority that is now masked */ for (prio = xc->cppr; prio < KVMPPC_XIVE_Q_COUNT; prio++) { struct xive_q *q = &xc->queues[prio]; struct kvmppc_xive_irq_state *state; struct kvmppc_xive_src_block *sb; u32 idx, toggle, entry, irq, hw_num; struct xive_irq_data *xd; __be32 *qpage; u16 src; idx = q->idx; toggle = q->toggle; qpage = READ_ONCE(q->qpage); if (!qpage) continue; /* For each interrupt in the queue */ for (;;) { entry = be32_to_cpup(qpage + idx); /* No more ? */ if ((entry >> 31) == toggle) break; irq = entry & 0x7fffffff; /* Skip dummies and IPIs */ if (irq == XICS_DUMMY || irq == XICS_IPI) goto next; sb = kvmppc_xive_find_source(xive, irq, &src); if (!sb) goto next; state = &sb->irq_state[src]; /* Has it been rerouted ? */ if (xc->server_num == state->act_server) goto next; /* * Allright, it *has* been re-routed, kill it from * the queue. */ qpage[idx] = cpu_to_be32((entry & 0x80000000) | XICS_DUMMY); /* Find the HW interrupt */ kvmppc_xive_select_irq(state, &hw_num, &xd); /* If it's not an LSI, set PQ to 11 the EOI will force a resend */ if (!(xd->flags & XIVE_IRQ_FLAG_LSI)) xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); /* EOI the source */ xive_vm_source_eoi(hw_num, xd); next: idx = (idx + 1) & q->msk; if (idx == 0) toggle ^= 1; } } } static int xive_vm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; struct kvmppc_xive *xive = vcpu->kvm->arch.xive; u8 old_cppr; pr_devel("H_CPPR(cppr=%ld)\n", cppr); xc->stat_vm_h_cppr++; /* Map CPPR */ cppr = xive_prio_from_guest(cppr); /* Remember old and update SW state */ old_cppr = xc->cppr; xc->cppr = cppr; /* * Order the above update of xc->cppr with the subsequent * read of xc->mfrr inside push_pending_to_hw() */ smp_mb(); if (cppr > old_cppr) { /* * We are masking less, we need to look for pending things * to deliver and set VP pending bits accordingly to trigger * a new interrupt otherwise we might miss MFRR changes for * which we have optimized out sending an IPI signal. */ xive_vm_push_pending_to_hw(xc); } else { /* * We are masking more, we need to check the queue for any * interrupt that has been routed to another CPU, take * it out (replace it with the dummy) and retrigger it. * * This is necessary since those interrupts may otherwise * never be processed, at least not until this CPU restores * its CPPR. * * This is in theory racy vs. HW adding new interrupts to * the queue. In practice this works because the interesting * cases are when the guest has done a set_xive() to move the * interrupt away, which flushes the xive, followed by the * target CPU doing a H_CPPR. So any new interrupt coming into * the queue must still be routed to us and isn't a source * of concern. */ xive_vm_scan_for_rerouted_irqs(xive, xc); } /* Apply new CPPR */ xc->hw_cppr = cppr; __raw_writeb(cppr, xive_tima + TM_QW1_OS + TM_CPPR); return H_SUCCESS; } static int xive_vm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr) { struct kvmppc_xive *xive = vcpu->kvm->arch.xive; struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; struct xive_irq_data *xd; u8 new_cppr = xirr >> 24; u32 irq = xirr & 0x00ffffff, hw_num; u16 src; int rc = 0; pr_devel("H_EOI(xirr=%08lx)\n", xirr); xc->stat_vm_h_eoi++; xc->cppr = xive_prio_from_guest(new_cppr); /* * IPIs are synthesized from MFRR and thus don't need * any special EOI handling. The underlying interrupt * used to signal MFRR changes is EOId when fetched from * the queue. */ if (irq == XICS_IPI || irq == 0) { /* * This barrier orders the setting of xc->cppr vs. * subsequent test of xc->mfrr done inside * scan_interrupts and push_pending_to_hw */ smp_mb(); goto bail; } /* Find interrupt source */ sb = kvmppc_xive_find_source(xive, irq, &src); if (!sb) { pr_devel(" source not found !\n"); rc = H_PARAMETER; /* Same as above */ smp_mb(); goto bail; } state = &sb->irq_state[src]; kvmppc_xive_select_irq(state, &hw_num, &xd); state->in_eoi = true; /* * This barrier orders both setting of in_eoi above vs, * subsequent test of guest_priority, and the setting * of xc->cppr vs. subsequent test of xc->mfrr done inside * scan_interrupts and push_pending_to_hw */ smp_mb(); again: if (state->guest_priority == MASKED) { arch_spin_lock(&sb->lock); if (state->guest_priority != MASKED) { arch_spin_unlock(&sb->lock); goto again; } pr_devel(" EOI on saved P...\n"); /* Clear old_p, that will cause unmask to perform an EOI */ state->old_p = false; arch_spin_unlock(&sb->lock); } else { pr_devel(" EOI on source...\n"); /* Perform EOI on the source */ xive_vm_source_eoi(hw_num, xd); /* If it's an emulated LSI, check level and resend */ if (state->lsi && state->asserted) __raw_writeq(0, __x_trig_page(xd)); } /* * This barrier orders the above guest_priority check * and spin_lock/unlock with clearing in_eoi below. * * It also has to be a full mb() as it must ensure * the MMIOs done in source_eoi() are completed before * state->in_eoi is visible. */ mb(); state->in_eoi = false; bail: /* Re-evaluate pending IRQs and update HW */ xive_vm_scan_interrupts(xc, xc->pending, scan_eoi); xive_vm_push_pending_to_hw(xc); pr_devel(" after scan pending=%02x\n", xc->pending); /* Apply new CPPR */ xc->hw_cppr = xc->cppr; __raw_writeb(xc->cppr, xive_tima + TM_QW1_OS + TM_CPPR); return rc; } static int xive_vm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, unsigned long mfrr) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; pr_devel("H_IPI(server=%08lx,mfrr=%ld)\n", server, mfrr); xc->stat_vm_h_ipi++; /* Find target */ vcpu = kvmppc_xive_find_server(vcpu->kvm, server); if (!vcpu) return H_PARAMETER; xc = vcpu->arch.xive_vcpu; /* Locklessly write over MFRR */ xc->mfrr = mfrr; /* * The load of xc->cppr below and the subsequent MMIO store * to the IPI must happen after the above mfrr update is * globally visible so that: * * - Synchronize with another CPU doing an H_EOI or a H_CPPR * updating xc->cppr then reading xc->mfrr. * * - The target of the IPI sees the xc->mfrr update */ mb(); /* Shoot the IPI if most favored than target cppr */ if (mfrr < xc->cppr) __raw_writeq(0, __x_trig_page(&xc->vp_ipi_data)); return H_SUCCESS; } /* * We leave a gap of a couple of interrupts in the queue to * account for the IPI and additional safety guard. */ #define XIVE_Q_GAP 2 static bool kvmppc_xive_vcpu_has_save_restore(struct kvm_vcpu *vcpu) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; /* Check enablement at VP level */ return xc->vp_cam & TM_QW1W2_HO; } bool kvmppc_xive_check_save_restore(struct kvm_vcpu *vcpu) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; struct kvmppc_xive *xive = xc->xive; if (xive->flags & KVMPPC_XIVE_FLAG_SAVE_RESTORE) return kvmppc_xive_vcpu_has_save_restore(vcpu); return true; } /* * Push a vcpu's context to the XIVE on guest entry. * This assumes we are in virtual mode (MMU on) */ void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu) { void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; u64 pq; /* * Nothing to do if the platform doesn't have a XIVE * or this vCPU doesn't have its own XIVE context * (e.g. because it's not using an in-kernel interrupt controller). */ if (!tima || !vcpu->arch.xive_cam_word) return; eieio(); if (!kvmppc_xive_vcpu_has_save_restore(vcpu)) __raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS); __raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2); vcpu->arch.xive_pushed = 1; eieio(); /* * We clear the irq_pending flag. There is a small chance of a * race vs. the escalation interrupt happening on another * processor setting it again, but the only consequence is to * cause a spurious wakeup on the next H_CEDE, which is not an * issue. */ vcpu->arch.irq_pending = 0; /* * In single escalation mode, if the escalation interrupt is * on, we mask it. */ if (vcpu->arch.xive_esc_on) { pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + XIVE_ESB_SET_PQ_01)); mb(); /* * We have a possible subtle race here: The escalation * interrupt might have fired and be on its way to the * host queue while we mask it, and if we unmask it * early enough (re-cede right away), there is a * theoretical possibility that it fires again, thus * landing in the target queue more than once which is * a big no-no. * * Fortunately, solving this is rather easy. If the * above load setting PQ to 01 returns a previous * value where P is set, then we know the escalation * interrupt is somewhere on its way to the host. In * that case we simply don't clear the xive_esc_on * flag below. It will be eventually cleared by the * handler for the escalation interrupt. * * Then, when doing a cede, we check that flag again * before re-enabling the escalation interrupt, and if * set, we abort the cede. */ if (!(pq & XIVE_ESB_VAL_P)) /* Now P is 0, we can clear the flag */ vcpu->arch.xive_esc_on = 0; } } EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu); /* * Pull a vcpu's context from the XIVE on guest exit. * This assumes we are in virtual mode (MMU on) */ void kvmppc_xive_pull_vcpu(struct kvm_vcpu *vcpu) { void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt; if (!vcpu->arch.xive_pushed) return; /* * Should not have been pushed if there is no tima */ if (WARN_ON(!tima)) return; eieio(); /* First load to pull the context, we ignore the value */ __raw_readl(tima + TM_SPC_PULL_OS_CTX); /* Second load to recover the context state (Words 0 and 1) */ if (!kvmppc_xive_vcpu_has_save_restore(vcpu)) vcpu->arch.xive_saved_state.w01 = __raw_readq(tima + TM_QW1_OS); /* Fixup some of the state for the next load */ vcpu->arch.xive_saved_state.lsmfb = 0; vcpu->arch.xive_saved_state.ack = 0xff; vcpu->arch.xive_pushed = 0; eieio(); } EXPORT_SYMBOL_GPL(kvmppc_xive_pull_vcpu); bool kvmppc_xive_rearm_escalation(struct kvm_vcpu *vcpu) { void __iomem *esc_vaddr = (void __iomem *)vcpu->arch.xive_esc_vaddr; bool ret = true; if (!esc_vaddr) return ret; /* we are using XIVE with single escalation */ if (vcpu->arch.xive_esc_on) { /* * If we still have a pending escalation, abort the cede, * and we must set PQ to 10 rather than 00 so that we don't * potentially end up with two entries for the escalation * interrupt in the XIVE interrupt queue. In that case * we also don't want to set xive_esc_on to 1 here in * case we race with xive_esc_irq(). */ ret = false; /* * The escalation interrupts are special as we don't EOI them. * There is no need to use the load-after-store ordering offset * to set PQ to 10 as we won't use StoreEOI. */ __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_10); } else { vcpu->arch.xive_esc_on = true; mb(); __raw_readq(esc_vaddr + XIVE_ESB_SET_PQ_00); } mb(); return ret; } EXPORT_SYMBOL_GPL(kvmppc_xive_rearm_escalation); /* * This is a simple trigger for a generic XIVE IRQ. This must * only be called for interrupts that support a trigger page */ static bool xive_irq_trigger(struct xive_irq_data *xd) { /* This should be only for MSIs */ if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI)) return false; /* Those interrupts should always have a trigger page */ if (WARN_ON(!xd->trig_mmio)) return false; out_be64(xd->trig_mmio, 0); return true; } static irqreturn_t xive_esc_irq(int irq, void *data) { struct kvm_vcpu *vcpu = data; vcpu->arch.irq_pending = 1; smp_mb(); if (vcpu->arch.ceded || vcpu->arch.nested) kvmppc_fast_vcpu_kick(vcpu); /* Since we have the no-EOI flag, the interrupt is effectively * disabled now. Clearing xive_esc_on means we won't bother * doing so on the next entry. * * This also allows the entry code to know that if a PQ combination * of 10 is observed while xive_esc_on is true, it means the queue * contains an unprocessed escalation interrupt. We don't make use of * that knowledge today but might (see comment in book3s_hv_rmhandler.S) */ vcpu->arch.xive_esc_on = false; /* This orders xive_esc_on = false vs. subsequent stale_p = true */ smp_wmb(); /* goes with smp_mb() in cleanup_single_escalation */ return IRQ_HANDLED; } int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio, bool single_escalation) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; struct xive_q *q = &xc->queues[prio]; char *name = NULL; int rc; /* Already there ? */ if (xc->esc_virq[prio]) return 0; /* Hook up the escalation interrupt */ xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq); if (!xc->esc_virq[prio]) { pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n", prio, xc->server_num); return -EIO; } if (single_escalation) name = kasprintf(GFP_KERNEL, "kvm-%lld-%d", vcpu->kvm->arch.lpid, xc->server_num); else name = kasprintf(GFP_KERNEL, "kvm-%lld-%d-%d", vcpu->kvm->arch.lpid, xc->server_num, prio); if (!name) { pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n", prio, xc->server_num); rc = -ENOMEM; goto error; } pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio); rc = request_irq(xc->esc_virq[prio], xive_esc_irq, IRQF_NO_THREAD, name, vcpu); if (rc) { pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n", prio, xc->server_num); goto error; } xc->esc_virq_names[prio] = name; /* In single escalation mode, we grab the ESB MMIO of the * interrupt and mask it. Also populate the VCPU v/raddr * of the ESB page for use by asm entry/exit code. Finally * set the XIVE_IRQ_FLAG_NO_EOI flag which will prevent the * core code from performing an EOI on the escalation * interrupt, thus leaving it effectively masked after * it fires once. */ if (single_escalation) { struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]); struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); vcpu->arch.xive_esc_raddr = xd->eoi_page; vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio; xd->flags |= XIVE_IRQ_FLAG_NO_EOI; } return 0; error: irq_dispose_mapping(xc->esc_virq[prio]); xc->esc_virq[prio] = 0; kfree(name); return rc; } static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; struct kvmppc_xive *xive = xc->xive; struct xive_q *q = &xc->queues[prio]; void *qpage; int rc; if (WARN_ON(q->qpage)) return 0; /* Allocate the queue and retrieve infos on current node for now */ qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order); if (!qpage) { pr_err("Failed to allocate queue %d for VCPU %d\n", prio, xc->server_num); return -ENOMEM; } memset(qpage, 0, 1 << xive->q_order); /* * Reconfigure the queue. This will set q->qpage only once the * queue is fully configured. This is a requirement for prio 0 * as we will stop doing EOIs for every IPI as soon as we observe * qpage being non-NULL, and instead will only EOI when we receive * corresponding queue 0 entries */ rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage, xive->q_order, true); if (rc) pr_err("Failed to configure queue %d for VCPU %d\n", prio, xc->server_num); return rc; } /* Called with xive->lock held */ static int xive_check_provisioning(struct kvm *kvm, u8 prio) { struct kvmppc_xive *xive = kvm->arch.xive; struct kvm_vcpu *vcpu; unsigned long i; int rc; lockdep_assert_held(&xive->lock); /* Already provisioned ? */ if (xive->qmap & (1 << prio)) return 0; pr_devel("Provisioning prio... %d\n", prio); /* Provision each VCPU and enable escalations if needed */ kvm_for_each_vcpu(i, vcpu, kvm) { if (!vcpu->arch.xive_vcpu) continue; rc = xive_provision_queue(vcpu, prio); if (rc == 0 && !kvmppc_xive_has_single_escalation(xive)) kvmppc_xive_attach_escalation(vcpu, prio, kvmppc_xive_has_single_escalation(xive)); if (rc) return rc; } /* Order previous stores and mark it as provisioned */ mb(); xive->qmap |= (1 << prio); return 0; } static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio) { struct kvm_vcpu *vcpu; struct kvmppc_xive_vcpu *xc; struct xive_q *q; /* Locate target server */ vcpu = kvmppc_xive_find_server(kvm, server); if (!vcpu) { pr_warn("%s: Can't find server %d\n", __func__, server); return; } xc = vcpu->arch.xive_vcpu; if (WARN_ON(!xc)) return; q = &xc->queues[prio]; atomic_inc(&q->pending_count); } static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; struct xive_q *q; u32 max; if (WARN_ON(!xc)) return -ENXIO; if (!xc->valid) return -ENXIO; q = &xc->queues[prio]; if (WARN_ON(!q->qpage)) return -ENXIO; /* Calculate max number of interrupts in that queue. */ max = (q->msk + 1) - XIVE_Q_GAP; return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY; } int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio) { struct kvm_vcpu *vcpu; unsigned long i; int rc; /* Locate target server */ vcpu = kvmppc_xive_find_server(kvm, *server); if (!vcpu) { pr_devel("Can't find server %d\n", *server); return -EINVAL; } pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio); /* Try pick it */ rc = xive_try_pick_queue(vcpu, prio); if (rc == 0) return rc; pr_devel(" .. failed, looking up candidate...\n"); /* Failed, pick another VCPU */ kvm_for_each_vcpu(i, vcpu, kvm) { if (!vcpu->arch.xive_vcpu) continue; rc = xive_try_pick_queue(vcpu, prio); if (rc == 0) { *server = vcpu->arch.xive_vcpu->server_num; pr_devel(" found on 0x%x/%d\n", *server, prio); return rc; } } pr_devel(" no available target !\n"); /* No available target ! */ return -EBUSY; } static u8 xive_lock_and_mask(struct kvmppc_xive *xive, struct kvmppc_xive_src_block *sb, struct kvmppc_xive_irq_state *state) { struct xive_irq_data *xd; u32 hw_num; u8 old_prio; u64 val; /* * Take the lock, set masked, try again if racing * with H_EOI */ for (;;) { arch_spin_lock(&sb->lock); old_prio = state->guest_priority; state->guest_priority = MASKED; mb(); if (!state->in_eoi) break; state->guest_priority = old_prio; arch_spin_unlock(&sb->lock); } /* No change ? Bail */ if (old_prio == MASKED) return old_prio; /* Get the right irq */ kvmppc_xive_select_irq(state, &hw_num, &xd); /* Set PQ to 10, return old P and old Q and remember them */ val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10); state->old_p = !!(val & 2); state->old_q = !!(val & 1); /* * Synchronize hardware to sensure the queues are updated when * masking */ xive_native_sync_source(hw_num); return old_prio; } static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb, struct kvmppc_xive_irq_state *state) { /* * Take the lock try again if racing with H_EOI */ for (;;) { arch_spin_lock(&sb->lock); if (!state->in_eoi) break; arch_spin_unlock(&sb->lock); } } static void xive_finish_unmask(struct kvmppc_xive *xive, struct kvmppc_xive_src_block *sb, struct kvmppc_xive_irq_state *state, u8 prio) { struct xive_irq_data *xd; u32 hw_num; /* If we aren't changing a thing, move on */ if (state->guest_priority != MASKED) goto bail; /* Get the right irq */ kvmppc_xive_select_irq(state, &hw_num, &xd); /* Old Q set, set PQ to 11 */ if (state->old_q) xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11); /* * If not old P, then perform an "effective" EOI, * on the source. This will handle the cases where * FW EOI is needed. */ if (!state->old_p) xive_vm_source_eoi(hw_num, xd); /* Synchronize ordering and mark unmasked */ mb(); bail: state->guest_priority = prio; } /* * Target an interrupt to a given server/prio, this will fallback * to another server if necessary and perform the HW targetting * updates as needed * * NOTE: Must be called with the state lock held */ static int xive_target_interrupt(struct kvm *kvm, struct kvmppc_xive_irq_state *state, u32 server, u8 prio) { struct kvmppc_xive *xive = kvm->arch.xive; u32 hw_num; int rc; /* * This will return a tentative server and actual * priority. The count for that new target will have * already been incremented. */ rc = kvmppc_xive_select_target(kvm, &server, prio); /* * We failed to find a target ? Not much we can do * at least until we support the GIQ. */ if (rc) return rc; /* * Increment the old queue pending count if there * was one so that the old queue count gets adjusted later * when observed to be empty. */ if (state->act_priority != MASKED) xive_inc_q_pending(kvm, state->act_server, state->act_priority); /* * Update state and HW */ state->act_priority = prio; state->act_server = server; /* Get the right irq */ kvmppc_xive_select_irq(state, &hw_num, NULL); return xive_native_configure_irq(hw_num, kvmppc_xive_vp(xive, server), prio, state->number); } /* * Targetting rules: In order to avoid losing track of * pending interrupts across mask and unmask, which would * allow queue overflows, we implement the following rules: * * - Unless it was never enabled (or we run out of capacity) * an interrupt is always targetted at a valid server/queue * pair even when "masked" by the guest. This pair tends to * be the last one used but it can be changed under some * circumstances. That allows us to separate targetting * from masking, we only handle accounting during (re)targetting, * this also allows us to let an interrupt drain into its target * queue after masking, avoiding complex schemes to remove * interrupts out of remote processor queues. * * - When masking, we set PQ to 10 and save the previous value * of P and Q. * * - When unmasking, if saved Q was set, we set PQ to 11 * otherwise we leave PQ to the HW state which will be either * 10 if nothing happened or 11 if the interrupt fired while * masked. Effectively we are OR'ing the previous Q into the * HW Q. * * Then if saved P is clear, we do an effective EOI (Q->P->Trigger) * which will unmask the interrupt and shoot a new one if Q was * set. * * Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11, * effectively meaning an H_EOI from the guest is still expected * for that interrupt). * * - If H_EOI occurs while masked, we clear the saved P. * * - When changing target, we account on the new target and * increment a separate "pending" counter on the old one. * This pending counter will be used to decrement the old * target's count when its queue has been observed empty. */ int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server, u32 priority) { struct kvmppc_xive *xive = kvm->arch.xive; struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; u8 new_act_prio; int rc = 0; u16 idx; if (!xive) return -ENODEV; pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n", irq, server, priority); /* First, check provisioning of queues */ if (priority != MASKED) { mutex_lock(&xive->lock); rc = xive_check_provisioning(xive->kvm, xive_prio_from_guest(priority)); mutex_unlock(&xive->lock); } if (rc) { pr_devel(" provisioning failure %d !\n", rc); return rc; } sb = kvmppc_xive_find_source(xive, irq, &idx); if (!sb) return -EINVAL; state = &sb->irq_state[idx]; /* * We first handle masking/unmasking since the locking * might need to be retried due to EOIs, we'll handle * targetting changes later. These functions will return * with the SB lock held. * * xive_lock_and_mask() will also set state->guest_priority * but won't otherwise change other fields of the state. * * xive_lock_for_unmask will not actually unmask, this will * be done later by xive_finish_unmask() once the targetting * has been done, so we don't try to unmask an interrupt * that hasn't yet been targetted. */ if (priority == MASKED) xive_lock_and_mask(xive, sb, state); else xive_lock_for_unmask(sb, state); /* * Then we handle targetting. * * First calculate a new "actual priority" */ new_act_prio = state->act_priority; if (priority != MASKED) new_act_prio = xive_prio_from_guest(priority); pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n", new_act_prio, state->act_server, state->act_priority); /* * Then check if we actually need to change anything, * * The condition for re-targetting the interrupt is that * we have a valid new priority (new_act_prio is not 0xff) * and either the server or the priority changed. * * Note: If act_priority was ff and the new priority is * also ff, we don't do anything and leave the interrupt * untargetted. An attempt of doing an int_on on an * untargetted interrupt will fail. If that is a problem * we could initialize interrupts with valid default */ if (new_act_prio != MASKED && (state->act_server != server || state->act_priority != new_act_prio)) rc = xive_target_interrupt(kvm, state, server, new_act_prio); /* * Perform the final unmasking of the interrupt source * if necessary */ if (priority != MASKED) xive_finish_unmask(xive, sb, state, priority); /* * Finally Update saved_priority to match. Only int_on/off * set this field to a different value. */ state->saved_priority = priority; arch_spin_unlock(&sb->lock); return rc; } int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server, u32 *priority) { struct kvmppc_xive *xive = kvm->arch.xive; struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; u16 idx; if (!xive) return -ENODEV; sb = kvmppc_xive_find_source(xive, irq, &idx); if (!sb) return -EINVAL; state = &sb->irq_state[idx]; arch_spin_lock(&sb->lock); *server = state->act_server; *priority = state->guest_priority; arch_spin_unlock(&sb->lock); return 0; } int kvmppc_xive_int_on(struct kvm *kvm, u32 irq) { struct kvmppc_xive *xive = kvm->arch.xive; struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; u16 idx; if (!xive) return -ENODEV; sb = kvmppc_xive_find_source(xive, irq, &idx); if (!sb) return -EINVAL; state = &sb->irq_state[idx]; pr_devel("int_on(irq=0x%x)\n", irq); /* * Check if interrupt was not targetted */ if (state->act_priority == MASKED) { pr_devel("int_on on untargetted interrupt\n"); return -EINVAL; } /* If saved_priority is 0xff, do nothing */ if (state->saved_priority == MASKED) return 0; /* * Lock and unmask it. */ xive_lock_for_unmask(sb, state); xive_finish_unmask(xive, sb, state, state->saved_priority); arch_spin_unlock(&sb->lock); return 0; } int kvmppc_xive_int_off(struct kvm *kvm, u32 irq) { struct kvmppc_xive *xive = kvm->arch.xive; struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; u16 idx; if (!xive) return -ENODEV; sb = kvmppc_xive_find_source(xive, irq, &idx); if (!sb) return -EINVAL; state = &sb->irq_state[idx]; pr_devel("int_off(irq=0x%x)\n", irq); /* * Lock and mask */ state->saved_priority = xive_lock_and_mask(xive, sb, state); arch_spin_unlock(&sb->lock); return 0; } static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq) { struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; u16 idx; sb = kvmppc_xive_find_source(xive, irq, &idx); if (!sb) return false; state = &sb->irq_state[idx]; if (!state->valid) return false; /* * Trigger the IPI. This assumes we never restore a pass-through * interrupt which should be safe enough */ xive_irq_trigger(&state->ipi_data); return true; } u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; if (!xc) return 0; /* Return the per-cpu state for state saving/migration */ return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT | (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT | (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT; } int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; struct kvmppc_xive *xive = vcpu->kvm->arch.xive; u8 cppr, mfrr; u32 xisr; if (!xc || !xive) return -ENOENT; /* Grab individual state fields. We don't use pending_pri */ cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT; xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) & KVM_REG_PPC_ICP_XISR_MASK; mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT; pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n", xc->server_num, cppr, mfrr, xisr); /* * We can't update the state of a "pushed" VCPU, but that * shouldn't happen because the vcpu->mutex makes running a * vcpu mutually exclusive with doing one_reg get/set on it. */ if (WARN_ON(vcpu->arch.xive_pushed)) return -EIO; /* Update VCPU HW saved state */ vcpu->arch.xive_saved_state.cppr = cppr; xc->hw_cppr = xc->cppr = cppr; /* * Update MFRR state. If it's not 0xff, we mark the VCPU as * having a pending MFRR change, which will re-evaluate the * target. The VCPU will thus potentially get a spurious * interrupt but that's not a big deal. */ xc->mfrr = mfrr; if (mfrr < cppr) xive_irq_trigger(&xc->vp_ipi_data); /* * Now saved XIRR is "interesting". It means there's something in * the legacy "1 element" queue... for an IPI we simply ignore it, * as the MFRR restore will handle that. For anything else we need * to force a resend of the source. * However the source may not have been setup yet. If that's the * case, we keep that info and increment a counter in the xive to * tell subsequent xive_set_source() to go look. */ if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) { xc->delayed_irq = xisr; xive->delayed_irqs++; pr_devel(" xisr restore delayed\n"); } return 0; } int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq, unsigned long host_irq) { struct kvmppc_xive *xive = kvm->arch.xive; struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; struct irq_data *host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data); u16 idx; u8 prio; int rc; if (!xive) return -ENODEV; pr_debug("%s: GIRQ 0x%lx host IRQ %ld XIVE HW IRQ 0x%x\n", __func__, guest_irq, host_irq, hw_irq); sb = kvmppc_xive_find_source(xive, guest_irq, &idx); if (!sb) return -EINVAL; state = &sb->irq_state[idx]; /* * Mark the passed-through interrupt as going to a VCPU, * this will prevent further EOIs and similar operations * from the XIVE code. It will also mask the interrupt * to either PQ=10 or 11 state, the latter if the interrupt * is pending. This will allow us to unmask or retrigger it * after routing it to the guest with a simple EOI. * * The "state" argument is a "token", all it needs is to be * non-NULL to switch to passed-through or NULL for the * other way around. We may not yet have an actual VCPU * target here and we don't really care. */ rc = irq_set_vcpu_affinity(host_irq, state); if (rc) { pr_err("Failed to set VCPU affinity for host IRQ %ld\n", host_irq); return rc; } /* * Mask and read state of IPI. We need to know if its P bit * is set as that means it's potentially already using a * queue entry in the target */ prio = xive_lock_and_mask(xive, sb, state); pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio, state->old_p, state->old_q); /* Turn the IPI hard off */ xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); /* * Reset ESB guest mapping. Needed when ESB pages are exposed * to the guest in XIVE native mode */ if (xive->ops && xive->ops->reset_mapped) xive->ops->reset_mapped(kvm, guest_irq); /* Grab info about irq */ state->pt_number = hw_irq; state->pt_data = irq_data_get_irq_handler_data(host_data); /* * Configure the IRQ to match the existing configuration of * the IPI if it was already targetted. Otherwise this will * mask the interrupt in a lossy way (act_priority is 0xff) * which is fine for a never started interrupt. */ xive_native_configure_irq(hw_irq, kvmppc_xive_vp(xive, state->act_server), state->act_priority, state->number); /* * We do an EOI to enable the interrupt (and retrigger if needed) * if the guest has the interrupt unmasked and the P bit was *not* * set in the IPI. If it was set, we know a slot may still be in * use in the target queue thus we have to wait for a guest * originated EOI */ if (prio != MASKED && !state->old_p) xive_vm_source_eoi(hw_irq, state->pt_data); /* Clear old_p/old_q as they are no longer relevant */ state->old_p = state->old_q = false; /* Restore guest prio (unlocks EOI) */ mb(); state->guest_priority = prio; arch_spin_unlock(&sb->lock); return 0; } EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped); int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq, unsigned long host_irq) { struct kvmppc_xive *xive = kvm->arch.xive; struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; u16 idx; u8 prio; int rc; if (!xive) return -ENODEV; pr_debug("%s: GIRQ 0x%lx host IRQ %ld\n", __func__, guest_irq, host_irq); sb = kvmppc_xive_find_source(xive, guest_irq, &idx); if (!sb) return -EINVAL; state = &sb->irq_state[idx]; /* * Mask and read state of IRQ. We need to know if its P bit * is set as that means it's potentially already using a * queue entry in the target */ prio = xive_lock_and_mask(xive, sb, state); pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio, state->old_p, state->old_q); /* * If old_p is set, the interrupt is pending, we switch it to * PQ=11. This will force a resend in the host so the interrupt * isn't lost to whatever host driver may pick it up */ if (state->old_p) xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11); /* Release the passed-through interrupt to the host */ rc = irq_set_vcpu_affinity(host_irq, NULL); if (rc) { pr_err("Failed to clr VCPU affinity for host IRQ %ld\n", host_irq); return rc; } /* Forget about the IRQ */ state->pt_number = 0; state->pt_data = NULL; /* * Reset ESB guest mapping. Needed when ESB pages are exposed * to the guest in XIVE native mode */ if (xive->ops && xive->ops->reset_mapped) { xive->ops->reset_mapped(kvm, guest_irq); } /* Reconfigure the IPI */ xive_native_configure_irq(state->ipi_number, kvmppc_xive_vp(xive, state->act_server), state->act_priority, state->number); /* * If old_p is set (we have a queue entry potentially * occupied) or the interrupt is masked, we set the IPI * to PQ=10 state. Otherwise we just re-enable it (PQ=00). */ if (prio == MASKED || state->old_p) xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10); else xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00); /* Restore guest prio (unlocks EOI) */ mb(); state->guest_priority = prio; arch_spin_unlock(&sb->lock); return 0; } EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped); void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; struct kvm *kvm = vcpu->kvm; struct kvmppc_xive *xive = kvm->arch.xive; int i, j; for (i = 0; i <= xive->max_sbid; i++) { struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; if (!sb) continue; for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) { struct kvmppc_xive_irq_state *state = &sb->irq_state[j]; if (!state->valid) continue; if (state->act_priority == MASKED) continue; if (state->act_server != xc->server_num) continue; /* Clean it up */ arch_spin_lock(&sb->lock); state->act_priority = MASKED; xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01); xive_native_configure_irq(state->ipi_number, 0, MASKED, 0); if (state->pt_number) { xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01); xive_native_configure_irq(state->pt_number, 0, MASKED, 0); } arch_spin_unlock(&sb->lock); } } /* Disable vcpu's escalation interrupt */ if (vcpu->arch.xive_esc_on) { __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr + XIVE_ESB_SET_PQ_01)); vcpu->arch.xive_esc_on = false; } /* * Clear pointers to escalation interrupt ESB. * This is safe because the vcpu->mutex is held, preventing * any other CPU from concurrently executing a KVM_RUN ioctl. */ vcpu->arch.xive_esc_vaddr = 0; vcpu->arch.xive_esc_raddr = 0; } /* * In single escalation mode, the escalation interrupt is marked so * that EOI doesn't re-enable it, but just sets the stale_p flag to * indicate that the P bit has already been dealt with. However, the * assembly code that enters the guest sets PQ to 00 without clearing * stale_p (because it has no easy way to address it). Hence we have * to adjust stale_p before shutting down the interrupt. */ void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu, int irq) { struct irq_data *d = irq_get_irq_data(irq); struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); /* * This slightly odd sequence gives the right result * (i.e. stale_p set if xive_esc_on is false) even if * we race with xive_esc_irq() and xive_irq_eoi(). */ xd->stale_p = false; smp_mb(); /* paired with smb_wmb in xive_esc_irq */ if (!vcpu->arch.xive_esc_on) xd->stale_p = true; } void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; struct kvmppc_xive *xive = vcpu->kvm->arch.xive; int i; if (!kvmppc_xics_enabled(vcpu)) return; if (!xc) return; pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num); /* Ensure no interrupt is still routed to that VP */ xc->valid = false; kvmppc_xive_disable_vcpu_interrupts(vcpu); /* Mask the VP IPI */ xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01); /* Free escalations */ for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { if (xc->esc_virq[i]) { if (kvmppc_xive_has_single_escalation(xc->xive)) xive_cleanup_single_escalation(vcpu, xc->esc_virq[i]); free_irq(xc->esc_virq[i], vcpu); irq_dispose_mapping(xc->esc_virq[i]); kfree(xc->esc_virq_names[i]); } } /* Disable the VP */ xive_native_disable_vp(xc->vp_id); /* Clear the cam word so guest entry won't try to push context */ vcpu->arch.xive_cam_word = 0; /* Free the queues */ for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { struct xive_q *q = &xc->queues[i]; xive_native_disable_queue(xc->vp_id, q, i); if (q->qpage) { free_pages((unsigned long)q->qpage, xive->q_page_order); q->qpage = NULL; } } /* Free the IPI */ if (xc->vp_ipi) { xive_cleanup_irq_data(&xc->vp_ipi_data); xive_native_free_irq(xc->vp_ipi); } /* Free the VP */ kfree(xc); /* Cleanup the vcpu */ vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT; vcpu->arch.xive_vcpu = NULL; } static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu) { /* We have a block of xive->nr_servers VPs. We just need to check * packed vCPU ids are below that. */ return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers; } int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp) { u32 vp_id; if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) { pr_devel("Out of bounds !\n"); return -EINVAL; } if (xive->vp_base == XIVE_INVALID_VP) { xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers); pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers); if (xive->vp_base == XIVE_INVALID_VP) return -ENOSPC; } vp_id = kvmppc_xive_vp(xive, cpu); if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) { pr_devel("Duplicate !\n"); return -EEXIST; } *vp = vp_id; return 0; } int kvmppc_xive_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, u32 cpu) { struct kvmppc_xive *xive = dev->private; struct kvmppc_xive_vcpu *xc; int i, r = -EBUSY; u32 vp_id; pr_devel("connect_vcpu(cpu=%d)\n", cpu); if (dev->ops != &kvm_xive_ops) { pr_devel("Wrong ops !\n"); return -EPERM; } if (xive->kvm != vcpu->kvm) return -EPERM; if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT) return -EBUSY; /* We need to synchronize with queue provisioning */ mutex_lock(&xive->lock); r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id); if (r) goto bail; xc = kzalloc(sizeof(*xc), GFP_KERNEL); if (!xc) { r = -ENOMEM; goto bail; } vcpu->arch.xive_vcpu = xc; xc->xive = xive; xc->vcpu = vcpu; xc->server_num = cpu; xc->vp_id = vp_id; xc->mfrr = 0xff; xc->valid = true; r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id); if (r) goto bail; if (!kvmppc_xive_check_save_restore(vcpu)) { pr_err("inconsistent save-restore setup for VCPU %d\n", cpu); r = -EIO; goto bail; } /* Configure VCPU fields for use by assembly push/pull */ vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000); vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO); /* Allocate IPI */ xc->vp_ipi = xive_native_alloc_irq(); if (!xc->vp_ipi) { pr_err("Failed to allocate xive irq for VCPU IPI\n"); r = -EIO; goto bail; } pr_devel(" IPI=0x%x\n", xc->vp_ipi); r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data); if (r) goto bail; /* * Enable the VP first as the single escalation mode will * affect escalation interrupts numbering */ r = xive_native_enable_vp(xc->vp_id, kvmppc_xive_has_single_escalation(xive)); if (r) { pr_err("Failed to enable VP in OPAL, err %d\n", r); goto bail; } /* * Initialize queues. Initially we set them all for no queueing * and we enable escalation for queue 0 only which we'll use for * our mfrr change notifications. If the VCPU is hot-plugged, we * do handle provisioning however based on the existing "map" * of enabled queues. */ for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { struct xive_q *q = &xc->queues[i]; /* Single escalation, no queue 7 */ if (i == 7 && kvmppc_xive_has_single_escalation(xive)) break; /* Is queue already enabled ? Provision it */ if (xive->qmap & (1 << i)) { r = xive_provision_queue(vcpu, i); if (r == 0 && !kvmppc_xive_has_single_escalation(xive)) kvmppc_xive_attach_escalation( vcpu, i, kvmppc_xive_has_single_escalation(xive)); if (r) goto bail; } else { r = xive_native_configure_queue(xc->vp_id, q, i, NULL, 0, true); if (r) { pr_err("Failed to configure queue %d for VCPU %d\n", i, cpu); goto bail; } } } /* If not done above, attach priority 0 escalation */ r = kvmppc_xive_attach_escalation(vcpu, 0, kvmppc_xive_has_single_escalation(xive)); if (r) goto bail; /* Route the IPI */ r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI); if (!r) xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00); bail: mutex_unlock(&xive->lock); if (r) { kvmppc_xive_cleanup_vcpu(vcpu); return r; } vcpu->arch.irq_type = KVMPPC_IRQ_XICS; return 0; } /* * Scanning of queues before/after migration save */ static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq) { struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; u16 idx; sb = kvmppc_xive_find_source(xive, irq, &idx); if (!sb) return; state = &sb->irq_state[idx]; /* Some sanity checking */ if (!state->valid) { pr_err("invalid irq 0x%x in cpu queue!\n", irq); return; } /* * If the interrupt is in a queue it should have P set. * We warn so that gets reported. A backtrace isn't useful * so no need to use a WARN_ON. */ if (!state->saved_p) pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq); /* Set flag */ state->in_queue = true; } static void xive_pre_save_mask_irq(struct kvmppc_xive *xive, struct kvmppc_xive_src_block *sb, u32 irq) { struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; if (!state->valid) return; /* Mask and save state, this will also sync HW queues */ state->saved_scan_prio = xive_lock_and_mask(xive, sb, state); /* Transfer P and Q */ state->saved_p = state->old_p; state->saved_q = state->old_q; /* Unlock */ arch_spin_unlock(&sb->lock); } static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive, struct kvmppc_xive_src_block *sb, u32 irq) { struct kvmppc_xive_irq_state *state = &sb->irq_state[irq]; if (!state->valid) return; /* * Lock / exclude EOI (not technically necessary if the * guest isn't running concurrently. If this becomes a * performance issue we can probably remove the lock. */ xive_lock_for_unmask(sb, state); /* Restore mask/prio if it wasn't masked */ if (state->saved_scan_prio != MASKED) xive_finish_unmask(xive, sb, state, state->saved_scan_prio); /* Unlock */ arch_spin_unlock(&sb->lock); } static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q) { u32 idx = q->idx; u32 toggle = q->toggle; u32 irq; do { irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle); if (irq > XICS_IPI) xive_pre_save_set_queued(xive, irq); } while(irq); } static void xive_pre_save_scan(struct kvmppc_xive *xive) { struct kvm_vcpu *vcpu = NULL; unsigned long i; int j; /* * See comment in xive_get_source() about how this * work. Collect a stable state for all interrupts */ for (i = 0; i <= xive->max_sbid; i++) { struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; if (!sb) continue; for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) xive_pre_save_mask_irq(xive, sb, j); } /* Then scan the queues and update the "in_queue" flag */ kvm_for_each_vcpu(i, vcpu, xive->kvm) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; if (!xc) continue; for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) { if (xc->queues[j].qpage) xive_pre_save_queue(xive, &xc->queues[j]); } } /* Finally restore interrupt states */ for (i = 0; i <= xive->max_sbid; i++) { struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; if (!sb) continue; for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) xive_pre_save_unmask_irq(xive, sb, j); } } static void xive_post_save_scan(struct kvmppc_xive *xive) { u32 i, j; /* Clear all the in_queue flags */ for (i = 0; i <= xive->max_sbid; i++) { struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; if (!sb) continue; for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) sb->irq_state[j].in_queue = false; } /* Next get_source() will do a new scan */ xive->saved_src_count = 0; } /* * This returns the source configuration and state to user space. */ static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr) { struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; u64 __user *ubufp = (u64 __user *) addr; u64 val, prio; u16 idx; sb = kvmppc_xive_find_source(xive, irq, &idx); if (!sb) return -ENOENT; state = &sb->irq_state[idx]; if (!state->valid) return -ENOENT; pr_devel("get_source(%ld)...\n", irq); /* * So to properly save the state into something that looks like a * XICS migration stream we cannot treat interrupts individually. * * We need, instead, mask them all (& save their previous PQ state) * to get a stable state in the HW, then sync them to ensure that * any interrupt that had already fired hits its queue, and finally * scan all the queues to collect which interrupts are still present * in the queues, so we can set the "pending" flag on them and * they can be resent on restore. * * So we do it all when the "first" interrupt gets saved, all the * state is collected at that point, the rest of xive_get_source() * will merely collect and convert that state to the expected * userspace bit mask. */ if (xive->saved_src_count == 0) xive_pre_save_scan(xive); xive->saved_src_count++; /* Convert saved state into something compatible with xics */ val = state->act_server; prio = state->saved_scan_prio; if (prio == MASKED) { val |= KVM_XICS_MASKED; prio = state->saved_priority; } val |= prio << KVM_XICS_PRIORITY_SHIFT; if (state->lsi) { val |= KVM_XICS_LEVEL_SENSITIVE; if (state->saved_p) val |= KVM_XICS_PENDING; } else { if (state->saved_p) val |= KVM_XICS_PRESENTED; if (state->saved_q) val |= KVM_XICS_QUEUED; /* * We mark it pending (which will attempt a re-delivery) * if we are in a queue *or* we were masked and had * Q set which is equivalent to the XICS "masked pending" * state */ if (state->in_queue || (prio == MASKED && state->saved_q)) val |= KVM_XICS_PENDING; } /* * If that was the last interrupt saved, reset the * in_queue flags */ if (xive->saved_src_count == xive->src_count) xive_post_save_scan(xive); /* Copy the result to userspace */ if (put_user(val, ubufp)) return -EFAULT; return 0; } struct kvmppc_xive_src_block *kvmppc_xive_create_src_block( struct kvmppc_xive *xive, int irq) { struct kvmppc_xive_src_block *sb; int i, bid; bid = irq >> KVMPPC_XICS_ICS_SHIFT; mutex_lock(&xive->lock); /* block already exists - somebody else got here first */ if (xive->src_blocks[bid]) goto out; /* Create the ICS */ sb = kzalloc(sizeof(*sb), GFP_KERNEL); if (!sb) goto out; sb->id = bid; for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i; sb->irq_state[i].eisn = 0; sb->irq_state[i].guest_priority = MASKED; sb->irq_state[i].saved_priority = MASKED; sb->irq_state[i].act_priority = MASKED; } smp_wmb(); xive->src_blocks[bid] = sb; if (bid > xive->max_sbid) xive->max_sbid = bid; out: mutex_unlock(&xive->lock); return xive->src_blocks[bid]; } static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq) { struct kvm *kvm = xive->kvm; struct kvm_vcpu *vcpu = NULL; unsigned long i; kvm_for_each_vcpu(i, vcpu, kvm) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; if (!xc) continue; if (xc->delayed_irq == irq) { xc->delayed_irq = 0; xive->delayed_irqs--; return true; } } return false; } static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr) { struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; u64 __user *ubufp = (u64 __user *) addr; u16 idx; u64 val; u8 act_prio, guest_prio; u32 server; int rc = 0; if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS) return -ENOENT; pr_devel("set_source(irq=0x%lx)\n", irq); /* Find the source */ sb = kvmppc_xive_find_source(xive, irq, &idx); if (!sb) { pr_devel("No source, creating source block...\n"); sb = kvmppc_xive_create_src_block(xive, irq); if (!sb) { pr_devel("Failed to create block...\n"); return -ENOMEM; } } state = &sb->irq_state[idx]; /* Read user passed data */ if (get_user(val, ubufp)) { pr_devel("fault getting user info !\n"); return -EFAULT; } server = val & KVM_XICS_DESTINATION_MASK; guest_prio = val >> KVM_XICS_PRIORITY_SHIFT; pr_devel(" val=0x016%llx (server=0x%x, guest_prio=%d)\n", val, server, guest_prio); /* * If the source doesn't already have an IPI, allocate * one and get the corresponding data */ if (!state->ipi_number) { state->ipi_number = xive_native_alloc_irq(); if (state->ipi_number == 0) { pr_devel("Failed to allocate IPI !\n"); return -ENOMEM; } xive_native_populate_irq_data(state->ipi_number, &state->ipi_data); pr_devel(" src_ipi=0x%x\n", state->ipi_number); } /* * We use lock_and_mask() to set us in the right masked * state. We will override that state from the saved state * further down, but this will handle the cases of interrupts * that need FW masking. We set the initial guest_priority to * 0 before calling it to ensure it actually performs the masking. */ state->guest_priority = 0; xive_lock_and_mask(xive, sb, state); /* * Now, we select a target if we have one. If we don't we * leave the interrupt untargetted. It means that an interrupt * can become "untargetted" across migration if it was masked * by set_xive() but there is little we can do about it. */ /* First convert prio and mark interrupt as untargetted */ act_prio = xive_prio_from_guest(guest_prio); state->act_priority = MASKED; /* * We need to drop the lock due to the mutex below. Hopefully * nothing is touching that interrupt yet since it hasn't been * advertized to a running guest yet */ arch_spin_unlock(&sb->lock); /* If we have a priority target the interrupt */ if (act_prio != MASKED) { /* First, check provisioning of queues */ mutex_lock(&xive->lock); rc = xive_check_provisioning(xive->kvm, act_prio); mutex_unlock(&xive->lock); /* Target interrupt */ if (rc == 0) rc = xive_target_interrupt(xive->kvm, state, server, act_prio); /* * If provisioning or targetting failed, leave it * alone and masked. It will remain disabled until * the guest re-targets it. */ } /* * Find out if this was a delayed irq stashed in an ICP, * in which case, treat it as pending */ if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) { val |= KVM_XICS_PENDING; pr_devel(" Found delayed ! forcing PENDING !\n"); } /* Cleanup the SW state */ state->old_p = false; state->old_q = false; state->lsi = false; state->asserted = false; /* Restore LSI state */ if (val & KVM_XICS_LEVEL_SENSITIVE) { state->lsi = true; if (val & KVM_XICS_PENDING) state->asserted = true; pr_devel(" LSI ! Asserted=%d\n", state->asserted); } /* * Restore P and Q. If the interrupt was pending, we * force Q and !P, which will trigger a resend. * * That means that a guest that had both an interrupt * pending (queued) and Q set will restore with only * one instance of that interrupt instead of 2, but that * is perfectly fine as coalescing interrupts that haven't * been presented yet is always allowed. */ if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING)) state->old_p = true; if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING) state->old_q = true; pr_devel(" P=%d, Q=%d\n", state->old_p, state->old_q); /* * If the interrupt was unmasked, update guest priority and * perform the appropriate state transition and do a * re-trigger if necessary. */ if (val & KVM_XICS_MASKED) { pr_devel(" masked, saving prio\n"); state->guest_priority = MASKED; state->saved_priority = guest_prio; } else { pr_devel(" unmasked, restoring to prio %d\n", guest_prio); xive_finish_unmask(xive, sb, state, guest_prio); state->saved_priority = guest_prio; } /* Increment the number of valid sources and mark this one valid */ if (!state->valid) xive->src_count++; state->valid = true; return 0; } int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, bool line_status) { struct kvmppc_xive *xive = kvm->arch.xive; struct kvmppc_xive_src_block *sb; struct kvmppc_xive_irq_state *state; u16 idx; if (!xive) return -ENODEV; sb = kvmppc_xive_find_source(xive, irq, &idx); if (!sb) return -EINVAL; /* Perform locklessly .... (we need to do some RCUisms here...) */ state = &sb->irq_state[idx]; if (!state->valid) return -EINVAL; /* We don't allow a trigger on a passed-through interrupt */ if (state->pt_number) return -EINVAL; if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL) state->asserted = true; else if (level == 0 || level == KVM_INTERRUPT_UNSET) { state->asserted = false; return 0; } /* Trigger the IPI */ xive_irq_trigger(&state->ipi_data); return 0; } int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr) { u32 __user *ubufp = (u32 __user *) addr; u32 nr_servers; int rc = 0; if (get_user(nr_servers, ubufp)) return -EFAULT; pr_devel("%s nr_servers=%u\n", __func__, nr_servers); if (!nr_servers || nr_servers > KVM_MAX_VCPU_IDS) return -EINVAL; mutex_lock(&xive->lock); if (xive->vp_base != XIVE_INVALID_VP) /* The VP block is allocated once and freed when the device * is released. Better not allow to change its size since its * used by connect_vcpu to validate vCPU ids are valid (eg, * setting it back to a higher value could allow connect_vcpu * to come up with a VP id that goes beyond the VP block, which * is likely to cause a crash in OPAL). */ rc = -EBUSY; else if (nr_servers > KVM_MAX_VCPUS) /* We don't need more servers. Higher vCPU ids get packed * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id(). */ xive->nr_servers = KVM_MAX_VCPUS; else xive->nr_servers = nr_servers; mutex_unlock(&xive->lock); return rc; } static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { struct kvmppc_xive *xive = dev->private; /* We honor the existing XICS ioctl */ switch (attr->group) { case KVM_DEV_XICS_GRP_SOURCES: return xive_set_source(xive, attr->attr, attr->addr); case KVM_DEV_XICS_GRP_CTRL: switch (attr->attr) { case KVM_DEV_XICS_NR_SERVERS: return kvmppc_xive_set_nr_servers(xive, attr->addr); } } return -ENXIO; } static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { struct kvmppc_xive *xive = dev->private; /* We honor the existing XICS ioctl */ switch (attr->group) { case KVM_DEV_XICS_GRP_SOURCES: return xive_get_source(xive, attr->attr, attr->addr); } return -ENXIO; } static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { /* We honor the same limits as XICS, at least for now */ switch (attr->group) { case KVM_DEV_XICS_GRP_SOURCES: if (attr->attr >= KVMPPC_XICS_FIRST_IRQ && attr->attr < KVMPPC_XICS_NR_IRQS) return 0; break; case KVM_DEV_XICS_GRP_CTRL: switch (attr->attr) { case KVM_DEV_XICS_NR_SERVERS: return 0; } } return -ENXIO; } static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd) { xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01); xive_native_configure_irq(hw_num, 0, MASKED, 0); } void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb) { int i; for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; if (!state->valid) continue; kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data); xive_cleanup_irq_data(&state->ipi_data); xive_native_free_irq(state->ipi_number); /* Pass-through, cleanup too but keep IRQ hw data */ if (state->pt_number) kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data); state->valid = false; } } /* * Called when device fd is closed. kvm->lock is held. */ static void kvmppc_xive_release(struct kvm_device *dev) { struct kvmppc_xive *xive = dev->private; struct kvm *kvm = xive->kvm; struct kvm_vcpu *vcpu; unsigned long i; pr_devel("Releasing xive device\n"); /* * Since this is the device release function, we know that * userspace does not have any open fd referring to the * device. Therefore there can not be any of the device * attribute set/get functions being executed concurrently, * and similarly, the connect_vcpu and set/clr_mapped * functions also cannot be being executed. */ debugfs_remove(xive->dentry); /* * We should clean up the vCPU interrupt presenters first. */ kvm_for_each_vcpu(i, vcpu, kvm) { /* * Take vcpu->mutex to ensure that no one_reg get/set ioctl * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently. * Holding the vcpu->mutex also means that the vcpu cannot * be executing the KVM_RUN ioctl, and therefore it cannot * be executing the XIVE push or pull code or accessing * the XIVE MMIO regions. */ mutex_lock(&vcpu->mutex); kvmppc_xive_cleanup_vcpu(vcpu); mutex_unlock(&vcpu->mutex); } /* * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe * against xive code getting called during vcpu execution or * set/get one_reg operations. */ kvm->arch.xive = NULL; /* Mask and free interrupts */ for (i = 0; i <= xive->max_sbid; i++) { if (xive->src_blocks[i]) kvmppc_xive_free_sources(xive->src_blocks[i]); kfree(xive->src_blocks[i]); xive->src_blocks[i] = NULL; } if (xive->vp_base != XIVE_INVALID_VP) xive_native_free_vp_block(xive->vp_base); /* * A reference of the kvmppc_xive pointer is now kept under * the xive_devices struct of the machine for reuse. It is * freed when the VM is destroyed for now until we fix all the * execution paths. */ kfree(dev); } /* * When the guest chooses the interrupt mode (XICS legacy or XIVE * native), the VM will switch of KVM device. The previous device will * be "released" before the new one is created. * * Until we are sure all execution paths are well protected, provide a * fail safe (transitional) method for device destruction, in which * the XIVE device pointer is recycled and not directly freed. */ struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type) { struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ? &kvm->arch.xive_devices.native : &kvm->arch.xive_devices.xics_on_xive; struct kvmppc_xive *xive = *kvm_xive_device; if (!xive) { xive = kzalloc(sizeof(*xive), GFP_KERNEL); *kvm_xive_device = xive; } else { memset(xive, 0, sizeof(*xive)); } return xive; } /* * Create a XICS device with XIVE backend. kvm->lock is held. */ static int kvmppc_xive_create(struct kvm_device *dev, u32 type) { struct kvmppc_xive *xive; struct kvm *kvm = dev->kvm; pr_devel("Creating xive for partition\n"); /* Already there ? */ if (kvm->arch.xive) return -EEXIST; xive = kvmppc_xive_get_device(kvm, type); if (!xive) return -ENOMEM; dev->private = xive; xive->dev = dev; xive->kvm = kvm; mutex_init(&xive->lock); /* We use the default queue size set by the host */ xive->q_order = xive_native_default_eq_shift(); if (xive->q_order < PAGE_SHIFT) xive->q_page_order = 0; else xive->q_page_order = xive->q_order - PAGE_SHIFT; /* VP allocation is delayed to the first call to connect_vcpu */ xive->vp_base = XIVE_INVALID_VP; /* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets * on a POWER9 system. */ xive->nr_servers = KVM_MAX_VCPUS; if (xive_native_has_single_escalation()) xive->flags |= KVMPPC_XIVE_FLAG_SINGLE_ESCALATION; if (xive_native_has_save_restore()) xive->flags |= KVMPPC_XIVE_FLAG_SAVE_RESTORE; kvm->arch.xive = xive; return 0; } int kvmppc_xive_xics_hcall(struct kvm_vcpu *vcpu, u32 req) { /* The VM should have configured XICS mode before doing XICS hcalls. */ if (!kvmppc_xics_enabled(vcpu)) return H_TOO_HARD; switch (req) { case H_XIRR: return xive_vm_h_xirr(vcpu); case H_CPPR: return xive_vm_h_cppr(vcpu, kvmppc_get_gpr(vcpu, 4)); case H_EOI: return xive_vm_h_eoi(vcpu, kvmppc_get_gpr(vcpu, 4)); case H_IPI: return xive_vm_h_ipi(vcpu, kvmppc_get_gpr(vcpu, 4), kvmppc_get_gpr(vcpu, 5)); case H_IPOLL: return xive_vm_h_ipoll(vcpu, kvmppc_get_gpr(vcpu, 4)); case H_XIRR_X: xive_vm_h_xirr(vcpu); kvmppc_set_gpr(vcpu, 5, get_tb() + kvmppc_get_tb_offset(vcpu)); return H_SUCCESS; } return H_UNSUPPORTED; } EXPORT_SYMBOL_GPL(kvmppc_xive_xics_hcall); int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; unsigned int i; for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) { struct xive_q *q = &xc->queues[i]; u32 i0, i1, idx; if (!q->qpage && !xc->esc_virq[i]) continue; if (q->qpage) { seq_printf(m, " q[%d]: ", i); idx = q->idx; i0 = be32_to_cpup(q->qpage + idx); idx = (idx + 1) & q->msk; i1 = be32_to_cpup(q->qpage + idx); seq_printf(m, "T=%d %08x %08x...\n", q->toggle, i0, i1); } if (xc->esc_virq[i]) { struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]); struct xive_irq_data *xd = irq_data_get_irq_handler_data(d); u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET); seq_printf(m, " ESC %d %c%c EOI @%llx", xc->esc_virq[i], (pq & XIVE_ESB_VAL_P) ? 'P' : '-', (pq & XIVE_ESB_VAL_Q) ? 'Q' : '-', xd->eoi_page); seq_puts(m, "\n"); } } return 0; } void kvmppc_xive_debug_show_sources(struct seq_file *m, struct kvmppc_xive_src_block *sb) { int i; seq_puts(m, " LISN HW/CHIP TYPE PQ EISN CPU/PRIO\n"); for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) { struct kvmppc_xive_irq_state *state = &sb->irq_state[i]; struct xive_irq_data *xd; u64 pq; u32 hw_num; if (!state->valid) continue; kvmppc_xive_select_irq(state, &hw_num, &xd); pq = xive_vm_esb_load(xd, XIVE_ESB_GET); seq_printf(m, "%08x %08x/%02x", state->number, hw_num, xd->src_chip); if (state->lsi) seq_printf(m, " %cLSI", state->asserted ? '^' : ' '); else seq_puts(m, " MSI"); seq_printf(m, " %s %c%c %08x % 4d/%d", state->ipi_number == hw_num ? "IPI" : " PT", pq & XIVE_ESB_VAL_P ? 'P' : '-', pq & XIVE_ESB_VAL_Q ? 'Q' : '-', state->eisn, state->act_server, state->act_priority); seq_puts(m, "\n"); } } static int xive_debug_show(struct seq_file *m, void *private) { struct kvmppc_xive *xive = m->private; struct kvm *kvm = xive->kvm; struct kvm_vcpu *vcpu; u64 t_rm_h_xirr = 0; u64 t_rm_h_ipoll = 0; u64 t_rm_h_cppr = 0; u64 t_rm_h_eoi = 0; u64 t_rm_h_ipi = 0; u64 t_vm_h_xirr = 0; u64 t_vm_h_ipoll = 0; u64 t_vm_h_cppr = 0; u64 t_vm_h_eoi = 0; u64 t_vm_h_ipi = 0; unsigned long i; if (!kvm) return 0; seq_puts(m, "=========\nVCPU state\n=========\n"); kvm_for_each_vcpu(i, vcpu, kvm) { struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu; if (!xc) continue; seq_printf(m, "VCPU %d: VP:%#x/%02x\n" " CPPR:%#x HWCPPR:%#x MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n", xc->server_num, xc->vp_id, xc->vp_chip_id, xc->cppr, xc->hw_cppr, xc->mfrr, xc->pending, xc->stat_rm_h_xirr, xc->stat_vm_h_xirr); kvmppc_xive_debug_show_queues(m, vcpu); t_rm_h_xirr += xc->stat_rm_h_xirr; t_rm_h_ipoll += xc->stat_rm_h_ipoll; t_rm_h_cppr += xc->stat_rm_h_cppr; t_rm_h_eoi += xc->stat_rm_h_eoi; t_rm_h_ipi += xc->stat_rm_h_ipi; t_vm_h_xirr += xc->stat_vm_h_xirr; t_vm_h_ipoll += xc->stat_vm_h_ipoll; t_vm_h_cppr += xc->stat_vm_h_cppr; t_vm_h_eoi += xc->stat_vm_h_eoi; t_vm_h_ipi += xc->stat_vm_h_ipi; } seq_puts(m, "Hcalls totals\n"); seq_printf(m, " H_XIRR R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr); seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll); seq_printf(m, " H_CPPR R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr); seq_printf(m, " H_EOI R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi); seq_printf(m, " H_IPI R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi); seq_puts(m, "=========\nSources\n=========\n"); for (i = 0; i <= xive->max_sbid; i++) { struct kvmppc_xive_src_block *sb = xive->src_blocks[i]; if (sb) { arch_spin_lock(&sb->lock); kvmppc_xive_debug_show_sources(m, sb); arch_spin_unlock(&sb->lock); } } return 0; } DEFINE_SHOW_ATTRIBUTE(xive_debug); static void xive_debugfs_init(struct kvmppc_xive *xive) { xive->dentry = debugfs_create_file("xive", S_IRUGO, xive->kvm->debugfs_dentry, xive, &xive_debug_fops); pr_debug("%s: created\n", __func__); } static void kvmppc_xive_init(struct kvm_device *dev) { struct kvmppc_xive *xive = dev->private; /* Register some debug interfaces */ xive_debugfs_init(xive); } struct kvm_device_ops kvm_xive_ops = { .name = "kvm-xive", .create = kvmppc_xive_create, .init = kvmppc_xive_init, .release = kvmppc_xive_release, .set_attr = xive_set_attr, .get_attr = xive_get_attr, .has_attr = xive_has_attr, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1