Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Scott Wood | 7633 | 92.94% | 7 | 17.95% |
Alexander Graf | 465 | 5.66% | 4 | 10.26% |
Hollis Blanchard | 21 | 0.26% | 3 | 7.69% |
Gleb Natapov | 20 | 0.24% | 2 | 5.13% |
Paul Mackerras | 16 | 0.19% | 2 | 5.13% |
Avi Kivity | 12 | 0.15% | 4 | 10.26% |
Laurent Vivier | 8 | 0.10% | 1 | 2.56% |
Mihai Caraman | 6 | 0.07% | 1 | 2.56% |
David Gibson | 5 | 0.06% | 1 | 2.56% |
Gregory Haskins | 5 | 0.06% | 2 | 5.13% |
Radim Krčmář | 5 | 0.06% | 1 | 2.56% |
Dave Hansen | 3 | 0.04% | 1 | 2.56% |
Wei Yongjun | 2 | 0.02% | 1 | 2.56% |
Sasha Levin | 2 | 0.02% | 1 | 2.56% |
Alexey Dobriyan | 2 | 0.02% | 1 | 2.56% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 2.56% |
Linus Torvalds | 2 | 0.02% | 2 | 5.13% |
Eddie Dong | 1 | 0.01% | 1 | 2.56% |
Carsten Otte | 1 | 0.01% | 1 | 2.56% |
Michael S. Tsirkin | 1 | 0.01% | 1 | 2.56% |
Andre Przywara | 1 | 0.01% | 1 | 2.56% |
Total | 8213 | 39 |
/* * OpenPIC emulation * * Copyright (c) 2004 Jocelyn Mayer * 2011 Alexander Graf * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <linux/slab.h> #include <linux/mutex.h> #include <linux/kvm_host.h> #include <linux/errno.h> #include <linux/fs.h> #include <linux/anon_inodes.h> #include <linux/uaccess.h> #include <asm/mpic.h> #include <asm/kvm_para.h> #include <asm/kvm_ppc.h> #include <kvm/iodev.h> #define MAX_CPU 32 #define MAX_SRC 256 #define MAX_TMR 4 #define MAX_IPI 4 #define MAX_MSI 8 #define MAX_IRQ (MAX_SRC + MAX_IPI + MAX_TMR) #define VID 0x03 /* MPIC version ID */ /* OpenPIC capability flags */ #define OPENPIC_FLAG_IDR_CRIT (1 << 0) #define OPENPIC_FLAG_ILR (2 << 0) /* OpenPIC address map */ #define OPENPIC_REG_SIZE 0x40000 #define OPENPIC_GLB_REG_START 0x0 #define OPENPIC_GLB_REG_SIZE 0x10F0 #define OPENPIC_TMR_REG_START 0x10F0 #define OPENPIC_TMR_REG_SIZE 0x220 #define OPENPIC_MSI_REG_START 0x1600 #define OPENPIC_MSI_REG_SIZE 0x200 #define OPENPIC_SUMMARY_REG_START 0x3800 #define OPENPIC_SUMMARY_REG_SIZE 0x800 #define OPENPIC_SRC_REG_START 0x10000 #define OPENPIC_SRC_REG_SIZE (MAX_SRC * 0x20) #define OPENPIC_CPU_REG_START 0x20000 #define OPENPIC_CPU_REG_SIZE (0x100 + ((MAX_CPU - 1) * 0x1000)) struct fsl_mpic_info { int max_ext; }; static struct fsl_mpic_info fsl_mpic_20 = { .max_ext = 12, }; static struct fsl_mpic_info fsl_mpic_42 = { .max_ext = 12, }; #define FRR_NIRQ_SHIFT 16 #define FRR_NCPU_SHIFT 8 #define FRR_VID_SHIFT 0 #define VID_REVISION_1_2 2 #define VID_REVISION_1_3 3 #define VIR_GENERIC 0x00000000 /* Generic Vendor ID */ #define GCR_RESET 0x80000000 #define GCR_MODE_PASS 0x00000000 #define GCR_MODE_MIXED 0x20000000 #define GCR_MODE_PROXY 0x60000000 #define TBCR_CI 0x80000000 /* count inhibit */ #define TCCR_TOG 0x80000000 /* toggles when decrement to zero */ #define IDR_EP_SHIFT 31 #define IDR_EP_MASK (1 << IDR_EP_SHIFT) #define IDR_CI0_SHIFT 30 #define IDR_CI1_SHIFT 29 #define IDR_P1_SHIFT 1 #define IDR_P0_SHIFT 0 #define ILR_INTTGT_MASK 0x000000ff #define ILR_INTTGT_INT 0x00 #define ILR_INTTGT_CINT 0x01 /* critical */ #define ILR_INTTGT_MCP 0x02 /* machine check */ #define NUM_OUTPUTS 3 #define MSIIR_OFFSET 0x140 #define MSIIR_SRS_SHIFT 29 #define MSIIR_SRS_MASK (0x7 << MSIIR_SRS_SHIFT) #define MSIIR_IBS_SHIFT 24 #define MSIIR_IBS_MASK (0x1f << MSIIR_IBS_SHIFT) static int get_current_cpu(void) { #if defined(CONFIG_KVM) && defined(CONFIG_BOOKE) struct kvm_vcpu *vcpu = current->thread.kvm_vcpu; return vcpu ? vcpu->arch.irq_cpu_id : -1; #else /* XXX */ return -1; #endif } static int openpic_cpu_write_internal(void *opaque, gpa_t addr, u32 val, int idx); static int openpic_cpu_read_internal(void *opaque, gpa_t addr, u32 *ptr, int idx); static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ, uint32_t val); enum irq_type { IRQ_TYPE_NORMAL = 0, IRQ_TYPE_FSLINT, /* FSL internal interrupt -- level only */ IRQ_TYPE_FSLSPECIAL, /* FSL timer/IPI interrupt, edge, no polarity */ }; struct irq_queue { /* Round up to the nearest 64 IRQs so that the queue length * won't change when moving between 32 and 64 bit hosts. */ unsigned long queue[BITS_TO_LONGS((MAX_IRQ + 63) & ~63)]; int next; int priority; }; struct irq_source { uint32_t ivpr; /* IRQ vector/priority register */ uint32_t idr; /* IRQ destination register */ uint32_t destmask; /* bitmap of CPU destinations */ int last_cpu; int output; /* IRQ level, e.g. ILR_INTTGT_INT */ int pending; /* TRUE if IRQ is pending */ enum irq_type type; bool level:1; /* level-triggered */ bool nomask:1; /* critical interrupts ignore mask on some FSL MPICs */ }; #define IVPR_MASK_SHIFT 31 #define IVPR_MASK_MASK (1 << IVPR_MASK_SHIFT) #define IVPR_ACTIVITY_SHIFT 30 #define IVPR_ACTIVITY_MASK (1 << IVPR_ACTIVITY_SHIFT) #define IVPR_MODE_SHIFT 29 #define IVPR_MODE_MASK (1 << IVPR_MODE_SHIFT) #define IVPR_POLARITY_SHIFT 23 #define IVPR_POLARITY_MASK (1 << IVPR_POLARITY_SHIFT) #define IVPR_SENSE_SHIFT 22 #define IVPR_SENSE_MASK (1 << IVPR_SENSE_SHIFT) #define IVPR_PRIORITY_MASK (0xF << 16) #define IVPR_PRIORITY(_ivprr_) ((int)(((_ivprr_) & IVPR_PRIORITY_MASK) >> 16)) #define IVPR_VECTOR(opp, _ivprr_) ((_ivprr_) & (opp)->vector_mask) /* IDR[EP/CI] are only for FSL MPIC prior to v4.0 */ #define IDR_EP 0x80000000 /* external pin */ #define IDR_CI 0x40000000 /* critical interrupt */ struct irq_dest { struct kvm_vcpu *vcpu; int32_t ctpr; /* CPU current task priority */ struct irq_queue raised; struct irq_queue servicing; /* Count of IRQ sources asserting on non-INT outputs */ uint32_t outputs_active[NUM_OUTPUTS]; }; #define MAX_MMIO_REGIONS 10 struct openpic { struct kvm *kvm; struct kvm_device *dev; struct kvm_io_device mmio; const struct mem_reg *mmio_regions[MAX_MMIO_REGIONS]; int num_mmio_regions; gpa_t reg_base; spinlock_t lock; /* Behavior control */ struct fsl_mpic_info *fsl; uint32_t model; uint32_t flags; uint32_t nb_irqs; uint32_t vid; uint32_t vir; /* Vendor identification register */ uint32_t vector_mask; uint32_t tfrr_reset; uint32_t ivpr_reset; uint32_t idr_reset; uint32_t brr1; uint32_t mpic_mode_mask; /* Global registers */ uint32_t frr; /* Feature reporting register */ uint32_t gcr; /* Global configuration register */ uint32_t pir; /* Processor initialization register */ uint32_t spve; /* Spurious vector register */ uint32_t tfrr; /* Timer frequency reporting register */ /* Source registers */ struct irq_source src[MAX_IRQ]; /* Local registers per output pin */ struct irq_dest dst[MAX_CPU]; uint32_t nb_cpus; /* Timer registers */ struct { uint32_t tccr; /* Global timer current count register */ uint32_t tbcr; /* Global timer base count register */ } timers[MAX_TMR]; /* Shared MSI registers */ struct { uint32_t msir; /* Shared Message Signaled Interrupt Register */ } msi[MAX_MSI]; uint32_t max_irq; uint32_t irq_ipi0; uint32_t irq_tim0; uint32_t irq_msi; }; static void mpic_irq_raise(struct openpic *opp, struct irq_dest *dst, int output) { struct kvm_interrupt irq = { .irq = KVM_INTERRUPT_SET_LEVEL, }; if (!dst->vcpu) { pr_debug("%s: destination cpu %d does not exist\n", __func__, (int)(dst - &opp->dst[0])); return; } pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id, output); if (output != ILR_INTTGT_INT) /* TODO */ return; kvm_vcpu_ioctl_interrupt(dst->vcpu, &irq); } static void mpic_irq_lower(struct openpic *opp, struct irq_dest *dst, int output) { if (!dst->vcpu) { pr_debug("%s: destination cpu %d does not exist\n", __func__, (int)(dst - &opp->dst[0])); return; } pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id, output); if (output != ILR_INTTGT_INT) /* TODO */ return; kvmppc_core_dequeue_external(dst->vcpu); } static inline void IRQ_setbit(struct irq_queue *q, int n_IRQ) { set_bit(n_IRQ, q->queue); } static inline void IRQ_resetbit(struct irq_queue *q, int n_IRQ) { clear_bit(n_IRQ, q->queue); } static void IRQ_check(struct openpic *opp, struct irq_queue *q) { int irq = -1; int next = -1; int priority = -1; for (;;) { irq = find_next_bit(q->queue, opp->max_irq, irq + 1); if (irq == opp->max_irq) break; pr_debug("IRQ_check: irq %d set ivpr_pr=%d pr=%d\n", irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority); if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) { next = irq; priority = IVPR_PRIORITY(opp->src[irq].ivpr); } } q->next = next; q->priority = priority; } static int IRQ_get_next(struct openpic *opp, struct irq_queue *q) { /* XXX: optimize */ IRQ_check(opp, q); return q->next; } static void IRQ_local_pipe(struct openpic *opp, int n_CPU, int n_IRQ, bool active, bool was_active) { struct irq_dest *dst; struct irq_source *src; int priority; dst = &opp->dst[n_CPU]; src = &opp->src[n_IRQ]; pr_debug("%s: IRQ %d active %d was %d\n", __func__, n_IRQ, active, was_active); if (src->output != ILR_INTTGT_INT) { pr_debug("%s: output %d irq %d active %d was %d count %d\n", __func__, src->output, n_IRQ, active, was_active, dst->outputs_active[src->output]); /* On Freescale MPIC, critical interrupts ignore priority, * IACK, EOI, etc. Before MPIC v4.1 they also ignore * masking. */ if (active) { if (!was_active && dst->outputs_active[src->output]++ == 0) { pr_debug("%s: Raise OpenPIC output %d cpu %d irq %d\n", __func__, src->output, n_CPU, n_IRQ); mpic_irq_raise(opp, dst, src->output); } } else { if (was_active && --dst->outputs_active[src->output] == 0) { pr_debug("%s: Lower OpenPIC output %d cpu %d irq %d\n", __func__, src->output, n_CPU, n_IRQ); mpic_irq_lower(opp, dst, src->output); } } return; } priority = IVPR_PRIORITY(src->ivpr); /* Even if the interrupt doesn't have enough priority, * it is still raised, in case ctpr is lowered later. */ if (active) IRQ_setbit(&dst->raised, n_IRQ); else IRQ_resetbit(&dst->raised, n_IRQ); IRQ_check(opp, &dst->raised); if (active && priority <= dst->ctpr) { pr_debug("%s: IRQ %d priority %d too low for ctpr %d on CPU %d\n", __func__, n_IRQ, priority, dst->ctpr, n_CPU); active = 0; } if (active) { if (IRQ_get_next(opp, &dst->servicing) >= 0 && priority <= dst->servicing.priority) { pr_debug("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n", __func__, n_IRQ, dst->servicing.next, n_CPU); } else { pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d/%d\n", __func__, n_CPU, n_IRQ, dst->raised.next); mpic_irq_raise(opp, dst, ILR_INTTGT_INT); } } else { IRQ_get_next(opp, &dst->servicing); if (dst->raised.priority > dst->ctpr && dst->raised.priority > dst->servicing.priority) { pr_debug("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d\n", __func__, n_IRQ, dst->raised.next, dst->raised.priority, dst->ctpr, dst->servicing.priority, n_CPU); /* IRQ line stays asserted */ } else { pr_debug("%s: IRQ %d inactive, current prio %d/%d, CPU %d\n", __func__, n_IRQ, dst->ctpr, dst->servicing.priority, n_CPU); mpic_irq_lower(opp, dst, ILR_INTTGT_INT); } } } /* update pic state because registers for n_IRQ have changed value */ static void openpic_update_irq(struct openpic *opp, int n_IRQ) { struct irq_source *src; bool active, was_active; int i; src = &opp->src[n_IRQ]; active = src->pending; if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) { /* Interrupt source is disabled */ pr_debug("%s: IRQ %d is disabled\n", __func__, n_IRQ); active = false; } was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK); /* * We don't have a similar check for already-active because * ctpr may have changed and we need to withdraw the interrupt. */ if (!active && !was_active) { pr_debug("%s: IRQ %d is already inactive\n", __func__, n_IRQ); return; } if (active) src->ivpr |= IVPR_ACTIVITY_MASK; else src->ivpr &= ~IVPR_ACTIVITY_MASK; if (src->destmask == 0) { /* No target */ pr_debug("%s: IRQ %d has no target\n", __func__, n_IRQ); return; } if (src->destmask == (1 << src->last_cpu)) { /* Only one CPU is allowed to receive this IRQ */ IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active); } else if (!(src->ivpr & IVPR_MODE_MASK)) { /* Directed delivery mode */ for (i = 0; i < opp->nb_cpus; i++) { if (src->destmask & (1 << i)) { IRQ_local_pipe(opp, i, n_IRQ, active, was_active); } } } else { /* Distributed delivery mode */ for (i = src->last_cpu + 1; i != src->last_cpu; i++) { if (i == opp->nb_cpus) i = 0; if (src->destmask & (1 << i)) { IRQ_local_pipe(opp, i, n_IRQ, active, was_active); src->last_cpu = i; break; } } } } static void openpic_set_irq(void *opaque, int n_IRQ, int level) { struct openpic *opp = opaque; struct irq_source *src; if (n_IRQ >= MAX_IRQ) { WARN_ONCE(1, "%s: IRQ %d out of range\n", __func__, n_IRQ); return; } src = &opp->src[n_IRQ]; pr_debug("openpic: set irq %d = %d ivpr=0x%08x\n", n_IRQ, level, src->ivpr); if (src->level) { /* level-sensitive irq */ src->pending = level; openpic_update_irq(opp, n_IRQ); } else { /* edge-sensitive irq */ if (level) { src->pending = 1; openpic_update_irq(opp, n_IRQ); } if (src->output != ILR_INTTGT_INT) { /* Edge-triggered interrupts shouldn't be used * with non-INT delivery, but just in case, * try to make it do something sane rather than * cause an interrupt storm. This is close to * what you'd probably see happen in real hardware. */ src->pending = 0; openpic_update_irq(opp, n_IRQ); } } } static void openpic_reset(struct openpic *opp) { int i; opp->gcr = GCR_RESET; /* Initialise controller registers */ opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) | (opp->vid << FRR_VID_SHIFT); opp->pir = 0; opp->spve = -1 & opp->vector_mask; opp->tfrr = opp->tfrr_reset; /* Initialise IRQ sources */ for (i = 0; i < opp->max_irq; i++) { opp->src[i].ivpr = opp->ivpr_reset; switch (opp->src[i].type) { case IRQ_TYPE_NORMAL: opp->src[i].level = !!(opp->ivpr_reset & IVPR_SENSE_MASK); break; case IRQ_TYPE_FSLINT: opp->src[i].ivpr |= IVPR_POLARITY_MASK; break; case IRQ_TYPE_FSLSPECIAL: break; } write_IRQreg_idr(opp, i, opp->idr_reset); } /* Initialise IRQ destinations */ for (i = 0; i < MAX_CPU; i++) { opp->dst[i].ctpr = 15; memset(&opp->dst[i].raised, 0, sizeof(struct irq_queue)); opp->dst[i].raised.next = -1; memset(&opp->dst[i].servicing, 0, sizeof(struct irq_queue)); opp->dst[i].servicing.next = -1; } /* Initialise timers */ for (i = 0; i < MAX_TMR; i++) { opp->timers[i].tccr = 0; opp->timers[i].tbcr = TBCR_CI; } /* Go out of RESET state */ opp->gcr = 0; } static inline uint32_t read_IRQreg_idr(struct openpic *opp, int n_IRQ) { return opp->src[n_IRQ].idr; } static inline uint32_t read_IRQreg_ilr(struct openpic *opp, int n_IRQ) { if (opp->flags & OPENPIC_FLAG_ILR) return opp->src[n_IRQ].output; return 0xffffffff; } static inline uint32_t read_IRQreg_ivpr(struct openpic *opp, int n_IRQ) { return opp->src[n_IRQ].ivpr; } static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ, uint32_t val) { struct irq_source *src = &opp->src[n_IRQ]; uint32_t normal_mask = (1UL << opp->nb_cpus) - 1; uint32_t crit_mask = 0; uint32_t mask = normal_mask; int crit_shift = IDR_EP_SHIFT - opp->nb_cpus; int i; if (opp->flags & OPENPIC_FLAG_IDR_CRIT) { crit_mask = mask << crit_shift; mask |= crit_mask | IDR_EP; } src->idr = val & mask; pr_debug("Set IDR %d to 0x%08x\n", n_IRQ, src->idr); if (opp->flags & OPENPIC_FLAG_IDR_CRIT) { if (src->idr & crit_mask) { if (src->idr & normal_mask) { pr_debug("%s: IRQ configured for multiple output types, using critical\n", __func__); } src->output = ILR_INTTGT_CINT; src->nomask = true; src->destmask = 0; for (i = 0; i < opp->nb_cpus; i++) { int n_ci = IDR_CI0_SHIFT - i; if (src->idr & (1UL << n_ci)) src->destmask |= 1UL << i; } } else { src->output = ILR_INTTGT_INT; src->nomask = false; src->destmask = src->idr & normal_mask; } } else { src->destmask = src->idr; } } static inline void write_IRQreg_ilr(struct openpic *opp, int n_IRQ, uint32_t val) { if (opp->flags & OPENPIC_FLAG_ILR) { struct irq_source *src = &opp->src[n_IRQ]; src->output = val & ILR_INTTGT_MASK; pr_debug("Set ILR %d to 0x%08x, output %d\n", n_IRQ, src->idr, src->output); /* TODO: on MPIC v4.0 only, set nomask for non-INT */ } } static inline void write_IRQreg_ivpr(struct openpic *opp, int n_IRQ, uint32_t val) { uint32_t mask; /* NOTE when implementing newer FSL MPIC models: starting with v4.0, * the polarity bit is read-only on internal interrupts. */ mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK | IVPR_POLARITY_MASK | opp->vector_mask; /* ACTIVITY bit is read-only */ opp->src[n_IRQ].ivpr = (opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask); /* For FSL internal interrupts, The sense bit is reserved and zero, * and the interrupt is always level-triggered. Timers and IPIs * have no sense or polarity bits, and are edge-triggered. */ switch (opp->src[n_IRQ].type) { case IRQ_TYPE_NORMAL: opp->src[n_IRQ].level = !!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK); break; case IRQ_TYPE_FSLINT: opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK; break; case IRQ_TYPE_FSLSPECIAL: opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK); break; } openpic_update_irq(opp, n_IRQ); pr_debug("Set IVPR %d to 0x%08x -> 0x%08x\n", n_IRQ, val, opp->src[n_IRQ].ivpr); } static void openpic_gcr_write(struct openpic *opp, uint64_t val) { if (val & GCR_RESET) { openpic_reset(opp); return; } opp->gcr &= ~opp->mpic_mode_mask; opp->gcr |= val & opp->mpic_mode_mask; } static int openpic_gbl_write(void *opaque, gpa_t addr, u32 val) { struct openpic *opp = opaque; int err = 0; pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val); if (addr & 0xF) return 0; switch (addr) { case 0x00: /* Block Revision Register1 (BRR1) is Readonly */ break; case 0x40: case 0x50: case 0x60: case 0x70: case 0x80: case 0x90: case 0xA0: case 0xB0: err = openpic_cpu_write_internal(opp, addr, val, get_current_cpu()); break; case 0x1000: /* FRR */ break; case 0x1020: /* GCR */ openpic_gcr_write(opp, val); break; case 0x1080: /* VIR */ break; case 0x1090: /* PIR */ /* * This register is used to reset a CPU core -- * let userspace handle it. */ err = -ENXIO; break; case 0x10A0: /* IPI_IVPR */ case 0x10B0: case 0x10C0: case 0x10D0: { int idx; idx = (addr - 0x10A0) >> 4; write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val); break; } case 0x10E0: /* SPVE */ opp->spve = val & opp->vector_mask; break; default: break; } return err; } static int openpic_gbl_read(void *opaque, gpa_t addr, u32 *ptr) { struct openpic *opp = opaque; u32 retval; int err = 0; pr_debug("%s: addr %#llx\n", __func__, addr); retval = 0xFFFFFFFF; if (addr & 0xF) goto out; switch (addr) { case 0x1000: /* FRR */ retval = opp->frr; retval |= (opp->nb_cpus - 1) << FRR_NCPU_SHIFT; break; case 0x1020: /* GCR */ retval = opp->gcr; break; case 0x1080: /* VIR */ retval = opp->vir; break; case 0x1090: /* PIR */ retval = 0x00000000; break; case 0x00: /* Block Revision Register1 (BRR1) */ retval = opp->brr1; break; case 0x40: case 0x50: case 0x60: case 0x70: case 0x80: case 0x90: case 0xA0: case 0xB0: err = openpic_cpu_read_internal(opp, addr, &retval, get_current_cpu()); break; case 0x10A0: /* IPI_IVPR */ case 0x10B0: case 0x10C0: case 0x10D0: { int idx; idx = (addr - 0x10A0) >> 4; retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx); } break; case 0x10E0: /* SPVE */ retval = opp->spve; break; default: break; } out: pr_debug("%s: => 0x%08x\n", __func__, retval); *ptr = retval; return err; } static int openpic_tmr_write(void *opaque, gpa_t addr, u32 val) { struct openpic *opp = opaque; int idx; addr += 0x10f0; pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val); if (addr & 0xF) return 0; if (addr == 0x10f0) { /* TFRR */ opp->tfrr = val; return 0; } idx = (addr >> 6) & 0x3; addr = addr & 0x30; switch (addr & 0x30) { case 0x00: /* TCCR */ break; case 0x10: /* TBCR */ if ((opp->timers[idx].tccr & TCCR_TOG) != 0 && (val & TBCR_CI) == 0 && (opp->timers[idx].tbcr & TBCR_CI) != 0) opp->timers[idx].tccr &= ~TCCR_TOG; opp->timers[idx].tbcr = val; break; case 0x20: /* TVPR */ write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val); break; case 0x30: /* TDR */ write_IRQreg_idr(opp, opp->irq_tim0 + idx, val); break; } return 0; } static int openpic_tmr_read(void *opaque, gpa_t addr, u32 *ptr) { struct openpic *opp = opaque; uint32_t retval = -1; int idx; pr_debug("%s: addr %#llx\n", __func__, addr); if (addr & 0xF) goto out; idx = (addr >> 6) & 0x3; if (addr == 0x0) { /* TFRR */ retval = opp->tfrr; goto out; } switch (addr & 0x30) { case 0x00: /* TCCR */ retval = opp->timers[idx].tccr; break; case 0x10: /* TBCR */ retval = opp->timers[idx].tbcr; break; case 0x20: /* TIPV */ retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx); break; case 0x30: /* TIDE (TIDR) */ retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx); break; } out: pr_debug("%s: => 0x%08x\n", __func__, retval); *ptr = retval; return 0; } static int openpic_src_write(void *opaque, gpa_t addr, u32 val) { struct openpic *opp = opaque; int idx; pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val); addr = addr & 0xffff; idx = addr >> 5; switch (addr & 0x1f) { case 0x00: write_IRQreg_ivpr(opp, idx, val); break; case 0x10: write_IRQreg_idr(opp, idx, val); break; case 0x18: write_IRQreg_ilr(opp, idx, val); break; } return 0; } static int openpic_src_read(void *opaque, gpa_t addr, u32 *ptr) { struct openpic *opp = opaque; uint32_t retval; int idx; pr_debug("%s: addr %#llx\n", __func__, addr); retval = 0xFFFFFFFF; addr = addr & 0xffff; idx = addr >> 5; switch (addr & 0x1f) { case 0x00: retval = read_IRQreg_ivpr(opp, idx); break; case 0x10: retval = read_IRQreg_idr(opp, idx); break; case 0x18: retval = read_IRQreg_ilr(opp, idx); break; } pr_debug("%s: => 0x%08x\n", __func__, retval); *ptr = retval; return 0; } static int openpic_msi_write(void *opaque, gpa_t addr, u32 val) { struct openpic *opp = opaque; int idx = opp->irq_msi; int srs, ibs; pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val); if (addr & 0xF) return 0; switch (addr) { case MSIIR_OFFSET: srs = val >> MSIIR_SRS_SHIFT; idx += srs; ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT; opp->msi[srs].msir |= 1 << ibs; openpic_set_irq(opp, idx, 1); break; default: /* most registers are read-only, thus ignored */ break; } return 0; } static int openpic_msi_read(void *opaque, gpa_t addr, u32 *ptr) { struct openpic *opp = opaque; uint32_t r = 0; int i, srs; pr_debug("%s: addr %#llx\n", __func__, addr); if (addr & 0xF) return -ENXIO; srs = addr >> 4; switch (addr) { case 0x00: case 0x10: case 0x20: case 0x30: case 0x40: case 0x50: case 0x60: case 0x70: /* MSIRs */ r = opp->msi[srs].msir; /* Clear on read */ opp->msi[srs].msir = 0; openpic_set_irq(opp, opp->irq_msi + srs, 0); break; case 0x120: /* MSISR */ for (i = 0; i < MAX_MSI; i++) r |= (opp->msi[i].msir ? 1 : 0) << i; break; } pr_debug("%s: => 0x%08x\n", __func__, r); *ptr = r; return 0; } static int openpic_summary_read(void *opaque, gpa_t addr, u32 *ptr) { uint32_t r = 0; pr_debug("%s: addr %#llx\n", __func__, addr); /* TODO: EISR/EIMR */ *ptr = r; return 0; } static int openpic_summary_write(void *opaque, gpa_t addr, u32 val) { pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val); /* TODO: EISR/EIMR */ return 0; } static int openpic_cpu_write_internal(void *opaque, gpa_t addr, u32 val, int idx) { struct openpic *opp = opaque; struct irq_source *src; struct irq_dest *dst; int s_IRQ, n_IRQ; pr_debug("%s: cpu %d addr %#llx <= 0x%08x\n", __func__, idx, addr, val); if (idx < 0) return 0; if (addr & 0xF) return 0; dst = &opp->dst[idx]; addr &= 0xFF0; switch (addr) { case 0x40: /* IPIDR */ case 0x50: case 0x60: case 0x70: idx = (addr - 0x40) >> 4; /* we use IDE as mask which CPUs to deliver the IPI to still. */ opp->src[opp->irq_ipi0 + idx].destmask |= val; openpic_set_irq(opp, opp->irq_ipi0 + idx, 1); openpic_set_irq(opp, opp->irq_ipi0 + idx, 0); break; case 0x80: /* CTPR */ dst->ctpr = val & 0x0000000F; pr_debug("%s: set CPU %d ctpr to %d, raised %d servicing %d\n", __func__, idx, dst->ctpr, dst->raised.priority, dst->servicing.priority); if (dst->raised.priority <= dst->ctpr) { pr_debug("%s: Lower OpenPIC INT output cpu %d due to ctpr\n", __func__, idx); mpic_irq_lower(opp, dst, ILR_INTTGT_INT); } else if (dst->raised.priority > dst->servicing.priority) { pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d\n", __func__, idx, dst->raised.next); mpic_irq_raise(opp, dst, ILR_INTTGT_INT); } break; case 0x90: /* WHOAMI */ /* Read-only register */ break; case 0xA0: /* IACK */ /* Read-only register */ break; case 0xB0: { /* EOI */ int notify_eoi; pr_debug("EOI\n"); s_IRQ = IRQ_get_next(opp, &dst->servicing); if (s_IRQ < 0) { pr_debug("%s: EOI with no interrupt in service\n", __func__); break; } IRQ_resetbit(&dst->servicing, s_IRQ); /* Notify listeners that the IRQ is over */ notify_eoi = s_IRQ; /* Set up next servicing IRQ */ s_IRQ = IRQ_get_next(opp, &dst->servicing); /* Check queued interrupts. */ n_IRQ = IRQ_get_next(opp, &dst->raised); src = &opp->src[n_IRQ]; if (n_IRQ != -1 && (s_IRQ == -1 || IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) { pr_debug("Raise OpenPIC INT output cpu %d irq %d\n", idx, n_IRQ); mpic_irq_raise(opp, dst, ILR_INTTGT_INT); } spin_unlock(&opp->lock); kvm_notify_acked_irq(opp->kvm, 0, notify_eoi); spin_lock(&opp->lock); break; } default: break; } return 0; } static int openpic_cpu_write(void *opaque, gpa_t addr, u32 val) { struct openpic *opp = opaque; return openpic_cpu_write_internal(opp, addr, val, (addr & 0x1f000) >> 12); } static uint32_t openpic_iack(struct openpic *opp, struct irq_dest *dst, int cpu) { struct irq_source *src; int retval, irq; pr_debug("Lower OpenPIC INT output\n"); mpic_irq_lower(opp, dst, ILR_INTTGT_INT); irq = IRQ_get_next(opp, &dst->raised); pr_debug("IACK: irq=%d\n", irq); if (irq == -1) /* No more interrupt pending */ return opp->spve; src = &opp->src[irq]; if (!(src->ivpr & IVPR_ACTIVITY_MASK) || !(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) { pr_err("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x\n", __func__, irq, dst->ctpr, src->ivpr); openpic_update_irq(opp, irq); retval = opp->spve; } else { /* IRQ enter servicing state */ IRQ_setbit(&dst->servicing, irq); retval = IVPR_VECTOR(opp, src->ivpr); } if (!src->level) { /* edge-sensitive IRQ */ src->ivpr &= ~IVPR_ACTIVITY_MASK; src->pending = 0; IRQ_resetbit(&dst->raised, irq); } if ((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + MAX_IPI))) { src->destmask &= ~(1 << cpu); if (src->destmask && !src->level) { /* trigger on CPUs that didn't know about it yet */ openpic_set_irq(opp, irq, 1); openpic_set_irq(opp, irq, 0); /* if all CPUs knew about it, set active bit again */ src->ivpr |= IVPR_ACTIVITY_MASK; } } return retval; } void kvmppc_mpic_set_epr(struct kvm_vcpu *vcpu) { struct openpic *opp = vcpu->arch.mpic; int cpu = vcpu->arch.irq_cpu_id; unsigned long flags; spin_lock_irqsave(&opp->lock, flags); if ((opp->gcr & opp->mpic_mode_mask) == GCR_MODE_PROXY) kvmppc_set_epr(vcpu, openpic_iack(opp, &opp->dst[cpu], cpu)); spin_unlock_irqrestore(&opp->lock, flags); } static int openpic_cpu_read_internal(void *opaque, gpa_t addr, u32 *ptr, int idx) { struct openpic *opp = opaque; struct irq_dest *dst; uint32_t retval; pr_debug("%s: cpu %d addr %#llx\n", __func__, idx, addr); retval = 0xFFFFFFFF; if (idx < 0) goto out; if (addr & 0xF) goto out; dst = &opp->dst[idx]; addr &= 0xFF0; switch (addr) { case 0x80: /* CTPR */ retval = dst->ctpr; break; case 0x90: /* WHOAMI */ retval = idx; break; case 0xA0: /* IACK */ retval = openpic_iack(opp, dst, idx); break; case 0xB0: /* EOI */ retval = 0; break; default: break; } pr_debug("%s: => 0x%08x\n", __func__, retval); out: *ptr = retval; return 0; } static int openpic_cpu_read(void *opaque, gpa_t addr, u32 *ptr) { struct openpic *opp = opaque; return openpic_cpu_read_internal(opp, addr, ptr, (addr & 0x1f000) >> 12); } struct mem_reg { int (*read)(void *opaque, gpa_t addr, u32 *ptr); int (*write)(void *opaque, gpa_t addr, u32 val); gpa_t start_addr; int size; }; static const struct mem_reg openpic_gbl_mmio = { .write = openpic_gbl_write, .read = openpic_gbl_read, .start_addr = OPENPIC_GLB_REG_START, .size = OPENPIC_GLB_REG_SIZE, }; static const struct mem_reg openpic_tmr_mmio = { .write = openpic_tmr_write, .read = openpic_tmr_read, .start_addr = OPENPIC_TMR_REG_START, .size = OPENPIC_TMR_REG_SIZE, }; static const struct mem_reg openpic_cpu_mmio = { .write = openpic_cpu_write, .read = openpic_cpu_read, .start_addr = OPENPIC_CPU_REG_START, .size = OPENPIC_CPU_REG_SIZE, }; static const struct mem_reg openpic_src_mmio = { .write = openpic_src_write, .read = openpic_src_read, .start_addr = OPENPIC_SRC_REG_START, .size = OPENPIC_SRC_REG_SIZE, }; static const struct mem_reg openpic_msi_mmio = { .read = openpic_msi_read, .write = openpic_msi_write, .start_addr = OPENPIC_MSI_REG_START, .size = OPENPIC_MSI_REG_SIZE, }; static const struct mem_reg openpic_summary_mmio = { .read = openpic_summary_read, .write = openpic_summary_write, .start_addr = OPENPIC_SUMMARY_REG_START, .size = OPENPIC_SUMMARY_REG_SIZE, }; static void add_mmio_region(struct openpic *opp, const struct mem_reg *mr) { if (opp->num_mmio_regions >= MAX_MMIO_REGIONS) { WARN(1, "kvm mpic: too many mmio regions\n"); return; } opp->mmio_regions[opp->num_mmio_regions++] = mr; } static void fsl_common_init(struct openpic *opp) { int i; int virq = MAX_SRC; add_mmio_region(opp, &openpic_msi_mmio); add_mmio_region(opp, &openpic_summary_mmio); opp->vid = VID_REVISION_1_2; opp->vir = VIR_GENERIC; opp->vector_mask = 0xFFFF; opp->tfrr_reset = 0; opp->ivpr_reset = IVPR_MASK_MASK; opp->idr_reset = 1 << 0; opp->max_irq = MAX_IRQ; opp->irq_ipi0 = virq; virq += MAX_IPI; opp->irq_tim0 = virq; virq += MAX_TMR; BUG_ON(virq > MAX_IRQ); opp->irq_msi = 224; for (i = 0; i < opp->fsl->max_ext; i++) opp->src[i].level = false; /* Internal interrupts, including message and MSI */ for (i = 16; i < MAX_SRC; i++) { opp->src[i].type = IRQ_TYPE_FSLINT; opp->src[i].level = true; } /* timers and IPIs */ for (i = MAX_SRC; i < virq; i++) { opp->src[i].type = IRQ_TYPE_FSLSPECIAL; opp->src[i].level = false; } } static int kvm_mpic_read_internal(struct openpic *opp, gpa_t addr, u32 *ptr) { int i; for (i = 0; i < opp->num_mmio_regions; i++) { const struct mem_reg *mr = opp->mmio_regions[i]; if (mr->start_addr > addr || addr >= mr->start_addr + mr->size) continue; return mr->read(opp, addr - mr->start_addr, ptr); } return -ENXIO; } static int kvm_mpic_write_internal(struct openpic *opp, gpa_t addr, u32 val) { int i; for (i = 0; i < opp->num_mmio_regions; i++) { const struct mem_reg *mr = opp->mmio_regions[i]; if (mr->start_addr > addr || addr >= mr->start_addr + mr->size) continue; return mr->write(opp, addr - mr->start_addr, val); } return -ENXIO; } static int kvm_mpic_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, void *ptr) { struct openpic *opp = container_of(this, struct openpic, mmio); int ret; union { u32 val; u8 bytes[4]; } u; if (addr & (len - 1)) { pr_debug("%s: bad alignment %llx/%d\n", __func__, addr, len); return -EINVAL; } spin_lock_irq(&opp->lock); ret = kvm_mpic_read_internal(opp, addr - opp->reg_base, &u.val); spin_unlock_irq(&opp->lock); /* * Technically only 32-bit accesses are allowed, but be nice to * people dumping registers a byte at a time -- it works in real * hardware (reads only, not writes). */ if (len == 4) { *(u32 *)ptr = u.val; pr_debug("%s: addr %llx ret %d len 4 val %x\n", __func__, addr, ret, u.val); } else if (len == 1) { *(u8 *)ptr = u.bytes[addr & 3]; pr_debug("%s: addr %llx ret %d len 1 val %x\n", __func__, addr, ret, u.bytes[addr & 3]); } else { pr_debug("%s: bad length %d\n", __func__, len); return -EINVAL; } return ret; } static int kvm_mpic_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, const void *ptr) { struct openpic *opp = container_of(this, struct openpic, mmio); int ret; if (len != 4) { pr_debug("%s: bad length %d\n", __func__, len); return -EOPNOTSUPP; } if (addr & 3) { pr_debug("%s: bad alignment %llx/%d\n", __func__, addr, len); return -EOPNOTSUPP; } spin_lock_irq(&opp->lock); ret = kvm_mpic_write_internal(opp, addr - opp->reg_base, *(const u32 *)ptr); spin_unlock_irq(&opp->lock); pr_debug("%s: addr %llx ret %d val %x\n", __func__, addr, ret, *(const u32 *)ptr); return ret; } static const struct kvm_io_device_ops mpic_mmio_ops = { .read = kvm_mpic_read, .write = kvm_mpic_write, }; static void map_mmio(struct openpic *opp) { kvm_iodevice_init(&opp->mmio, &mpic_mmio_ops); kvm_io_bus_register_dev(opp->kvm, KVM_MMIO_BUS, opp->reg_base, OPENPIC_REG_SIZE, &opp->mmio); } static void unmap_mmio(struct openpic *opp) { kvm_io_bus_unregister_dev(opp->kvm, KVM_MMIO_BUS, &opp->mmio); } static int set_base_addr(struct openpic *opp, struct kvm_device_attr *attr) { u64 base; if (copy_from_user(&base, (u64 __user *)(long)attr->addr, sizeof(u64))) return -EFAULT; if (base & 0x3ffff) { pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx not aligned\n", __func__, base); return -EINVAL; } if (base == opp->reg_base) return 0; mutex_lock(&opp->kvm->slots_lock); unmap_mmio(opp); opp->reg_base = base; pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx\n", __func__, base); if (base == 0) goto out; map_mmio(opp); out: mutex_unlock(&opp->kvm->slots_lock); return 0; } #define ATTR_SET 0 #define ATTR_GET 1 static int access_reg(struct openpic *opp, gpa_t addr, u32 *val, int type) { int ret; if (addr & 3) return -ENXIO; spin_lock_irq(&opp->lock); if (type == ATTR_SET) ret = kvm_mpic_write_internal(opp, addr, *val); else ret = kvm_mpic_read_internal(opp, addr, val); spin_unlock_irq(&opp->lock); pr_debug("%s: type %d addr %llx val %x\n", __func__, type, addr, *val); return ret; } static int mpic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { struct openpic *opp = dev->private; u32 attr32; switch (attr->group) { case KVM_DEV_MPIC_GRP_MISC: switch (attr->attr) { case KVM_DEV_MPIC_BASE_ADDR: return set_base_addr(opp, attr); } break; case KVM_DEV_MPIC_GRP_REGISTER: if (get_user(attr32, (u32 __user *)(long)attr->addr)) return -EFAULT; return access_reg(opp, attr->attr, &attr32, ATTR_SET); case KVM_DEV_MPIC_GRP_IRQ_ACTIVE: if (attr->attr > MAX_SRC) return -EINVAL; if (get_user(attr32, (u32 __user *)(long)attr->addr)) return -EFAULT; if (attr32 != 0 && attr32 != 1) return -EINVAL; spin_lock_irq(&opp->lock); openpic_set_irq(opp, attr->attr, attr32); spin_unlock_irq(&opp->lock); return 0; } return -ENXIO; } static int mpic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { struct openpic *opp = dev->private; u64 attr64; u32 attr32; int ret; switch (attr->group) { case KVM_DEV_MPIC_GRP_MISC: switch (attr->attr) { case KVM_DEV_MPIC_BASE_ADDR: mutex_lock(&opp->kvm->slots_lock); attr64 = opp->reg_base; mutex_unlock(&opp->kvm->slots_lock); if (copy_to_user((u64 __user *)(long)attr->addr, &attr64, sizeof(u64))) return -EFAULT; return 0; } break; case KVM_DEV_MPIC_GRP_REGISTER: ret = access_reg(opp, attr->attr, &attr32, ATTR_GET); if (ret) return ret; if (put_user(attr32, (u32 __user *)(long)attr->addr)) return -EFAULT; return 0; case KVM_DEV_MPIC_GRP_IRQ_ACTIVE: if (attr->attr > MAX_SRC) return -EINVAL; spin_lock_irq(&opp->lock); attr32 = opp->src[attr->attr].pending; spin_unlock_irq(&opp->lock); if (put_user(attr32, (u32 __user *)(long)attr->addr)) return -EFAULT; return 0; } return -ENXIO; } static int mpic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { switch (attr->group) { case KVM_DEV_MPIC_GRP_MISC: switch (attr->attr) { case KVM_DEV_MPIC_BASE_ADDR: return 0; } break; case KVM_DEV_MPIC_GRP_REGISTER: return 0; case KVM_DEV_MPIC_GRP_IRQ_ACTIVE: if (attr->attr > MAX_SRC) break; return 0; } return -ENXIO; } static void mpic_destroy(struct kvm_device *dev) { struct openpic *opp = dev->private; dev->kvm->arch.mpic = NULL; kfree(opp); kfree(dev); } static int mpic_set_default_irq_routing(struct openpic *opp) { struct kvm_irq_routing_entry *routing; /* Create a nop default map, so that dereferencing it still works */ routing = kzalloc((sizeof(*routing)), GFP_KERNEL); if (!routing) return -ENOMEM; kvm_set_irq_routing(opp->kvm, routing, 0, 0); kfree(routing); return 0; } static int mpic_create(struct kvm_device *dev, u32 type) { struct openpic *opp; int ret; /* We only support one MPIC at a time for now */ if (dev->kvm->arch.mpic) return -EINVAL; opp = kzalloc(sizeof(struct openpic), GFP_KERNEL); if (!opp) return -ENOMEM; dev->private = opp; opp->kvm = dev->kvm; opp->dev = dev; opp->model = type; spin_lock_init(&opp->lock); add_mmio_region(opp, &openpic_gbl_mmio); add_mmio_region(opp, &openpic_tmr_mmio); add_mmio_region(opp, &openpic_src_mmio); add_mmio_region(opp, &openpic_cpu_mmio); switch (opp->model) { case KVM_DEV_TYPE_FSL_MPIC_20: opp->fsl = &fsl_mpic_20; opp->brr1 = 0x00400200; opp->flags |= OPENPIC_FLAG_IDR_CRIT; opp->nb_irqs = 80; opp->mpic_mode_mask = GCR_MODE_MIXED; fsl_common_init(opp); break; case KVM_DEV_TYPE_FSL_MPIC_42: opp->fsl = &fsl_mpic_42; opp->brr1 = 0x00400402; opp->flags |= OPENPIC_FLAG_ILR; opp->nb_irqs = 196; opp->mpic_mode_mask = GCR_MODE_PROXY; fsl_common_init(opp); break; default: ret = -ENODEV; goto err; } ret = mpic_set_default_irq_routing(opp); if (ret) goto err; openpic_reset(opp); smp_wmb(); dev->kvm->arch.mpic = opp; return 0; err: kfree(opp); return ret; } struct kvm_device_ops kvm_mpic_ops = { .name = "kvm-mpic", .create = mpic_create, .destroy = mpic_destroy, .set_attr = mpic_set_attr, .get_attr = mpic_get_attr, .has_attr = mpic_has_attr, }; int kvmppc_mpic_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu, u32 cpu) { struct openpic *opp = dev->private; int ret = 0; if (dev->ops != &kvm_mpic_ops) return -EPERM; if (opp->kvm != vcpu->kvm) return -EPERM; if (cpu < 0 || cpu >= MAX_CPU) return -EPERM; spin_lock_irq(&opp->lock); if (opp->dst[cpu].vcpu) { ret = -EEXIST; goto out; } if (vcpu->arch.irq_type) { ret = -EBUSY; goto out; } opp->dst[cpu].vcpu = vcpu; opp->nb_cpus = max(opp->nb_cpus, cpu + 1); vcpu->arch.mpic = opp; vcpu->arch.irq_cpu_id = cpu; vcpu->arch.irq_type = KVMPPC_IRQ_MPIC; /* This might need to be changed if GCR gets extended */ if (opp->mpic_mode_mask == GCR_MODE_PROXY) vcpu->arch.epr_flags |= KVMPPC_EPR_KERNEL; out: spin_unlock_irq(&opp->lock); return ret; } /* * This should only happen immediately before the mpic is destroyed, * so we shouldn't need to worry about anything still trying to * access the vcpu pointer. */ void kvmppc_mpic_disconnect_vcpu(struct openpic *opp, struct kvm_vcpu *vcpu) { BUG_ON(!opp->dst[vcpu->arch.irq_cpu_id].vcpu); opp->dst[vcpu->arch.irq_cpu_id].vcpu = NULL; } /* * Return value: * < 0 Interrupt was ignored (masked or not delivered for other reasons) * = 0 Interrupt was coalesced (previous irq is still pending) * > 0 Number of CPUs interrupt was delivered to */ static int mpic_set_irq(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, int irq_source_id, int level, bool line_status) { u32 irq = e->irqchip.pin; struct openpic *opp = kvm->arch.mpic; unsigned long flags; spin_lock_irqsave(&opp->lock, flags); openpic_set_irq(opp, irq, level); spin_unlock_irqrestore(&opp->lock, flags); /* All code paths we care about don't check for the return value */ return 0; } int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, int irq_source_id, int level, bool line_status) { struct openpic *opp = kvm->arch.mpic; unsigned long flags; spin_lock_irqsave(&opp->lock, flags); /* * XXX We ignore the target address for now, as we only support * a single MSI bank. */ openpic_msi_write(kvm->arch.mpic, MSIIR_OFFSET, e->msi.data); spin_unlock_irqrestore(&opp->lock, flags); /* All code paths we care about don't check for the return value */ return 0; } int kvm_set_routing_entry(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, const struct kvm_irq_routing_entry *ue) { int r = -EINVAL; switch (ue->type) { case KVM_IRQ_ROUTING_IRQCHIP: e->set = mpic_set_irq; e->irqchip.irqchip = ue->u.irqchip.irqchip; e->irqchip.pin = ue->u.irqchip.pin; if (e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS) goto out; break; case KVM_IRQ_ROUTING_MSI: e->set = kvm_set_msi; e->msi.address_lo = ue->u.msi.address_lo; e->msi.address_hi = ue->u.msi.address_hi; e->msi.data = ue->u.msi.data; break; default: goto out; } r = 0; out: return r; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1