Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Liu Yu | 3531 | 76.66% | 5 | 26.32% |
Joseph S. Myers | 975 | 21.17% | 4 | 21.05% |
Christophe Leroy | 73 | 1.58% | 2 | 10.53% |
Paul Mackerras | 10 | 0.22% | 2 | 10.53% |
Nicholas Piggin | 5 | 0.11% | 1 | 5.26% |
Shan Hai | 3 | 0.07% | 1 | 5.26% |
Nathan Chancellor | 3 | 0.07% | 1 | 5.26% |
Linus Torvalds (pre-git) | 3 | 0.07% | 1 | 5.26% |
Thomas Gleixner | 2 | 0.04% | 1 | 5.26% |
Linus Torvalds | 1 | 0.02% | 1 | 5.26% |
Total | 4606 | 19 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * arch/powerpc/math-emu/math_efp.c * * Copyright (C) 2006-2008, 2010 Freescale Semiconductor, Inc. * * Author: Ebony Zhu, <ebony.zhu@freescale.com> * Yu Liu, <yu.liu@freescale.com> * * Derived from arch/alpha/math-emu/math.c * arch/powerpc/math-emu/math.c * * Description: * This file is the exception handler to make E500 SPE instructions * fully comply with IEEE-754 floating point standard. */ #include <linux/types.h> #include <linux/prctl.h> #include <linux/module.h> #include <linux/uaccess.h> #include <asm/reg.h> #define FP_EX_BOOKE_E500_SPE #include <asm/sfp-machine.h> #include <math-emu/soft-fp.h> #include <math-emu/single.h> #include <math-emu/double.h> #define EFAPU 0x4 #define VCT 0x4 #define SPFP 0x6 #define DPFP 0x7 #define EFSADD 0x2c0 #define EFSSUB 0x2c1 #define EFSABS 0x2c4 #define EFSNABS 0x2c5 #define EFSNEG 0x2c6 #define EFSMUL 0x2c8 #define EFSDIV 0x2c9 #define EFSCMPGT 0x2cc #define EFSCMPLT 0x2cd #define EFSCMPEQ 0x2ce #define EFSCFD 0x2cf #define EFSCFSI 0x2d1 #define EFSCTUI 0x2d4 #define EFSCTSI 0x2d5 #define EFSCTUF 0x2d6 #define EFSCTSF 0x2d7 #define EFSCTUIZ 0x2d8 #define EFSCTSIZ 0x2da #define EVFSADD 0x280 #define EVFSSUB 0x281 #define EVFSABS 0x284 #define EVFSNABS 0x285 #define EVFSNEG 0x286 #define EVFSMUL 0x288 #define EVFSDIV 0x289 #define EVFSCMPGT 0x28c #define EVFSCMPLT 0x28d #define EVFSCMPEQ 0x28e #define EVFSCTUI 0x294 #define EVFSCTSI 0x295 #define EVFSCTUF 0x296 #define EVFSCTSF 0x297 #define EVFSCTUIZ 0x298 #define EVFSCTSIZ 0x29a #define EFDADD 0x2e0 #define EFDSUB 0x2e1 #define EFDABS 0x2e4 #define EFDNABS 0x2e5 #define EFDNEG 0x2e6 #define EFDMUL 0x2e8 #define EFDDIV 0x2e9 #define EFDCTUIDZ 0x2ea #define EFDCTSIDZ 0x2eb #define EFDCMPGT 0x2ec #define EFDCMPLT 0x2ed #define EFDCMPEQ 0x2ee #define EFDCFS 0x2ef #define EFDCTUI 0x2f4 #define EFDCTSI 0x2f5 #define EFDCTUF 0x2f6 #define EFDCTSF 0x2f7 #define EFDCTUIZ 0x2f8 #define EFDCTSIZ 0x2fa #define AB 2 #define XA 3 #define XB 4 #define XCR 5 #define NOTYPE 0 #define SIGN_BIT_S (1UL << 31) #define SIGN_BIT_D (1ULL << 63) #define FP_EX_MASK (FP_EX_INEXACT | FP_EX_INVALID | FP_EX_DIVZERO | \ FP_EX_UNDERFLOW | FP_EX_OVERFLOW) static int have_e500_cpu_a005_erratum; union dw_union { u64 dp[1]; u32 wp[2]; }; static unsigned long insn_type(unsigned long speinsn) { unsigned long ret = NOTYPE; switch (speinsn & 0x7ff) { case EFSABS: ret = XA; break; case EFSADD: ret = AB; break; case EFSCFD: ret = XB; break; case EFSCMPEQ: ret = XCR; break; case EFSCMPGT: ret = XCR; break; case EFSCMPLT: ret = XCR; break; case EFSCTSF: ret = XB; break; case EFSCTSI: ret = XB; break; case EFSCTSIZ: ret = XB; break; case EFSCTUF: ret = XB; break; case EFSCTUI: ret = XB; break; case EFSCTUIZ: ret = XB; break; case EFSDIV: ret = AB; break; case EFSMUL: ret = AB; break; case EFSNABS: ret = XA; break; case EFSNEG: ret = XA; break; case EFSSUB: ret = AB; break; case EFSCFSI: ret = XB; break; case EVFSABS: ret = XA; break; case EVFSADD: ret = AB; break; case EVFSCMPEQ: ret = XCR; break; case EVFSCMPGT: ret = XCR; break; case EVFSCMPLT: ret = XCR; break; case EVFSCTSF: ret = XB; break; case EVFSCTSI: ret = XB; break; case EVFSCTSIZ: ret = XB; break; case EVFSCTUF: ret = XB; break; case EVFSCTUI: ret = XB; break; case EVFSCTUIZ: ret = XB; break; case EVFSDIV: ret = AB; break; case EVFSMUL: ret = AB; break; case EVFSNABS: ret = XA; break; case EVFSNEG: ret = XA; break; case EVFSSUB: ret = AB; break; case EFDABS: ret = XA; break; case EFDADD: ret = AB; break; case EFDCFS: ret = XB; break; case EFDCMPEQ: ret = XCR; break; case EFDCMPGT: ret = XCR; break; case EFDCMPLT: ret = XCR; break; case EFDCTSF: ret = XB; break; case EFDCTSI: ret = XB; break; case EFDCTSIDZ: ret = XB; break; case EFDCTSIZ: ret = XB; break; case EFDCTUF: ret = XB; break; case EFDCTUI: ret = XB; break; case EFDCTUIDZ: ret = XB; break; case EFDCTUIZ: ret = XB; break; case EFDDIV: ret = AB; break; case EFDMUL: ret = AB; break; case EFDNABS: ret = XA; break; case EFDNEG: ret = XA; break; case EFDSUB: ret = AB; break; } return ret; } int do_spe_mathemu(struct pt_regs *regs) { FP_DECL_EX; int IR, cmp; unsigned long type, func, fc, fa, fb, src, speinsn; union dw_union vc, va, vb; if (get_user(speinsn, (unsigned int __user *) regs->nip)) return -EFAULT; if ((speinsn >> 26) != EFAPU) return -EINVAL; /* not an spe instruction */ type = insn_type(speinsn); if (type == NOTYPE) goto illegal; func = speinsn & 0x7ff; fc = (speinsn >> 21) & 0x1f; fa = (speinsn >> 16) & 0x1f; fb = (speinsn >> 11) & 0x1f; src = (speinsn >> 5) & 0x7; vc.wp[0] = current->thread.evr[fc]; vc.wp[1] = regs->gpr[fc]; va.wp[0] = current->thread.evr[fa]; va.wp[1] = regs->gpr[fa]; vb.wp[0] = current->thread.evr[fb]; vb.wp[1] = regs->gpr[fb]; __FPU_FPSCR = mfspr(SPRN_SPEFSCR); pr_debug("speinsn:%08lx spefscr:%08lx\n", speinsn, __FPU_FPSCR); pr_debug("vc: %08x %08x\n", vc.wp[0], vc.wp[1]); pr_debug("va: %08x %08x\n", va.wp[0], va.wp[1]); pr_debug("vb: %08x %08x\n", vb.wp[0], vb.wp[1]); switch (src) { case SPFP: { FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR); switch (type) { case AB: case XCR: FP_UNPACK_SP(SA, va.wp + 1); fallthrough; case XB: FP_UNPACK_SP(SB, vb.wp + 1); break; case XA: FP_UNPACK_SP(SA, va.wp + 1); break; } pr_debug("SA: %d %08x %d (%d)\n", SA_s, SA_f, SA_e, SA_c); pr_debug("SB: %d %08x %d (%d)\n", SB_s, SB_f, SB_e, SB_c); switch (func) { case EFSABS: vc.wp[1] = va.wp[1] & ~SIGN_BIT_S; goto update_regs; case EFSNABS: vc.wp[1] = va.wp[1] | SIGN_BIT_S; goto update_regs; case EFSNEG: vc.wp[1] = va.wp[1] ^ SIGN_BIT_S; goto update_regs; case EFSADD: FP_ADD_S(SR, SA, SB); goto pack_s; case EFSSUB: FP_SUB_S(SR, SA, SB); goto pack_s; case EFSMUL: FP_MUL_S(SR, SA, SB); goto pack_s; case EFSDIV: FP_DIV_S(SR, SA, SB); goto pack_s; case EFSCMPEQ: cmp = 0; goto cmp_s; case EFSCMPGT: cmp = 1; goto cmp_s; case EFSCMPLT: cmp = -1; goto cmp_s; case EFSCTSF: case EFSCTUF: if (SB_c == FP_CLS_NAN) { vc.wp[1] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { SB_e += (func == EFSCTSF ? 31 : 32); FP_TO_INT_ROUND_S(vc.wp[1], SB, 32, (func == EFSCTSF) ? 1 : 0); } goto update_regs; case EFSCFD: { FP_DECL_D(DB); FP_CLEAR_EXCEPTIONS; FP_UNPACK_DP(DB, vb.dp); pr_debug("DB: %d %08x %08x %d (%d)\n", DB_s, DB_f1, DB_f0, DB_e, DB_c); FP_CONV(S, D, 1, 2, SR, DB); goto pack_s; } case EFSCTSI: case EFSCTUI: if (SB_c == FP_CLS_NAN) { vc.wp[1] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { FP_TO_INT_ROUND_S(vc.wp[1], SB, 32, ((func & 0x3) != 0) ? 1 : 0); } goto update_regs; case EFSCTSIZ: case EFSCTUIZ: if (SB_c == FP_CLS_NAN) { vc.wp[1] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { FP_TO_INT_S(vc.wp[1], SB, 32, ((func & 0x3) != 0) ? 1 : 0); } goto update_regs; default: goto illegal; } break; pack_s: pr_debug("SR: %d %08x %d (%d)\n", SR_s, SR_f, SR_e, SR_c); FP_PACK_SP(vc.wp + 1, SR); goto update_regs; cmp_s: FP_CMP_S(IR, SA, SB, 3); if (IR == 3 && (FP_ISSIGNAN_S(SA) || FP_ISSIGNAN_S(SB))) FP_SET_EXCEPTION(FP_EX_INVALID); if (IR == cmp) { IR = 0x4; } else { IR = 0; } goto update_ccr; } case DPFP: { FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR); switch (type) { case AB: case XCR: FP_UNPACK_DP(DA, va.dp); fallthrough; case XB: FP_UNPACK_DP(DB, vb.dp); break; case XA: FP_UNPACK_DP(DA, va.dp); break; } pr_debug("DA: %d %08x %08x %d (%d)\n", DA_s, DA_f1, DA_f0, DA_e, DA_c); pr_debug("DB: %d %08x %08x %d (%d)\n", DB_s, DB_f1, DB_f0, DB_e, DB_c); switch (func) { case EFDABS: vc.dp[0] = va.dp[0] & ~SIGN_BIT_D; goto update_regs; case EFDNABS: vc.dp[0] = va.dp[0] | SIGN_BIT_D; goto update_regs; case EFDNEG: vc.dp[0] = va.dp[0] ^ SIGN_BIT_D; goto update_regs; case EFDADD: FP_ADD_D(DR, DA, DB); goto pack_d; case EFDSUB: FP_SUB_D(DR, DA, DB); goto pack_d; case EFDMUL: FP_MUL_D(DR, DA, DB); goto pack_d; case EFDDIV: FP_DIV_D(DR, DA, DB); goto pack_d; case EFDCMPEQ: cmp = 0; goto cmp_d; case EFDCMPGT: cmp = 1; goto cmp_d; case EFDCMPLT: cmp = -1; goto cmp_d; case EFDCTSF: case EFDCTUF: if (DB_c == FP_CLS_NAN) { vc.wp[1] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { DB_e += (func == EFDCTSF ? 31 : 32); FP_TO_INT_ROUND_D(vc.wp[1], DB, 32, (func == EFDCTSF) ? 1 : 0); } goto update_regs; case EFDCFS: { FP_DECL_S(SB); FP_CLEAR_EXCEPTIONS; FP_UNPACK_SP(SB, vb.wp + 1); pr_debug("SB: %d %08x %d (%d)\n", SB_s, SB_f, SB_e, SB_c); FP_CONV(D, S, 2, 1, DR, SB); goto pack_d; } case EFDCTUIDZ: case EFDCTSIDZ: if (DB_c == FP_CLS_NAN) { vc.dp[0] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { FP_TO_INT_D(vc.dp[0], DB, 64, ((func & 0x1) == 0) ? 1 : 0); } goto update_regs; case EFDCTUI: case EFDCTSI: if (DB_c == FP_CLS_NAN) { vc.wp[1] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { FP_TO_INT_ROUND_D(vc.wp[1], DB, 32, ((func & 0x3) != 0) ? 1 : 0); } goto update_regs; case EFDCTUIZ: case EFDCTSIZ: if (DB_c == FP_CLS_NAN) { vc.wp[1] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { FP_TO_INT_D(vc.wp[1], DB, 32, ((func & 0x3) != 0) ? 1 : 0); } goto update_regs; default: goto illegal; } break; pack_d: pr_debug("DR: %d %08x %08x %d (%d)\n", DR_s, DR_f1, DR_f0, DR_e, DR_c); FP_PACK_DP(vc.dp, DR); goto update_regs; cmp_d: FP_CMP_D(IR, DA, DB, 3); if (IR == 3 && (FP_ISSIGNAN_D(DA) || FP_ISSIGNAN_D(DB))) FP_SET_EXCEPTION(FP_EX_INVALID); if (IR == cmp) { IR = 0x4; } else { IR = 0; } goto update_ccr; } case VCT: { FP_DECL_S(SA0); FP_DECL_S(SB0); FP_DECL_S(SR0); FP_DECL_S(SA1); FP_DECL_S(SB1); FP_DECL_S(SR1); int IR0, IR1; switch (type) { case AB: case XCR: FP_UNPACK_SP(SA0, va.wp); FP_UNPACK_SP(SA1, va.wp + 1); fallthrough; case XB: FP_UNPACK_SP(SB0, vb.wp); FP_UNPACK_SP(SB1, vb.wp + 1); break; case XA: FP_UNPACK_SP(SA0, va.wp); FP_UNPACK_SP(SA1, va.wp + 1); break; } pr_debug("SA0: %d %08x %d (%d)\n", SA0_s, SA0_f, SA0_e, SA0_c); pr_debug("SA1: %d %08x %d (%d)\n", SA1_s, SA1_f, SA1_e, SA1_c); pr_debug("SB0: %d %08x %d (%d)\n", SB0_s, SB0_f, SB0_e, SB0_c); pr_debug("SB1: %d %08x %d (%d)\n", SB1_s, SB1_f, SB1_e, SB1_c); switch (func) { case EVFSABS: vc.wp[0] = va.wp[0] & ~SIGN_BIT_S; vc.wp[1] = va.wp[1] & ~SIGN_BIT_S; goto update_regs; case EVFSNABS: vc.wp[0] = va.wp[0] | SIGN_BIT_S; vc.wp[1] = va.wp[1] | SIGN_BIT_S; goto update_regs; case EVFSNEG: vc.wp[0] = va.wp[0] ^ SIGN_BIT_S; vc.wp[1] = va.wp[1] ^ SIGN_BIT_S; goto update_regs; case EVFSADD: FP_ADD_S(SR0, SA0, SB0); FP_ADD_S(SR1, SA1, SB1); goto pack_vs; case EVFSSUB: FP_SUB_S(SR0, SA0, SB0); FP_SUB_S(SR1, SA1, SB1); goto pack_vs; case EVFSMUL: FP_MUL_S(SR0, SA0, SB0); FP_MUL_S(SR1, SA1, SB1); goto pack_vs; case EVFSDIV: FP_DIV_S(SR0, SA0, SB0); FP_DIV_S(SR1, SA1, SB1); goto pack_vs; case EVFSCMPEQ: cmp = 0; goto cmp_vs; case EVFSCMPGT: cmp = 1; goto cmp_vs; case EVFSCMPLT: cmp = -1; goto cmp_vs; case EVFSCTUF: case EVFSCTSF: if (SB0_c == FP_CLS_NAN) { vc.wp[0] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { SB0_e += (func == EVFSCTSF ? 31 : 32); FP_TO_INT_ROUND_S(vc.wp[0], SB0, 32, (func == EVFSCTSF) ? 1 : 0); } if (SB1_c == FP_CLS_NAN) { vc.wp[1] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { SB1_e += (func == EVFSCTSF ? 31 : 32); FP_TO_INT_ROUND_S(vc.wp[1], SB1, 32, (func == EVFSCTSF) ? 1 : 0); } goto update_regs; case EVFSCTUI: case EVFSCTSI: if (SB0_c == FP_CLS_NAN) { vc.wp[0] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { FP_TO_INT_ROUND_S(vc.wp[0], SB0, 32, ((func & 0x3) != 0) ? 1 : 0); } if (SB1_c == FP_CLS_NAN) { vc.wp[1] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { FP_TO_INT_ROUND_S(vc.wp[1], SB1, 32, ((func & 0x3) != 0) ? 1 : 0); } goto update_regs; case EVFSCTUIZ: case EVFSCTSIZ: if (SB0_c == FP_CLS_NAN) { vc.wp[0] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { FP_TO_INT_S(vc.wp[0], SB0, 32, ((func & 0x3) != 0) ? 1 : 0); } if (SB1_c == FP_CLS_NAN) { vc.wp[1] = 0; FP_SET_EXCEPTION(FP_EX_INVALID); } else { FP_TO_INT_S(vc.wp[1], SB1, 32, ((func & 0x3) != 0) ? 1 : 0); } goto update_regs; default: goto illegal; } break; pack_vs: pr_debug("SR0: %d %08x %d (%d)\n", SR0_s, SR0_f, SR0_e, SR0_c); pr_debug("SR1: %d %08x %d (%d)\n", SR1_s, SR1_f, SR1_e, SR1_c); FP_PACK_SP(vc.wp, SR0); FP_PACK_SP(vc.wp + 1, SR1); goto update_regs; cmp_vs: { int ch, cl; FP_CMP_S(IR0, SA0, SB0, 3); FP_CMP_S(IR1, SA1, SB1, 3); if (IR0 == 3 && (FP_ISSIGNAN_S(SA0) || FP_ISSIGNAN_S(SB0))) FP_SET_EXCEPTION(FP_EX_INVALID); if (IR1 == 3 && (FP_ISSIGNAN_S(SA1) || FP_ISSIGNAN_S(SB1))) FP_SET_EXCEPTION(FP_EX_INVALID); ch = (IR0 == cmp) ? 1 : 0; cl = (IR1 == cmp) ? 1 : 0; IR = (ch << 3) | (cl << 2) | ((ch | cl) << 1) | ((ch & cl) << 0); goto update_ccr; } } default: return -EINVAL; } update_ccr: regs->ccr &= ~(15 << ((7 - ((speinsn >> 23) & 0x7)) << 2)); regs->ccr |= (IR << ((7 - ((speinsn >> 23) & 0x7)) << 2)); update_regs: /* * If the "invalid" exception sticky bit was set by the * processor for non-finite input, but was not set before the * instruction being emulated, clear it. Likewise for the * "underflow" bit, which may have been set by the processor * for exact underflow, not just inexact underflow when the * flag should be set for IEEE 754 semantics. Other sticky * exceptions will only be set by the processor when they are * correct according to IEEE 754 semantics, and we must not * clear sticky bits that were already set before the emulated * instruction as they represent the user-visible sticky * exception status. "inexact" traps to kernel are not * required for IEEE semantics and are not enabled by default, * so the "inexact" sticky bit may have been set by a previous * instruction without the kernel being aware of it. */ __FPU_FPSCR &= ~(FP_EX_INVALID | FP_EX_UNDERFLOW) | current->thread.spefscr_last; __FPU_FPSCR |= (FP_CUR_EXCEPTIONS & FP_EX_MASK); mtspr(SPRN_SPEFSCR, __FPU_FPSCR); current->thread.spefscr_last = __FPU_FPSCR; current->thread.evr[fc] = vc.wp[0]; regs->gpr[fc] = vc.wp[1]; pr_debug("ccr = %08lx\n", regs->ccr); pr_debug("cur exceptions = %08x spefscr = %08lx\n", FP_CUR_EXCEPTIONS, __FPU_FPSCR); pr_debug("vc: %08x %08x\n", vc.wp[0], vc.wp[1]); pr_debug("va: %08x %08x\n", va.wp[0], va.wp[1]); pr_debug("vb: %08x %08x\n", vb.wp[0], vb.wp[1]); if (current->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) { if ((FP_CUR_EXCEPTIONS & FP_EX_DIVZERO) && (current->thread.fpexc_mode & PR_FP_EXC_DIV)) return 1; if ((FP_CUR_EXCEPTIONS & FP_EX_OVERFLOW) && (current->thread.fpexc_mode & PR_FP_EXC_OVF)) return 1; if ((FP_CUR_EXCEPTIONS & FP_EX_UNDERFLOW) && (current->thread.fpexc_mode & PR_FP_EXC_UND)) return 1; if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) && (current->thread.fpexc_mode & PR_FP_EXC_RES)) return 1; if ((FP_CUR_EXCEPTIONS & FP_EX_INVALID) && (current->thread.fpexc_mode & PR_FP_EXC_INV)) return 1; } return 0; illegal: if (have_e500_cpu_a005_erratum) { /* according to e500 cpu a005 erratum, reissue efp inst */ regs_add_return_ip(regs, -4); pr_debug("re-issue efp inst: %08lx\n", speinsn); return 0; } printk(KERN_ERR "\nOoops! IEEE-754 compliance handler encountered un-supported instruction.\ninst code: %08lx\n", speinsn); return -ENOSYS; } int speround_handler(struct pt_regs *regs) { union dw_union fgpr; int s_lo, s_hi; int lo_inexact, hi_inexact; int fp_result; unsigned long speinsn, type, fb, fc, fptype, func; if (get_user(speinsn, (unsigned int __user *) regs->nip)) return -EFAULT; if ((speinsn >> 26) != 4) return -EINVAL; /* not an spe instruction */ func = speinsn & 0x7ff; type = insn_type(func); if (type == XCR) return -ENOSYS; __FPU_FPSCR = mfspr(SPRN_SPEFSCR); pr_debug("speinsn:%08lx spefscr:%08lx\n", speinsn, __FPU_FPSCR); fptype = (speinsn >> 5) & 0x7; /* No need to round if the result is exact */ lo_inexact = __FPU_FPSCR & (SPEFSCR_FG | SPEFSCR_FX); hi_inexact = __FPU_FPSCR & (SPEFSCR_FGH | SPEFSCR_FXH); if (!(lo_inexact || (hi_inexact && fptype == VCT))) return 0; fc = (speinsn >> 21) & 0x1f; s_lo = regs->gpr[fc] & SIGN_BIT_S; s_hi = current->thread.evr[fc] & SIGN_BIT_S; fgpr.wp[0] = current->thread.evr[fc]; fgpr.wp[1] = regs->gpr[fc]; fb = (speinsn >> 11) & 0x1f; switch (func) { case EFSCTUIZ: case EFSCTSIZ: case EVFSCTUIZ: case EVFSCTSIZ: case EFDCTUIDZ: case EFDCTSIDZ: case EFDCTUIZ: case EFDCTSIZ: /* * These instructions always round to zero, * independent of the rounding mode. */ return 0; case EFSCTUI: case EFSCTUF: case EVFSCTUI: case EVFSCTUF: case EFDCTUI: case EFDCTUF: fp_result = 0; s_lo = 0; s_hi = 0; break; case EFSCTSI: case EFSCTSF: fp_result = 0; /* Recover the sign of a zero result if possible. */ if (fgpr.wp[1] == 0) s_lo = regs->gpr[fb] & SIGN_BIT_S; break; case EVFSCTSI: case EVFSCTSF: fp_result = 0; /* Recover the sign of a zero result if possible. */ if (fgpr.wp[1] == 0) s_lo = regs->gpr[fb] & SIGN_BIT_S; if (fgpr.wp[0] == 0) s_hi = current->thread.evr[fb] & SIGN_BIT_S; break; case EFDCTSI: case EFDCTSF: fp_result = 0; s_hi = s_lo; /* Recover the sign of a zero result if possible. */ if (fgpr.wp[1] == 0) s_hi = current->thread.evr[fb] & SIGN_BIT_S; break; default: fp_result = 1; break; } pr_debug("round fgpr: %08x %08x\n", fgpr.wp[0], fgpr.wp[1]); switch (fptype) { /* Since SPE instructions on E500 core can handle round to nearest * and round toward zero with IEEE-754 complied, we just need * to handle round toward +Inf and round toward -Inf by software. */ case SPFP: if ((FP_ROUNDMODE) == FP_RND_PINF) { if (!s_lo) fgpr.wp[1]++; /* Z > 0, choose Z1 */ } else { /* round to -Inf */ if (s_lo) { if (fp_result) fgpr.wp[1]++; /* Z < 0, choose Z2 */ else fgpr.wp[1]--; /* Z < 0, choose Z2 */ } } break; case DPFP: if (FP_ROUNDMODE == FP_RND_PINF) { if (!s_hi) { if (fp_result) fgpr.dp[0]++; /* Z > 0, choose Z1 */ else fgpr.wp[1]++; /* Z > 0, choose Z1 */ } } else { /* round to -Inf */ if (s_hi) { if (fp_result) fgpr.dp[0]++; /* Z < 0, choose Z2 */ else fgpr.wp[1]--; /* Z < 0, choose Z2 */ } } break; case VCT: if (FP_ROUNDMODE == FP_RND_PINF) { if (lo_inexact && !s_lo) fgpr.wp[1]++; /* Z_low > 0, choose Z1 */ if (hi_inexact && !s_hi) fgpr.wp[0]++; /* Z_high word > 0, choose Z1 */ } else { /* round to -Inf */ if (lo_inexact && s_lo) { if (fp_result) fgpr.wp[1]++; /* Z_low < 0, choose Z2 */ else fgpr.wp[1]--; /* Z_low < 0, choose Z2 */ } if (hi_inexact && s_hi) { if (fp_result) fgpr.wp[0]++; /* Z_high < 0, choose Z2 */ else fgpr.wp[0]--; /* Z_high < 0, choose Z2 */ } } break; default: return -EINVAL; } current->thread.evr[fc] = fgpr.wp[0]; regs->gpr[fc] = fgpr.wp[1]; pr_debug(" to fgpr: %08x %08x\n", fgpr.wp[0], fgpr.wp[1]); if (current->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) return (current->thread.fpexc_mode & PR_FP_EXC_RES) ? 1 : 0; return 0; } static int __init spe_mathemu_init(void) { u32 pvr, maj, min; pvr = mfspr(SPRN_PVR); if ((PVR_VER(pvr) == PVR_VER_E500V1) || (PVR_VER(pvr) == PVR_VER_E500V2)) { maj = PVR_MAJ(pvr); min = PVR_MIN(pvr); /* * E500 revision below 1.1, 2.3, 3.1, 4.1, 5.1 * need cpu a005 errata workaround */ switch (maj) { case 1: if (min < 1) have_e500_cpu_a005_erratum = 1; break; case 2: if (min < 3) have_e500_cpu_a005_erratum = 1; break; case 3: case 4: case 5: if (min < 1) have_e500_cpu_a005_erratum = 1; break; default: break; } } return 0; } module_init(spe_mathemu_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1