Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Aneesh Kumar K.V | 704 | 30.68% | 25 | 23.15% |
Nicholas Piggin | 253 | 11.02% | 4 | 3.70% |
Li Zhong | 239 | 10.41% | 3 | 2.78% |
Andy Whitcroft | 228 | 9.93% | 1 | 0.93% |
Paul Mackerras | 179 | 7.80% | 5 | 4.63% |
Mark Nelson | 153 | 6.67% | 1 | 0.93% |
Oliver O'Halloran | 130 | 5.66% | 3 | 2.78% |
Suraj Jitindar Singh | 91 | 3.97% | 1 | 0.93% |
Michael Ellerman | 68 | 2.96% | 8 | 7.41% |
Linus Torvalds (pre-git) | 54 | 2.35% | 20 | 18.52% |
Benjamin Herrenschmidt | 34 | 1.48% | 4 | 3.70% |
David Gibson | 22 | 0.96% | 1 | 0.93% |
Nathan Fontenot | 19 | 0.83% | 2 | 1.85% |
Johannes Weiner | 18 | 0.78% | 1 | 0.93% |
Christoph Hellwig | 16 | 0.70% | 2 | 1.85% |
Alexey Kardashevskiy | 12 | 0.52% | 1 | 0.93% |
Bharata B Rao | 11 | 0.48% | 1 | 0.93% |
Andrew Morton | 10 | 0.44% | 3 | 2.78% |
Anshuman Khandual | 7 | 0.31% | 1 | 0.93% |
Linus Torvalds | 7 | 0.31% | 3 | 2.78% |
Christophe Leroy | 6 | 0.26% | 3 | 2.78% |
Anton Blanchard | 5 | 0.22% | 2 | 1.85% |
Joe Perches | 4 | 0.17% | 1 | 0.93% |
Randy Dunlap | 3 | 0.13% | 1 | 0.93% |
Tejun Heo | 3 | 0.13% | 1 | 0.93% |
Michal Hocko | 3 | 0.13% | 1 | 0.93% |
Stephen Rothwell | 3 | 0.13% | 2 | 1.85% |
David S. Miller | 3 | 0.13% | 1 | 0.93% |
Vivek Goyal | 2 | 0.09% | 1 | 0.93% |
Tim Schmielau | 2 | 0.09% | 1 | 0.93% |
Thomas Gleixner | 2 | 0.09% | 1 | 0.93% |
Julia Lawall | 2 | 0.09% | 1 | 0.93% |
Sachin P. Sant | 1 | 0.04% | 1 | 0.93% |
Yinghai Lu | 1 | 0.04% | 1 | 0.93% |
Total | 2295 | 108 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Dave Engebretsen <engebret@us.ibm.com> * Rework for PPC64 port. */ #undef DEBUG #include <linux/signal.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/swap.h> #include <linux/stddef.h> #include <linux/vmalloc.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/highmem.h> #include <linux/idr.h> #include <linux/nodemask.h> #include <linux/module.h> #include <linux/poison.h> #include <linux/memblock.h> #include <linux/hugetlb.h> #include <linux/slab.h> #include <linux/of_fdt.h> #include <linux/libfdt.h> #include <linux/memremap.h> #include <linux/memory.h> #include <asm/pgalloc.h> #include <asm/page.h> #include <asm/prom.h> #include <asm/rtas.h> #include <asm/io.h> #include <asm/mmu_context.h> #include <asm/mmu.h> #include <linux/uaccess.h> #include <asm/smp.h> #include <asm/machdep.h> #include <asm/tlb.h> #include <asm/eeh.h> #include <asm/processor.h> #include <asm/mmzone.h> #include <asm/cputable.h> #include <asm/sections.h> #include <asm/iommu.h> #include <asm/vdso.h> #include <asm/hugetlb.h> #include <mm/mmu_decl.h> #ifdef CONFIG_SPARSEMEM_VMEMMAP /* * Given an address within the vmemmap, determine the page that * represents the start of the subsection it is within. Note that we have to * do this by hand as the proffered address may not be correctly aligned. * Subtraction of non-aligned pointers produces undefined results. */ static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr) { unsigned long start_pfn; unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap)); /* Return the pfn of the start of the section. */ start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK; return pfn_to_page(start_pfn); } /* * Since memory is added in sub-section chunks, before creating a new vmemmap * mapping, the kernel should check whether there is an existing memmap mapping * covering the new subsection added. This is needed because kernel can map * vmemmap area using 16MB pages which will cover a memory range of 16G. Such * a range covers multiple subsections (2M) * * If any subsection in the 16G range mapped by vmemmap is valid we consider the * vmemmap populated (There is a page table entry already present). We can't do * a page table lookup here because with the hash translation we don't keep * vmemmap details in linux page table. */ int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size) { struct page *start; unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size; start = vmemmap_subsection_start(vmemmap_addr); for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION) /* * pfn valid check here is intended to really check * whether we have any subsection already initialized * in this range. */ if (pfn_valid(page_to_pfn(start))) return 1; return 0; } /* * vmemmap virtual address space management does not have a traditional page * table to track which virtual struct pages are backed by physical mapping. * The virtual to physical mappings are tracked in a simple linked list * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at * all times where as the 'next' list maintains the available * vmemmap_backing structures which have been deleted from the * 'vmemmap_global' list during system runtime (memory hotplug remove * operation). The freed 'vmemmap_backing' structures are reused later when * new requests come in without allocating fresh memory. This pointer also * tracks the allocated 'vmemmap_backing' structures as we allocate one * full page memory at a time when we dont have any. */ struct vmemmap_backing *vmemmap_list; static struct vmemmap_backing *next; /* * The same pointer 'next' tracks individual chunks inside the allocated * full page during the boot time and again tracks the freed nodes during * runtime. It is racy but it does not happen as they are separated by the * boot process. Will create problem if some how we have memory hotplug * operation during boot !! */ static int num_left; static int num_freed; static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node) { struct vmemmap_backing *vmem_back; /* get from freed entries first */ if (num_freed) { num_freed--; vmem_back = next; next = next->list; return vmem_back; } /* allocate a page when required and hand out chunks */ if (!num_left) { next = vmemmap_alloc_block(PAGE_SIZE, node); if (unlikely(!next)) { WARN_ON(1); return NULL; } num_left = PAGE_SIZE / sizeof(struct vmemmap_backing); } num_left--; return next++; } static __meminit int vmemmap_list_populate(unsigned long phys, unsigned long start, int node) { struct vmemmap_backing *vmem_back; vmem_back = vmemmap_list_alloc(node); if (unlikely(!vmem_back)) { pr_debug("vmemap list allocation failed\n"); return -ENOMEM; } vmem_back->phys = phys; vmem_back->virt_addr = start; vmem_back->list = vmemmap_list; vmemmap_list = vmem_back; return 0; } bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start, unsigned long page_size) { unsigned long nr_pfn = page_size / sizeof(struct page); unsigned long start_pfn = page_to_pfn((struct page *)start); if ((start_pfn + nr_pfn - 1) > altmap->end_pfn) return true; if (start_pfn < altmap->base_pfn) return true; return false; } static int __meminit __vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap) { bool altmap_alloc; unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; /* Align to the page size of the linear mapping. */ start = ALIGN_DOWN(start, page_size); pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node); for (; start < end; start += page_size) { void *p = NULL; int rc; /* * This vmemmap range is backing different subsections. If any * of that subsection is marked valid, that means we already * have initialized a page table covering this range and hence * the vmemmap range is populated. */ if (vmemmap_populated(start, page_size)) continue; /* * Allocate from the altmap first if we have one. This may * fail due to alignment issues when using 16MB hugepages, so * fall back to system memory if the altmap allocation fail. */ if (altmap && !altmap_cross_boundary(altmap, start, page_size)) { p = vmemmap_alloc_block_buf(page_size, node, altmap); if (!p) pr_debug("altmap block allocation failed, falling back to system memory"); else altmap_alloc = true; } if (!p) { p = vmemmap_alloc_block_buf(page_size, node, NULL); altmap_alloc = false; } if (!p) return -ENOMEM; if (vmemmap_list_populate(__pa(p), start, node)) { /* * If we don't populate vmemap list, we don't have * the ability to free the allocated vmemmap * pages in section_deactivate. Hence free them * here. */ int nr_pfns = page_size >> PAGE_SHIFT; unsigned long page_order = get_order(page_size); if (altmap_alloc) vmem_altmap_free(altmap, nr_pfns); else free_pages((unsigned long)p, page_order); return -ENOMEM; } pr_debug(" * %016lx..%016lx allocated at %p\n", start, start + page_size, p); rc = vmemmap_create_mapping(start, page_size, __pa(p)); if (rc < 0) { pr_warn("%s: Unable to create vmemmap mapping: %d\n", __func__, rc); return -EFAULT; } } return 0; } int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap) { #ifdef CONFIG_PPC_BOOK3S_64 if (radix_enabled()) return radix__vmemmap_populate(start, end, node, altmap); #endif return __vmemmap_populate(start, end, node, altmap); } #ifdef CONFIG_MEMORY_HOTPLUG static unsigned long vmemmap_list_free(unsigned long start) { struct vmemmap_backing *vmem_back, *vmem_back_prev; vmem_back_prev = vmem_back = vmemmap_list; /* look for it with prev pointer recorded */ for (; vmem_back; vmem_back = vmem_back->list) { if (vmem_back->virt_addr == start) break; vmem_back_prev = vmem_back; } if (unlikely(!vmem_back)) return 0; /* remove it from vmemmap_list */ if (vmem_back == vmemmap_list) /* remove head */ vmemmap_list = vmem_back->list; else vmem_back_prev->list = vmem_back->list; /* next point to this freed entry */ vmem_back->list = next; next = vmem_back; num_freed++; return vmem_back->phys; } static void __ref __vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap) { unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; unsigned long page_order = get_order(page_size); unsigned long alt_start = ~0, alt_end = ~0; unsigned long base_pfn; start = ALIGN_DOWN(start, page_size); if (altmap) { alt_start = altmap->base_pfn; alt_end = altmap->base_pfn + altmap->reserve + altmap->free; } pr_debug("vmemmap_free %lx...%lx\n", start, end); for (; start < end; start += page_size) { unsigned long nr_pages, addr; struct page *page; /* * We have already marked the subsection we are trying to remove * invalid. So if we want to remove the vmemmap range, we * need to make sure there is no subsection marked valid * in this range. */ if (vmemmap_populated(start, page_size)) continue; addr = vmemmap_list_free(start); if (!addr) continue; page = pfn_to_page(addr >> PAGE_SHIFT); nr_pages = 1 << page_order; base_pfn = PHYS_PFN(addr); if (base_pfn >= alt_start && base_pfn < alt_end) { vmem_altmap_free(altmap, nr_pages); } else if (PageReserved(page)) { /* allocated from bootmem */ if (page_size < PAGE_SIZE) { /* * this shouldn't happen, but if it is * the case, leave the memory there */ WARN_ON_ONCE(1); } else { while (nr_pages--) free_reserved_page(page++); } } else { free_pages((unsigned long)(__va(addr)), page_order); } vmemmap_remove_mapping(start, page_size); } } void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap) { #ifdef CONFIG_PPC_BOOK3S_64 if (radix_enabled()) return radix__vmemmap_free(start, end, altmap); #endif return __vmemmap_free(start, end, altmap); } #endif void register_page_bootmem_memmap(unsigned long section_nr, struct page *start_page, unsigned long size) { } #endif /* CONFIG_SPARSEMEM_VMEMMAP */ #ifdef CONFIG_PPC_BOOK3S_64 unsigned int mmu_lpid_bits; #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE EXPORT_SYMBOL_GPL(mmu_lpid_bits); #endif unsigned int mmu_pid_bits; static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT); static int __init parse_disable_radix(char *p) { bool val; if (!p) val = true; else if (kstrtobool(p, &val)) return -EINVAL; disable_radix = val; return 0; } early_param("disable_radix", parse_disable_radix); /* * If we're running under a hypervisor, we need to check the contents of * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do * radix. If not, we clear the radix feature bit so we fall back to hash. */ static void __init early_check_vec5(void) { unsigned long root, chosen; int size; const u8 *vec5; u8 mmu_supported; root = of_get_flat_dt_root(); chosen = of_get_flat_dt_subnode_by_name(root, "chosen"); if (chosen == -FDT_ERR_NOTFOUND) { cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; return; } vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size); if (!vec5) { cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; return; } if (size <= OV5_INDX(OV5_MMU_SUPPORT)) { cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; return; } /* Check for supported configuration */ mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] & OV5_FEAT(OV5_MMU_SUPPORT); if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) { /* Hypervisor only supports radix - check enabled && GTSE */ if (!early_radix_enabled()) { pr_warn("WARNING: Ignoring cmdline option disable_radix\n"); } if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] & OV5_FEAT(OV5_RADIX_GTSE))) { cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE; } else cur_cpu_spec->mmu_features |= MMU_FTR_GTSE; /* Do radix anyway - the hypervisor said we had to */ cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX; } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) { /* Hypervisor only supports hash - disable radix */ cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE; } } static int __init dt_scan_mmu_pid_width(unsigned long node, const char *uname, int depth, void *data) { int size = 0; const __be32 *prop; const char *type = of_get_flat_dt_prop(node, "device_type", NULL); /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; /* Find MMU LPID, PID register size */ prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size); if (prop && size == 4) mmu_lpid_bits = be32_to_cpup(prop); prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size); if (prop && size == 4) mmu_pid_bits = be32_to_cpup(prop); if (!mmu_pid_bits && !mmu_lpid_bits) return 0; return 1; } /* * Outside hotplug the kernel uses this value to map the kernel direct map * with radix. To be compatible with older kernels, let's keep this value * as 16M which is also SECTION_SIZE with SPARSEMEM. We can ideally map * things with 1GB size in the case where we don't support hotplug. */ #ifndef CONFIG_MEMORY_HOTPLUG #define DEFAULT_MEMORY_BLOCK_SIZE SZ_16M #else #define DEFAULT_MEMORY_BLOCK_SIZE MIN_MEMORY_BLOCK_SIZE #endif static void update_memory_block_size(unsigned long *block_size, unsigned long mem_size) { unsigned long min_memory_block_size = DEFAULT_MEMORY_BLOCK_SIZE; for (; *block_size > min_memory_block_size; *block_size >>= 2) { if ((mem_size & *block_size) == 0) break; } } static int __init probe_memory_block_size(unsigned long node, const char *uname, int depth, void *data) { const char *type; unsigned long *block_size = (unsigned long *)data; const __be32 *reg, *endp; int l; if (depth != 1) return 0; /* * If we have dynamic-reconfiguration-memory node, use the * lmb value. */ if (strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) { const __be32 *prop; prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &l); if (!prop || l < dt_root_size_cells * sizeof(__be32)) /* * Nothing in the device tree */ *block_size = DEFAULT_MEMORY_BLOCK_SIZE; else *block_size = of_read_number(prop, dt_root_size_cells); /* * We have found the final value. Don't probe further. */ return 1; } /* * Find all the device tree nodes of memory type and make sure * the area can be mapped using the memory block size value * we end up using. We start with 1G value and keep reducing * it such that we can map the entire area using memory_block_size. * This will be used on powernv and older pseries that don't * have ibm,lmb-size node. * For ex: with P5 we can end up with * memory@0 -> 128MB * memory@128M -> 64M * This will end up using 64MB memory block size value. */ type = of_get_flat_dt_prop(node, "device_type", NULL); if (type == NULL || strcmp(type, "memory") != 0) return 0; reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l); if (!reg) reg = of_get_flat_dt_prop(node, "reg", &l); if (!reg) return 0; endp = reg + (l / sizeof(__be32)); while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) { const char *compatible; u64 size; dt_mem_next_cell(dt_root_addr_cells, ®); size = dt_mem_next_cell(dt_root_size_cells, ®); if (size) { update_memory_block_size(block_size, size); continue; } /* * ibm,coherent-device-memory with linux,usable-memory = 0 * Force 256MiB block size. Work around for GPUs on P9 PowerNV * linux,usable-memory == 0 implies driver managed memory and * we can't use large memory block size due to hotplug/unplug * limitations. */ compatible = of_get_flat_dt_prop(node, "compatible", NULL); if (compatible && !strcmp(compatible, "ibm,coherent-device-memory")) { if (*block_size > SZ_256M) *block_size = SZ_256M; /* * We keep 256M as the upper limit with GPU present. */ return 0; } } /* continue looking for other memory device types */ return 0; } /* * start with 1G memory block size. Early init will * fix this with correct value. */ unsigned long memory_block_size __ro_after_init = 1UL << 30; static void __init early_init_memory_block_size(void) { /* * We need to do memory_block_size probe early so that * radix__early_init_mmu() can use this as limit for * mapping page size. */ of_scan_flat_dt(probe_memory_block_size, &memory_block_size); } void __init mmu_early_init_devtree(void) { bool hvmode = !!(mfmsr() & MSR_HV); /* Disable radix mode based on kernel command line. */ if (disable_radix) { if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU)) cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; else pr_warn("WARNING: Ignoring cmdline option disable_radix\n"); } of_scan_flat_dt(dt_scan_mmu_pid_width, NULL); if (hvmode && !mmu_lpid_bits) { if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) mmu_lpid_bits = 12; /* POWER8-10 */ else mmu_lpid_bits = 10; /* POWER7 */ } if (!mmu_pid_bits) { if (early_cpu_has_feature(CPU_FTR_ARCH_300)) mmu_pid_bits = 20; /* POWER9-10 */ } /* * Check /chosen/ibm,architecture-vec-5 if running as a guest. * When running bare-metal, we can use radix if we like * even though the ibm,architecture-vec-5 property created by * skiboot doesn't have the necessary bits set. */ if (!hvmode) early_check_vec5(); early_init_memory_block_size(); if (early_radix_enabled()) { radix__early_init_devtree(); /* * We have finalized the translation we are going to use by now. * Radix mode is not limited by RMA / VRMA addressing. * Hence don't limit memblock allocations. */ ppc64_rma_size = ULONG_MAX; memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); } else hash__early_init_devtree(); if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE)) hugetlbpage_init_defaultsize(); if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) && !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX)) panic("kernel does not support any MMU type offered by platform"); } #endif /* CONFIG_PPC_BOOK3S_64 */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1