Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benjamin Herrenschmidt | 1401 | 58.64% | 11 | 14.29% |
Kumar Gala | 298 | 12.47% | 7 | 9.09% |
Scott Wood | 279 | 11.68% | 9 | 11.69% |
Paul Mackerras | 107 | 4.48% | 4 | 5.19% |
Christophe Leroy | 82 | 3.43% | 11 | 14.29% |
Becky Bruce | 71 | 2.97% | 3 | 3.90% |
Dave Kleikamp | 33 | 1.38% | 1 | 1.30% |
Rusty Russell | 19 | 0.80% | 1 | 1.30% |
David Gibson | 12 | 0.50% | 3 | 3.90% |
Benjamin Gray | 12 | 0.50% | 1 | 1.30% |
Linus Torvalds (pre-git) | 10 | 0.42% | 5 | 6.49% |
Arseny Solokha | 10 | 0.42% | 2 | 2.60% |
Daniel Axtens | 8 | 0.33% | 1 | 1.30% |
Arnaldo Carvalho de Melo | 6 | 0.25% | 1 | 1.30% |
Anton Blanchard | 5 | 0.21% | 3 | 3.90% |
Thomas Gleixner | 5 | 0.21% | 2 | 2.60% |
Chen-Hui Zhao | 5 | 0.21% | 1 | 1.30% |
Linus Torvalds | 4 | 0.17% | 2 | 2.60% |
Dave Liu | 4 | 0.17% | 1 | 1.30% |
Mariusz Kozlowski | 3 | 0.13% | 1 | 1.30% |
Paul Gortmaker | 3 | 0.13% | 1 | 1.30% |
Christoph Lameter | 3 | 0.13% | 1 | 1.30% |
Christian Krafft | 2 | 0.08% | 1 | 1.30% |
Yinghai Lu | 2 | 0.08% | 1 | 1.30% |
Nick Child | 2 | 0.08% | 1 | 1.30% |
Nathan T. Lynch | 2 | 0.08% | 1 | 1.30% |
Michael Ellerman | 1 | 0.04% | 1 | 1.30% |
Total | 2389 | 77 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * This file contains the routines for TLB flushing. * On machines where the MMU does not use a hash table to store virtual to * physical translations (ie, SW loaded TLBs or Book3E compilant processors, * this does -not- include 603 however which shares the implementation with * hash based processors) * * -- BenH * * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org> * IBM Corp. * * Derived from arch/ppc/mm/init.c: * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) * and Cort Dougan (PReP) (cort@cs.nmt.edu) * Copyright (C) 1996 Paul Mackerras * * Derived from "arch/i386/mm/init.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ #include <linux/kernel.h> #include <linux/export.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <linux/preempt.h> #include <linux/spinlock.h> #include <linux/memblock.h> #include <linux/of_fdt.h> #include <linux/hugetlb.h> #include <asm/pgalloc.h> #include <asm/tlbflush.h> #include <asm/tlb.h> #include <asm/code-patching.h> #include <asm/cputhreads.h> #include <asm/hugetlb.h> #include <asm/paca.h> #include <mm/mmu_decl.h> /* * This struct lists the sw-supported page sizes. The hardawre MMU may support * other sizes not listed here. The .ind field is only used on MMUs that have * indirect page table entries. */ #ifdef CONFIG_PPC_E500 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = { [MMU_PAGE_4K] = { .shift = 12, .enc = BOOK3E_PAGESZ_4K, }, [MMU_PAGE_2M] = { .shift = 21, .enc = BOOK3E_PAGESZ_2M, }, [MMU_PAGE_4M] = { .shift = 22, .enc = BOOK3E_PAGESZ_4M, }, [MMU_PAGE_16M] = { .shift = 24, .enc = BOOK3E_PAGESZ_16M, }, [MMU_PAGE_64M] = { .shift = 26, .enc = BOOK3E_PAGESZ_64M, }, [MMU_PAGE_256M] = { .shift = 28, .enc = BOOK3E_PAGESZ_256M, }, [MMU_PAGE_1G] = { .shift = 30, .enc = BOOK3E_PAGESZ_1GB, }, }; static inline int mmu_get_tsize(int psize) { return mmu_psize_defs[psize].enc; } #else static inline int mmu_get_tsize(int psize) { /* This isn't used on !Book3E for now */ return 0; } #endif #ifdef CONFIG_PPC_8xx struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = { [MMU_PAGE_4K] = { .shift = 12, }, [MMU_PAGE_16K] = { .shift = 14, }, [MMU_PAGE_512K] = { .shift = 19, }, [MMU_PAGE_8M] = { .shift = 23, }, }; #endif /* The variables below are currently only used on 64-bit Book3E * though this will probably be made common with other nohash * implementations at some point */ #ifdef CONFIG_PPC64 int mmu_pte_psize; /* Page size used for PTE pages */ int mmu_vmemmap_psize; /* Page size used for the virtual mem map */ int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */ unsigned long linear_map_top; /* Top of linear mapping */ /* * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug * exceptions. This is used for bolted and e6500 TLB miss handlers which * do not modify this SPRG in the TLB miss code; for other TLB miss handlers, * this is set to zero. */ int extlb_level_exc; #endif /* CONFIG_PPC64 */ #ifdef CONFIG_PPC_E500 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */ DEFINE_PER_CPU(int, next_tlbcam_idx); EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx); #endif /* * Base TLB flushing operations: * * - flush_tlb_mm(mm) flushes the specified mm context TLB's * - flush_tlb_page(vma, vmaddr) flushes one page * - flush_tlb_range(vma, start, end) flushes a range of pages * - flush_tlb_kernel_range(start, end) flushes kernel pages * * - local_* variants of page and mm only apply to the current * processor */ #ifndef CONFIG_PPC_8xx /* * These are the base non-SMP variants of page and mm flushing */ void local_flush_tlb_mm(struct mm_struct *mm) { unsigned int pid; preempt_disable(); pid = mm->context.id; if (pid != MMU_NO_CONTEXT) _tlbil_pid(pid); preempt_enable(); } EXPORT_SYMBOL(local_flush_tlb_mm); void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr, int tsize, int ind) { unsigned int pid; preempt_disable(); pid = mm ? mm->context.id : 0; if (pid != MMU_NO_CONTEXT) _tlbil_va(vmaddr, pid, tsize, ind); preempt_enable(); } void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) { __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr, mmu_get_tsize(mmu_virtual_psize), 0); } EXPORT_SYMBOL(local_flush_tlb_page); void local_flush_tlb_page_psize(struct mm_struct *mm, unsigned long vmaddr, int psize) { __local_flush_tlb_page(mm, vmaddr, mmu_get_tsize(psize), 0); } EXPORT_SYMBOL(local_flush_tlb_page_psize); #endif /* * And here are the SMP non-local implementations */ #ifdef CONFIG_SMP static DEFINE_RAW_SPINLOCK(tlbivax_lock); struct tlb_flush_param { unsigned long addr; unsigned int pid; unsigned int tsize; unsigned int ind; }; static void do_flush_tlb_mm_ipi(void *param) { struct tlb_flush_param *p = param; _tlbil_pid(p ? p->pid : 0); } static void do_flush_tlb_page_ipi(void *param) { struct tlb_flush_param *p = param; _tlbil_va(p->addr, p->pid, p->tsize, p->ind); } /* Note on invalidations and PID: * * We snapshot the PID with preempt disabled. At this point, it can still * change either because: * - our context is being stolen (PID -> NO_CONTEXT) on another CPU * - we are invaliating some target that isn't currently running here * and is concurrently acquiring a new PID on another CPU * - some other CPU is re-acquiring a lost PID for this mm * etc... * * However, this shouldn't be a problem as we only guarantee * invalidation of TLB entries present prior to this call, so we * don't care about the PID changing, and invalidating a stale PID * is generally harmless. */ void flush_tlb_mm(struct mm_struct *mm) { unsigned int pid; preempt_disable(); pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) goto no_context; if (!mm_is_core_local(mm)) { struct tlb_flush_param p = { .pid = pid }; /* Ignores smp_processor_id() even if set. */ smp_call_function_many(mm_cpumask(mm), do_flush_tlb_mm_ipi, &p, 1); } _tlbil_pid(pid); no_context: preempt_enable(); } EXPORT_SYMBOL(flush_tlb_mm); void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr, int tsize, int ind) { struct cpumask *cpu_mask; unsigned int pid; /* * This function as well as __local_flush_tlb_page() must only be called * for user contexts. */ if (WARN_ON(!mm)) return; preempt_disable(); pid = mm->context.id; if (unlikely(pid == MMU_NO_CONTEXT)) goto bail; cpu_mask = mm_cpumask(mm); if (!mm_is_core_local(mm)) { /* If broadcast tlbivax is supported, use it */ if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) { int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL); if (lock) raw_spin_lock(&tlbivax_lock); _tlbivax_bcast(vmaddr, pid, tsize, ind); if (lock) raw_spin_unlock(&tlbivax_lock); goto bail; } else { struct tlb_flush_param p = { .pid = pid, .addr = vmaddr, .tsize = tsize, .ind = ind, }; /* Ignores smp_processor_id() even if set in cpu_mask */ smp_call_function_many(cpu_mask, do_flush_tlb_page_ipi, &p, 1); } } _tlbil_va(vmaddr, pid, tsize, ind); bail: preempt_enable(); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr) { #ifdef CONFIG_HUGETLB_PAGE if (vma && is_vm_hugetlb_page(vma)) flush_hugetlb_page(vma, vmaddr); #endif __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr, mmu_get_tsize(mmu_virtual_psize), 0); } EXPORT_SYMBOL(flush_tlb_page); #endif /* CONFIG_SMP */ /* * Flush kernel TLB entries in the given range */ #ifndef CONFIG_PPC_8xx void flush_tlb_kernel_range(unsigned long start, unsigned long end) { #ifdef CONFIG_SMP preempt_disable(); smp_call_function(do_flush_tlb_mm_ipi, NULL, 1); _tlbil_pid(0); preempt_enable(); #else _tlbil_pid(0); #endif } EXPORT_SYMBOL(flush_tlb_kernel_range); #endif /* * Currently, for range flushing, we just do a full mm flush. This should * be optimized based on a threshold on the size of the range, since * some implementation can stack multiple tlbivax before a tlbsync but * for now, we keep it that way */ void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { if (end - start == PAGE_SIZE && !(start & ~PAGE_MASK)) flush_tlb_page(vma, start); else flush_tlb_mm(vma->vm_mm); } EXPORT_SYMBOL(flush_tlb_range); void tlb_flush(struct mmu_gather *tlb) { flush_tlb_mm(tlb->mm); } /* * Below are functions specific to the 64-bit variant of Book3E though that * may change in the future */ #ifdef CONFIG_PPC64 /* * Handling of virtual linear page tables or indirect TLB entries * flushing when PTE pages are freed */ void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address) { int tsize = mmu_psize_defs[mmu_pte_psize].enc; if (book3e_htw_mode != PPC_HTW_NONE) { unsigned long start = address & PMD_MASK; unsigned long end = address + PMD_SIZE; unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift; /* This isn't the most optimal, ideally we would factor out the * while preempt & CPU mask mucking around, or even the IPI but * it will do for now */ while (start < end) { __flush_tlb_page(tlb->mm, start, tsize, 1); start += size; } } else { unsigned long rmask = 0xf000000000000000ul; unsigned long rid = (address & rmask) | 0x1000000000000000ul; unsigned long vpte = address & ~rmask; vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful; vpte |= rid; __flush_tlb_page(tlb->mm, vpte, tsize, 0); } } static void __init setup_page_sizes(void) { unsigned int tlb0cfg; unsigned int tlb0ps; unsigned int eptcfg; int i, psize; #ifdef CONFIG_PPC_E500 unsigned int mmucfg = mfspr(SPRN_MMUCFG); int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E); if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) { unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG); unsigned int min_pg, max_pg; min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT; max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT; for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { struct mmu_psize_def *def; unsigned int shift; def = &mmu_psize_defs[psize]; shift = def->shift; if (shift == 0 || shift & 1) continue; /* adjust to be in terms of 4^shift Kb */ shift = (shift - 10) >> 1; if ((shift >= min_pg) && (shift <= max_pg)) def->flags |= MMU_PAGE_SIZE_DIRECT; } goto out; } if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) { u32 tlb1cfg, tlb1ps; tlb0cfg = mfspr(SPRN_TLB0CFG); tlb1cfg = mfspr(SPRN_TLB1CFG); tlb1ps = mfspr(SPRN_TLB1PS); eptcfg = mfspr(SPRN_EPTCFG); if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT)) book3e_htw_mode = PPC_HTW_E6500; /* * We expect 4K subpage size and unrestricted indirect size. * The lack of a restriction on indirect size is a Freescale * extension, indicated by PSn = 0 but SPSn != 0. */ if (eptcfg != 2) book3e_htw_mode = PPC_HTW_NONE; for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { struct mmu_psize_def *def = &mmu_psize_defs[psize]; if (!def->shift) continue; if (tlb1ps & (1U << (def->shift - 10))) { def->flags |= MMU_PAGE_SIZE_DIRECT; if (book3e_htw_mode && psize == MMU_PAGE_2M) def->flags |= MMU_PAGE_SIZE_INDIRECT; } } goto out; } #endif tlb0cfg = mfspr(SPRN_TLB0CFG); tlb0ps = mfspr(SPRN_TLB0PS); eptcfg = mfspr(SPRN_EPTCFG); /* Look for supported direct sizes */ for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { struct mmu_psize_def *def = &mmu_psize_defs[psize]; if (tlb0ps & (1U << (def->shift - 10))) def->flags |= MMU_PAGE_SIZE_DIRECT; } /* Indirect page sizes supported ? */ if ((tlb0cfg & TLBnCFG_IND) == 0 || (tlb0cfg & TLBnCFG_PT) == 0) goto out; book3e_htw_mode = PPC_HTW_IBM; /* Now, we only deal with one IND page size for each * direct size. Hopefully all implementations today are * unambiguous, but we might want to be careful in the * future. */ for (i = 0; i < 3; i++) { unsigned int ps, sps; sps = eptcfg & 0x1f; eptcfg >>= 5; ps = eptcfg & 0x1f; eptcfg >>= 5; if (!ps || !sps) continue; for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { struct mmu_psize_def *def = &mmu_psize_defs[psize]; if (ps == (def->shift - 10)) def->flags |= MMU_PAGE_SIZE_INDIRECT; if (sps == (def->shift - 10)) def->ind = ps + 10; } } out: /* Cleanup array and print summary */ pr_info("MMU: Supported page sizes\n"); for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { struct mmu_psize_def *def = &mmu_psize_defs[psize]; const char *__page_type_names[] = { "unsupported", "direct", "indirect", "direct & indirect" }; if (def->flags == 0) { def->shift = 0; continue; } pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10), __page_type_names[def->flags & 0x3]); } } static void __init setup_mmu_htw(void) { /* * If we want to use HW tablewalk, enable it by patching the TLB miss * handlers to branch to the one dedicated to it. */ switch (book3e_htw_mode) { case PPC_HTW_IBM: patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e); patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e); break; #ifdef CONFIG_PPC_E500 case PPC_HTW_E6500: extlb_level_exc = EX_TLB_SIZE; patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e); patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e); break; #endif } pr_info("MMU: Book3E HW tablewalk %s\n", book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported"); } /* * Early initialization of the MMU TLB code */ static void early_init_this_mmu(void) { unsigned int mas4; /* Set MAS4 based on page table setting */ mas4 = 0x4 << MAS4_WIMGED_SHIFT; switch (book3e_htw_mode) { case PPC_HTW_E6500: mas4 |= MAS4_INDD; mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT; mas4 |= MAS4_TLBSELD(1); mmu_pte_psize = MMU_PAGE_2M; break; case PPC_HTW_IBM: mas4 |= MAS4_INDD; mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT; mmu_pte_psize = MMU_PAGE_1M; break; case PPC_HTW_NONE: mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT; mmu_pte_psize = mmu_virtual_psize; break; } mtspr(SPRN_MAS4, mas4); #ifdef CONFIG_PPC_E500 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { unsigned int num_cams; bool map = true; /* use a quarter of the TLBCAM for bolted linear map */ num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4; /* * Only do the mapping once per core, or else the * transient mapping would cause problems. */ #ifdef CONFIG_SMP if (hweight32(get_tensr()) > 1) map = false; #endif if (map) linear_map_top = map_mem_in_cams(linear_map_top, num_cams, false, true); } #endif /* A sync won't hurt us after mucking around with * the MMU configuration */ mb(); } static void __init early_init_mmu_global(void) { /* XXX This should be decided at runtime based on supported * page sizes in the TLB, but for now let's assume 16M is * always there and a good fit (which it probably is) * * Freescale booke only supports 4K pages in TLB0, so use that. */ if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) mmu_vmemmap_psize = MMU_PAGE_4K; else mmu_vmemmap_psize = MMU_PAGE_16M; /* XXX This code only checks for TLB 0 capabilities and doesn't * check what page size combos are supported by the HW. It * also doesn't handle the case where a separate array holds * the IND entries from the array loaded by the PT. */ /* Look for supported page sizes */ setup_page_sizes(); /* Look for HW tablewalk support */ setup_mmu_htw(); #ifdef CONFIG_PPC_E500 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { if (book3e_htw_mode == PPC_HTW_NONE) { extlb_level_exc = EX_TLB_SIZE; patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e); patch_exception(0x1e0, exc_instruction_tlb_miss_bolted_book3e); } } #endif /* Set the global containing the top of the linear mapping * for use by the TLB miss code */ linear_map_top = memblock_end_of_DRAM(); ioremap_bot = IOREMAP_BASE; } static void __init early_mmu_set_memory_limit(void) { #ifdef CONFIG_PPC_E500 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { /* * Limit memory so we dont have linear faults. * Unlike memblock_set_current_limit, which limits * memory available during early boot, this permanently * reduces the memory available to Linux. We need to * do this because highmem is not supported on 64-bit. */ memblock_enforce_memory_limit(linear_map_top); } #endif memblock_set_current_limit(linear_map_top); } /* boot cpu only */ void __init early_init_mmu(void) { early_init_mmu_global(); early_init_this_mmu(); early_mmu_set_memory_limit(); } void early_init_mmu_secondary(void) { early_init_this_mmu(); } void setup_initial_memory_limit(phys_addr_t first_memblock_base, phys_addr_t first_memblock_size) { /* On non-FSL Embedded 64-bit, we adjust the RMA size to match * the bolted TLB entry. We know for now that only 1G * entries are supported though that may eventually * change. * * on FSL Embedded 64-bit, usually all RAM is bolted, but with * unusual memory sizes it's possible for some RAM to not be mapped * (such RAM is not used at all by Linux, since we don't support * highmem on 64-bit). We limit ppc64_rma_size to what would be * mappable if this memblock is the only one. Additional memblocks * can only increase, not decrease, the amount that ends up getting * mapped. We still limit max to 1G even if we'll eventually map * more. This is due to what the early init code is set up to do. * * We crop it to the size of the first MEMBLOCK to * avoid going over total available memory just in case... */ #ifdef CONFIG_PPC_E500 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) { unsigned long linear_sz; unsigned int num_cams; /* use a quarter of the TLBCAM for bolted linear map */ num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4; linear_sz = map_mem_in_cams(first_memblock_size, num_cams, true, true); ppc64_rma_size = min_t(u64, linear_sz, 0x40000000); } else #endif ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000); /* Finally limit subsequent allocations */ memblock_set_current_limit(first_memblock_base + ppc64_rma_size); } #else /* ! CONFIG_PPC64 */ void __init early_init_mmu(void) { unsigned long root = of_get_flat_dt_root(); if (IS_ENABLED(CONFIG_PPC_47x) && IS_ENABLED(CONFIG_SMP) && of_get_flat_dt_prop(root, "cooperative-partition", NULL)) mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST); } #endif /* CONFIG_PPC64 */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1