Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Aneesh Kumar K.V | 1149 | 22.47% | 11 | 5.82% |
Anton Blanchard | 846 | 16.54% | 26 | 13.76% |
Nathan Fontenot | 471 | 9.21% | 9 | 4.76% |
Srikar Dronamraju | 380 | 7.43% | 14 | 7.41% |
Andrew Morton | 264 | 5.16% | 12 | 6.35% |
Paul Mackerras | 259 | 5.06% | 8 | 4.23% |
Balbir Singh | 207 | 4.05% | 1 | 0.53% |
Mike Kravetz | 159 | 3.11% | 5 | 2.65% |
Jesse Larrew | 155 | 3.03% | 5 | 2.65% |
Srivatsa S. Bhat | 140 | 2.74% | 2 | 1.06% |
Michael Bringmann | 135 | 2.64% | 6 | 3.17% |
Chandru | 87 | 1.70% | 1 | 0.53% |
Naveen N. Rao | 81 | 1.58% | 2 | 1.06% |
Michael Ellerman | 78 | 1.53% | 5 | 2.65% |
Bharata B Rao | 57 | 1.11% | 1 | 0.53% |
Jeremy Kerr | 55 | 1.08% | 2 | 1.06% |
Nicholas Piggin | 54 | 1.06% | 3 | 1.59% |
Benjamin Herrenschmidt | 52 | 1.02% | 6 | 3.17% |
Nathan T. Lynch | 50 | 0.98% | 4 | 2.12% |
Nishanth Aravamudan | 45 | 0.88% | 4 | 2.12% |
Alistair Popple | 33 | 0.65% | 1 | 0.53% |
Mike Rapoport | 27 | 0.53% | 4 | 2.12% |
Sebastian Andrzej Siewior | 23 | 0.45% | 1 | 0.53% |
Rob Herring | 23 | 0.45% | 1 | 0.53% |
Dave Hansen | 22 | 0.43% | 5 | 2.65% |
Laurent Dufour | 21 | 0.41% | 1 | 0.53% |
Dipankar Sarma | 21 | 0.41% | 1 | 0.53% |
Tejun Heo | 17 | 0.33% | 1 | 0.53% |
Hari Bathini | 16 | 0.31% | 1 | 0.53% |
Tang Chen | 15 | 0.29% | 1 | 0.53% |
Li Zhong | 15 | 0.29% | 1 | 0.53% |
Vaidyanathan Srinivasan | 13 | 0.25% | 1 | 0.53% |
Mel Gorman | 13 | 0.25% | 1 | 0.53% |
Matthew Dobson | 11 | 0.22% | 2 | 1.06% |
Oscar Salvador | 10 | 0.20% | 1 | 0.53% |
Daniel Henrique Barboza | 10 | 0.20% | 1 | 0.53% |
Stephen Rothwell | 9 | 0.18% | 4 | 2.12% |
Yinghai Lu | 8 | 0.16% | 1 | 0.53% |
Thomas Gleixner | 8 | 0.16% | 3 | 1.59% |
Nikunj A. Dadhania | 8 | 0.16% | 1 | 0.53% |
Milton D. Miller II | 6 | 0.12% | 1 | 0.53% |
Robert Jennings | 5 | 0.10% | 2 | 1.06% |
David Howells | 5 | 0.10% | 1 | 0.53% |
Christophe Leroy | 5 | 0.10% | 2 | 1.06% |
Mike Qiu | 5 | 0.10% | 1 | 0.53% |
Anshuman Khandual | 4 | 0.08% | 1 | 0.53% |
Raghavendra K T | 4 | 0.08% | 1 | 0.53% |
Guenter Roeck | 4 | 0.08% | 1 | 0.53% |
H Hartley Sweeten | 3 | 0.06% | 1 | 0.53% |
Nick Child | 3 | 0.06% | 1 | 0.53% |
Reza Arbab | 3 | 0.06% | 2 | 1.06% |
David Daney | 2 | 0.04% | 1 | 0.53% |
Linus Torvalds (pre-git) | 2 | 0.04% | 1 | 0.53% |
Cody P Schafer | 2 | 0.04% | 1 | 0.53% |
Lucas De Marchi | 2 | 0.04% | 1 | 0.53% |
Christophe Jaillet | 2 | 0.04% | 1 | 0.53% |
Bob Picco | 1 | 0.02% | 1 | 0.53% |
Wanlong Gao | 1 | 0.02% | 1 | 0.53% |
Chandra Seetharaman | 1 | 0.02% | 1 | 0.53% |
David Rientjes | 1 | 0.02% | 1 | 0.53% |
Dwaipayan Ray | 1 | 0.02% | 1 | 0.53% |
Paul Gortmaker | 1 | 0.02% | 1 | 0.53% |
Shailendra Singh | 1 | 0.02% | 1 | 0.53% |
Linus Torvalds | 1 | 0.02% | 1 | 0.53% |
Justin P. Mattock | 1 | 0.02% | 1 | 0.53% |
Alexey Dobriyan | 1 | 0.02% | 1 | 0.53% |
Total | 5114 | 189 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * pSeries NUMA support * * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM */ #define pr_fmt(fmt) "numa: " fmt #include <linux/threads.h> #include <linux/memblock.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/mmzone.h> #include <linux/export.h> #include <linux/nodemask.h> #include <linux/cpu.h> #include <linux/notifier.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/pfn.h> #include <linux/cpuset.h> #include <linux/node.h> #include <linux/stop_machine.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/uaccess.h> #include <linux/slab.h> #include <asm/cputhreads.h> #include <asm/sparsemem.h> #include <asm/smp.h> #include <asm/topology.h> #include <asm/firmware.h> #include <asm/paca.h> #include <asm/hvcall.h> #include <asm/setup.h> #include <asm/vdso.h> #include <asm/vphn.h> #include <asm/drmem.h> static int numa_enabled = 1; static char *cmdline __initdata; int numa_cpu_lookup_table[NR_CPUS]; cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; struct pglist_data *node_data[MAX_NUMNODES]; EXPORT_SYMBOL(numa_cpu_lookup_table); EXPORT_SYMBOL(node_to_cpumask_map); EXPORT_SYMBOL(node_data); static int primary_domain_index; static int n_mem_addr_cells, n_mem_size_cells; #define FORM0_AFFINITY 0 #define FORM1_AFFINITY 1 #define FORM2_AFFINITY 2 static int affinity_form; #define MAX_DISTANCE_REF_POINTS 4 static int distance_ref_points_depth; static const __be32 *distance_ref_points; static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 } }; static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE }; /* * Allocate node_to_cpumask_map based on number of available nodes * Requires node_possible_map to be valid. * * Note: cpumask_of_node() is not valid until after this is done. */ static void __init setup_node_to_cpumask_map(void) { unsigned int node; /* setup nr_node_ids if not done yet */ if (nr_node_ids == MAX_NUMNODES) setup_nr_node_ids(); /* allocate the map */ for_each_node(node) alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); /* cpumask_of_node() will now work */ pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); } static int __init fake_numa_create_new_node(unsigned long end_pfn, unsigned int *nid) { unsigned long long mem; char *p = cmdline; static unsigned int fake_nid; static unsigned long long curr_boundary; /* * Modify node id, iff we started creating NUMA nodes * We want to continue from where we left of the last time */ if (fake_nid) *nid = fake_nid; /* * In case there are no more arguments to parse, the * node_id should be the same as the last fake node id * (we've handled this above). */ if (!p) return 0; mem = memparse(p, &p); if (!mem) return 0; if (mem < curr_boundary) return 0; curr_boundary = mem; if ((end_pfn << PAGE_SHIFT) > mem) { /* * Skip commas and spaces */ while (*p == ',' || *p == ' ' || *p == '\t') p++; cmdline = p; fake_nid++; *nid = fake_nid; pr_debug("created new fake_node with id %d\n", fake_nid); return 1; } return 0; } static void __init reset_numa_cpu_lookup_table(void) { unsigned int cpu; for_each_possible_cpu(cpu) numa_cpu_lookup_table[cpu] = -1; } void map_cpu_to_node(int cpu, int node) { update_numa_cpu_lookup_table(cpu, node); if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) { pr_debug("adding cpu %d to node %d\n", cpu, node); cpumask_set_cpu(cpu, node_to_cpumask_map[node]); } } #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) void unmap_cpu_from_node(unsigned long cpu) { int node = numa_cpu_lookup_table[cpu]; if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); pr_debug("removing cpu %lu from node %d\n", cpu, node); } else { pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node); } } #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ static int __associativity_to_nid(const __be32 *associativity, int max_array_sz) { int nid; /* * primary_domain_index is 1 based array index. */ int index = primary_domain_index - 1; if (!numa_enabled || index >= max_array_sz) return NUMA_NO_NODE; nid = of_read_number(&associativity[index], 1); /* POWER4 LPAR uses 0xffff as invalid node */ if (nid == 0xffff || nid >= nr_node_ids) nid = NUMA_NO_NODE; return nid; } /* * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA * info is found. */ static int associativity_to_nid(const __be32 *associativity) { int array_sz = of_read_number(associativity, 1); /* Skip the first element in the associativity array */ return __associativity_to_nid((associativity + 1), array_sz); } static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) { int dist; int node1, node2; node1 = associativity_to_nid(cpu1_assoc); node2 = associativity_to_nid(cpu2_assoc); dist = numa_distance_table[node1][node2]; if (dist <= LOCAL_DISTANCE) return 0; else if (dist <= REMOTE_DISTANCE) return 1; else return 2; } static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) { int dist = 0; int i, index; for (i = 0; i < distance_ref_points_depth; i++) { index = be32_to_cpu(distance_ref_points[i]); if (cpu1_assoc[index] == cpu2_assoc[index]) break; dist++; } return dist; } int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) { /* We should not get called with FORM0 */ VM_WARN_ON(affinity_form == FORM0_AFFINITY); if (affinity_form == FORM1_AFFINITY) return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc); return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc); } /* must hold reference to node during call */ static const __be32 *of_get_associativity(struct device_node *dev) { return of_get_property(dev, "ibm,associativity", NULL); } int __node_distance(int a, int b) { int i; int distance = LOCAL_DISTANCE; if (affinity_form == FORM2_AFFINITY) return numa_distance_table[a][b]; else if (affinity_form == FORM0_AFFINITY) return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); for (i = 0; i < distance_ref_points_depth; i++) { if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) break; /* Double the distance for each NUMA level */ distance *= 2; } return distance; } EXPORT_SYMBOL(__node_distance); /* Returns the nid associated with the given device tree node, * or -1 if not found. */ static int of_node_to_nid_single(struct device_node *device) { int nid = NUMA_NO_NODE; const __be32 *tmp; tmp = of_get_associativity(device); if (tmp) nid = associativity_to_nid(tmp); return nid; } /* Walk the device tree upwards, looking for an associativity id */ int of_node_to_nid(struct device_node *device) { int nid = NUMA_NO_NODE; of_node_get(device); while (device) { nid = of_node_to_nid_single(device); if (nid != -1) break; device = of_get_next_parent(device); } of_node_put(device); return nid; } EXPORT_SYMBOL(of_node_to_nid); static void __initialize_form1_numa_distance(const __be32 *associativity, int max_array_sz) { int i, nid; if (affinity_form != FORM1_AFFINITY) return; nid = __associativity_to_nid(associativity, max_array_sz); if (nid != NUMA_NO_NODE) { for (i = 0; i < distance_ref_points_depth; i++) { const __be32 *entry; int index = be32_to_cpu(distance_ref_points[i]) - 1; /* * broken hierarchy, return with broken distance table */ if (WARN(index >= max_array_sz, "Broken ibm,associativity property")) return; entry = &associativity[index]; distance_lookup_table[nid][i] = of_read_number(entry, 1); } } } static void initialize_form1_numa_distance(const __be32 *associativity) { int array_sz; array_sz = of_read_number(associativity, 1); /* Skip the first element in the associativity array */ __initialize_form1_numa_distance(associativity + 1, array_sz); } /* * Used to update distance information w.r.t newly added node. */ void update_numa_distance(struct device_node *node) { int nid; if (affinity_form == FORM0_AFFINITY) return; else if (affinity_form == FORM1_AFFINITY) { const __be32 *associativity; associativity = of_get_associativity(node); if (!associativity) return; initialize_form1_numa_distance(associativity); return; } /* FORM2 affinity */ nid = of_node_to_nid_single(node); if (nid == NUMA_NO_NODE) return; /* * With FORM2 we expect NUMA distance of all possible NUMA * nodes to be provided during boot. */ WARN(numa_distance_table[nid][nid] == -1, "NUMA distance details for node %d not provided\n", nid); } EXPORT_SYMBOL_GPL(update_numa_distance); /* * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN} * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements} */ static void __init initialize_form2_numa_distance_lookup_table(void) { int i, j; struct device_node *root; const __u8 *form2_distances; const __be32 *numa_lookup_index; int form2_distances_length; int max_numa_index, distance_index; if (firmware_has_feature(FW_FEATURE_OPAL)) root = of_find_node_by_path("/ibm,opal"); else root = of_find_node_by_path("/rtas"); if (!root) root = of_find_node_by_path("/"); numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL); max_numa_index = of_read_number(&numa_lookup_index[0], 1); /* first element of the array is the size and is encode-int */ form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL); form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1); /* Skip the size which is encoded int */ form2_distances += sizeof(__be32); pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n", form2_distances_length, max_numa_index); for (i = 0; i < max_numa_index; i++) /* +1 skip the max_numa_index in the property */ numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1); if (form2_distances_length != max_numa_index * max_numa_index) { WARN(1, "Wrong NUMA distance information\n"); form2_distances = NULL; // don't use it } distance_index = 0; for (i = 0; i < max_numa_index; i++) { for (j = 0; j < max_numa_index; j++) { int nodeA = numa_id_index_table[i]; int nodeB = numa_id_index_table[j]; int dist; if (form2_distances) dist = form2_distances[distance_index++]; else if (nodeA == nodeB) dist = LOCAL_DISTANCE; else dist = REMOTE_DISTANCE; numa_distance_table[nodeA][nodeB] = dist; pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist); } } of_node_put(root); } static int __init find_primary_domain_index(void) { int index; struct device_node *root; /* * Check for which form of affinity. */ if (firmware_has_feature(FW_FEATURE_OPAL)) { affinity_form = FORM1_AFFINITY; } else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) { pr_debug("Using form 2 affinity\n"); affinity_form = FORM2_AFFINITY; } else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) { pr_debug("Using form 1 affinity\n"); affinity_form = FORM1_AFFINITY; } else affinity_form = FORM0_AFFINITY; if (firmware_has_feature(FW_FEATURE_OPAL)) root = of_find_node_by_path("/ibm,opal"); else root = of_find_node_by_path("/rtas"); if (!root) root = of_find_node_by_path("/"); /* * This property is a set of 32-bit integers, each representing * an index into the ibm,associativity nodes. * * With form 0 affinity the first integer is for an SMP configuration * (should be all 0's) and the second is for a normal NUMA * configuration. We have only one level of NUMA. * * With form 1 affinity the first integer is the most significant * NUMA boundary and the following are progressively less significant * boundaries. There can be more than one level of NUMA. */ distance_ref_points = of_get_property(root, "ibm,associativity-reference-points", &distance_ref_points_depth); if (!distance_ref_points) { pr_debug("ibm,associativity-reference-points not found.\n"); goto err; } distance_ref_points_depth /= sizeof(int); if (affinity_form == FORM0_AFFINITY) { if (distance_ref_points_depth < 2) { pr_warn("short ibm,associativity-reference-points\n"); goto err; } index = of_read_number(&distance_ref_points[1], 1); } else { /* * Both FORM1 and FORM2 affinity find the primary domain details * at the same offset. */ index = of_read_number(distance_ref_points, 1); } /* * Warn and cap if the hardware supports more than * MAX_DISTANCE_REF_POINTS domains. */ if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { pr_warn("distance array capped at %d entries\n", MAX_DISTANCE_REF_POINTS); distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; } of_node_put(root); return index; err: of_node_put(root); return -1; } static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) { struct device_node *memory = NULL; memory = of_find_node_by_type(memory, "memory"); if (!memory) panic("numa.c: No memory nodes found!"); *n_addr_cells = of_n_addr_cells(memory); *n_size_cells = of_n_size_cells(memory); of_node_put(memory); } static unsigned long read_n_cells(int n, const __be32 **buf) { unsigned long result = 0; while (n--) { result = (result << 32) | of_read_number(*buf, 1); (*buf)++; } return result; } struct assoc_arrays { u32 n_arrays; u32 array_sz; const __be32 *arrays; }; /* * Retrieve and validate the list of associativity arrays for drconf * memory from the ibm,associativity-lookup-arrays property of the * device tree.. * * The layout of the ibm,associativity-lookup-arrays property is a number N * indicating the number of associativity arrays, followed by a number M * indicating the size of each associativity array, followed by a list * of N associativity arrays. */ static int of_get_assoc_arrays(struct assoc_arrays *aa) { struct device_node *memory; const __be32 *prop; u32 len; memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); if (!memory) return -1; prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); if (!prop || len < 2 * sizeof(unsigned int)) { of_node_put(memory); return -1; } aa->n_arrays = of_read_number(prop++, 1); aa->array_sz = of_read_number(prop++, 1); of_node_put(memory); /* Now that we know the number of arrays and size of each array, * revalidate the size of the property read in. */ if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) return -1; aa->arrays = prop; return 0; } static int __init get_nid_and_numa_distance(struct drmem_lmb *lmb) { struct assoc_arrays aa = { .arrays = NULL }; int default_nid = NUMA_NO_NODE; int nid = default_nid; int rc, index; if ((primary_domain_index < 0) || !numa_enabled) return default_nid; rc = of_get_assoc_arrays(&aa); if (rc) return default_nid; if (primary_domain_index <= aa.array_sz && !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { const __be32 *associativity; index = lmb->aa_index * aa.array_sz; associativity = &aa.arrays[index]; nid = __associativity_to_nid(associativity, aa.array_sz); if (nid > 0 && affinity_form == FORM1_AFFINITY) { /* * lookup array associativity entries have * no length of the array as the first element. */ __initialize_form1_numa_distance(associativity, aa.array_sz); } } return nid; } /* * This is like of_node_to_nid_single() for memory represented in the * ibm,dynamic-reconfiguration-memory node. */ int of_drconf_to_nid_single(struct drmem_lmb *lmb) { struct assoc_arrays aa = { .arrays = NULL }; int default_nid = NUMA_NO_NODE; int nid = default_nid; int rc, index; if ((primary_domain_index < 0) || !numa_enabled) return default_nid; rc = of_get_assoc_arrays(&aa); if (rc) return default_nid; if (primary_domain_index <= aa.array_sz && !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { const __be32 *associativity; index = lmb->aa_index * aa.array_sz; associativity = &aa.arrays[index]; nid = __associativity_to_nid(associativity, aa.array_sz); } return nid; } #ifdef CONFIG_PPC_SPLPAR static int __vphn_get_associativity(long lcpu, __be32 *associativity) { long rc, hwid; /* * On a shared lpar, device tree will not have node associativity. * At this time lppaca, or its __old_status field may not be * updated. Hence kernel cannot detect if its on a shared lpar. So * request an explicit associativity irrespective of whether the * lpar is shared or dedicated. Use the device tree property as a * fallback. cpu_to_phys_id is only valid between * smp_setup_cpu_maps() and smp_setup_pacas(). */ if (firmware_has_feature(FW_FEATURE_VPHN)) { if (cpu_to_phys_id) hwid = cpu_to_phys_id[lcpu]; else hwid = get_hard_smp_processor_id(lcpu); rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity); if (rc == H_SUCCESS) return 0; } return -1; } static int vphn_get_nid(long lcpu) { __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; if (!__vphn_get_associativity(lcpu, associativity)) return associativity_to_nid(associativity); return NUMA_NO_NODE; } #else static int __vphn_get_associativity(long lcpu, __be32 *associativity) { return -1; } static int vphn_get_nid(long unused) { return NUMA_NO_NODE; } #endif /* CONFIG_PPC_SPLPAR */ /* * Figure out to which domain a cpu belongs and stick it there. * Return the id of the domain used. */ static int numa_setup_cpu(unsigned long lcpu) { struct device_node *cpu; int fcpu = cpu_first_thread_sibling(lcpu); int nid = NUMA_NO_NODE; if (!cpu_present(lcpu)) { set_cpu_numa_node(lcpu, first_online_node); return first_online_node; } /* * If a valid cpu-to-node mapping is already available, use it * directly instead of querying the firmware, since it represents * the most recent mapping notified to us by the platform (eg: VPHN). * Since cpu_to_node binding remains the same for all threads in the * core. If a valid cpu-to-node mapping is already available, for * the first thread in the core, use it. */ nid = numa_cpu_lookup_table[fcpu]; if (nid >= 0) { map_cpu_to_node(lcpu, nid); return nid; } nid = vphn_get_nid(lcpu); if (nid != NUMA_NO_NODE) goto out_present; cpu = of_get_cpu_node(lcpu, NULL); if (!cpu) { WARN_ON(1); if (cpu_present(lcpu)) goto out_present; else goto out; } nid = of_node_to_nid_single(cpu); of_node_put(cpu); out_present: if (nid < 0 || !node_possible(nid)) nid = first_online_node; /* * Update for the first thread of the core. All threads of a core * have to be part of the same node. This not only avoids querying * for every other thread in the core, but always avoids a case * where virtual node associativity change causes subsequent threads * of a core to be associated with different nid. However if first * thread is already online, expect it to have a valid mapping. */ if (fcpu != lcpu) { WARN_ON(cpu_online(fcpu)); map_cpu_to_node(fcpu, nid); } map_cpu_to_node(lcpu, nid); out: return nid; } static void verify_cpu_node_mapping(int cpu, int node) { int base, sibling, i; /* Verify that all the threads in the core belong to the same node */ base = cpu_first_thread_sibling(cpu); for (i = 0; i < threads_per_core; i++) { sibling = base + i; if (sibling == cpu || cpu_is_offline(sibling)) continue; if (cpu_to_node(sibling) != node) { WARN(1, "CPU thread siblings %d and %d don't belong" " to the same node!\n", cpu, sibling); break; } } } /* Must run before sched domains notifier. */ static int ppc_numa_cpu_prepare(unsigned int cpu) { int nid; nid = numa_setup_cpu(cpu); verify_cpu_node_mapping(cpu, nid); return 0; } static int ppc_numa_cpu_dead(unsigned int cpu) { return 0; } /* * Check and possibly modify a memory region to enforce the memory limit. * * Returns the size the region should have to enforce the memory limit. * This will either be the original value of size, a truncated value, * or zero. If the returned value of size is 0 the region should be * discarded as it lies wholly above the memory limit. */ static unsigned long __init numa_enforce_memory_limit(unsigned long start, unsigned long size) { /* * We use memblock_end_of_DRAM() in here instead of memory_limit because * we've already adjusted it for the limit and it takes care of * having memory holes below the limit. Also, in the case of * iommu_is_off, memory_limit is not set but is implicitly enforced. */ if (start + size <= memblock_end_of_DRAM()) return size; if (start >= memblock_end_of_DRAM()) return 0; return memblock_end_of_DRAM() - start; } /* * Reads the counter for a given entry in * linux,drconf-usable-memory property */ static inline int __init read_usm_ranges(const __be32 **usm) { /* * For each lmb in ibm,dynamic-memory a corresponding * entry in linux,drconf-usable-memory property contains * a counter followed by that many (base, size) duple. * read the counter from linux,drconf-usable-memory */ return read_n_cells(n_mem_size_cells, usm); } /* * Extract NUMA information from the ibm,dynamic-reconfiguration-memory * node. This assumes n_mem_{addr,size}_cells have been set. */ static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, const __be32 **usm, void *data) { unsigned int ranges, is_kexec_kdump = 0; unsigned long base, size, sz; int nid; /* * Skip this block if the reserved bit is set in flags (0x80) * or if the block is not assigned to this partition (0x8) */ if ((lmb->flags & DRCONF_MEM_RESERVED) || !(lmb->flags & DRCONF_MEM_ASSIGNED)) return 0; if (*usm) is_kexec_kdump = 1; base = lmb->base_addr; size = drmem_lmb_size(); ranges = 1; if (is_kexec_kdump) { ranges = read_usm_ranges(usm); if (!ranges) /* there are no (base, size) duple */ return 0; } do { if (is_kexec_kdump) { base = read_n_cells(n_mem_addr_cells, usm); size = read_n_cells(n_mem_size_cells, usm); } nid = get_nid_and_numa_distance(lmb); fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), &nid); node_set_online(nid); sz = numa_enforce_memory_limit(base, size); if (sz) memblock_set_node(base, sz, &memblock.memory, nid); } while (--ranges); return 0; } static int __init parse_numa_properties(void) { struct device_node *memory; int default_nid = 0; unsigned long i; const __be32 *associativity; if (numa_enabled == 0) { pr_warn("disabled by user\n"); return -1; } primary_domain_index = find_primary_domain_index(); if (primary_domain_index < 0) { /* * if we fail to parse primary_domain_index from device tree * mark the numa disabled, boot with numa disabled. */ numa_enabled = false; return primary_domain_index; } pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index); /* * If it is FORM2 initialize the distance table here. */ if (affinity_form == FORM2_AFFINITY) initialize_form2_numa_distance_lookup_table(); /* * Even though we connect cpus to numa domains later in SMP * init, we need to know the node ids now. This is because * each node to be onlined must have NODE_DATA etc backing it. */ for_each_present_cpu(i) { __be32 vphn_assoc[VPHN_ASSOC_BUFSIZE]; struct device_node *cpu; int nid = NUMA_NO_NODE; memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32)); if (__vphn_get_associativity(i, vphn_assoc) == 0) { nid = associativity_to_nid(vphn_assoc); initialize_form1_numa_distance(vphn_assoc); } else { /* * Don't fall back to default_nid yet -- we will plug * cpus into nodes once the memory scan has discovered * the topology. */ cpu = of_get_cpu_node(i, NULL); BUG_ON(!cpu); associativity = of_get_associativity(cpu); if (associativity) { nid = associativity_to_nid(associativity); initialize_form1_numa_distance(associativity); } of_node_put(cpu); } /* node_set_online() is an UB if 'nid' is negative */ if (likely(nid >= 0)) node_set_online(nid); } get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); for_each_node_by_type(memory, "memory") { unsigned long start; unsigned long size; int nid; int ranges; const __be32 *memcell_buf; unsigned int len; memcell_buf = of_get_property(memory, "linux,usable-memory", &len); if (!memcell_buf || len <= 0) memcell_buf = of_get_property(memory, "reg", &len); if (!memcell_buf || len <= 0) continue; /* ranges in cell */ ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); new_range: /* these are order-sensitive, and modify the buffer pointer */ start = read_n_cells(n_mem_addr_cells, &memcell_buf); size = read_n_cells(n_mem_size_cells, &memcell_buf); /* * Assumption: either all memory nodes or none will * have associativity properties. If none, then * everything goes to default_nid. */ associativity = of_get_associativity(memory); if (associativity) { nid = associativity_to_nid(associativity); initialize_form1_numa_distance(associativity); } else nid = default_nid; fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); node_set_online(nid); size = numa_enforce_memory_limit(start, size); if (size) memblock_set_node(start, size, &memblock.memory, nid); if (--ranges) goto new_range; } /* * Now do the same thing for each MEMBLOCK listed in the * ibm,dynamic-memory property in the * ibm,dynamic-reconfiguration-memory node. */ memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); if (memory) { walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb); of_node_put(memory); } return 0; } static void __init setup_nonnuma(void) { unsigned long top_of_ram = memblock_end_of_DRAM(); unsigned long total_ram = memblock_phys_mem_size(); unsigned long start_pfn, end_pfn; unsigned int nid = 0; int i; pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram); pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20); for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) { fake_numa_create_new_node(end_pfn, &nid); memblock_set_node(PFN_PHYS(start_pfn), PFN_PHYS(end_pfn - start_pfn), &memblock.memory, nid); node_set_online(nid); } } void __init dump_numa_cpu_topology(void) { unsigned int node; unsigned int cpu, count; if (!numa_enabled) return; for_each_online_node(node) { pr_info("Node %d CPUs:", node); count = 0; /* * If we used a CPU iterator here we would miss printing * the holes in the cpumap. */ for (cpu = 0; cpu < nr_cpu_ids; cpu++) { if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { if (count == 0) pr_cont(" %u", cpu); ++count; } else { if (count > 1) pr_cont("-%u", cpu - 1); count = 0; } } if (count > 1) pr_cont("-%u", nr_cpu_ids - 1); pr_cont("\n"); } } /* Initialize NODE_DATA for a node on the local memory */ static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) { u64 spanned_pages = end_pfn - start_pfn; const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); u64 nd_pa; void *nd; int tnid; nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); if (!nd_pa) panic("Cannot allocate %zu bytes for node %d data\n", nd_size, nid); nd = __va(nd_pa); /* report and initialize */ pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", nd_pa, nd_pa + nd_size - 1); tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); if (tnid != nid) pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); node_data[nid] = nd; memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); NODE_DATA(nid)->node_id = nid; NODE_DATA(nid)->node_start_pfn = start_pfn; NODE_DATA(nid)->node_spanned_pages = spanned_pages; } static void __init find_possible_nodes(void) { struct device_node *rtas, *root; const __be32 *domains = NULL; int prop_length, max_nodes; u32 i; if (!numa_enabled) return; rtas = of_find_node_by_path("/rtas"); if (!rtas) return; /* * ibm,current-associativity-domains is a fairly recent property. If * it doesn't exist, then fallback on ibm,max-associativity-domains. * Current denotes what the platform can support compared to max * which denotes what the Hypervisor can support. * * If the LPAR is migratable, new nodes might be activated after a LPM, * so we should consider the max number in that case. */ root = of_find_node_by_path("/"); if (!of_get_property(root, "ibm,migratable-partition", NULL)) domains = of_get_property(rtas, "ibm,current-associativity-domains", &prop_length); of_node_put(root); if (!domains) { domains = of_get_property(rtas, "ibm,max-associativity-domains", &prop_length); if (!domains) goto out; } max_nodes = of_read_number(&domains[primary_domain_index], 1); pr_info("Partition configured for %d NUMA nodes.\n", max_nodes); for (i = 0; i < max_nodes; i++) { if (!node_possible(i)) node_set(i, node_possible_map); } prop_length /= sizeof(int); if (prop_length > primary_domain_index + 2) coregroup_enabled = 1; out: of_node_put(rtas); } void __init mem_topology_setup(void) { int cpu; max_low_pfn = max_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; min_low_pfn = MEMORY_START >> PAGE_SHIFT; /* * Linux/mm assumes node 0 to be online at boot. However this is not * true on PowerPC, where node 0 is similar to any other node, it * could be cpuless, memoryless node. So force node 0 to be offline * for now. This will prevent cpuless, memoryless node 0 showing up * unnecessarily as online. If a node has cpus or memory that need * to be online, then node will anyway be marked online. */ node_set_offline(0); if (parse_numa_properties()) setup_nonnuma(); /* * Modify the set of possible NUMA nodes to reflect information * available about the set of online nodes, and the set of nodes * that we expect to make use of for this platform's affinity * calculations. */ nodes_and(node_possible_map, node_possible_map, node_online_map); find_possible_nodes(); setup_node_to_cpumask_map(); reset_numa_cpu_lookup_table(); for_each_possible_cpu(cpu) { /* * Powerpc with CONFIG_NUMA always used to have a node 0, * even if it was memoryless or cpuless. For all cpus that * are possible but not present, cpu_to_node() would point * to node 0. To remove a cpuless, memoryless dummy node, * powerpc need to make sure all possible but not present * cpu_to_node are set to a proper node. */ numa_setup_cpu(cpu); } } void __init initmem_init(void) { int nid; memblock_dump_all(); for_each_online_node(nid) { unsigned long start_pfn, end_pfn; get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); setup_node_data(nid, start_pfn, end_pfn); } sparse_init(); /* * We need the numa_cpu_lookup_table to be accurate for all CPUs, * even before we online them, so that we can use cpu_to_{node,mem} * early in boot, cf. smp_prepare_cpus(). * _nocalls() + manual invocation is used because cpuhp is not yet * initialized for the boot CPU. */ cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", ppc_numa_cpu_prepare, ppc_numa_cpu_dead); } static int __init early_numa(char *p) { if (!p) return 0; if (strstr(p, "off")) numa_enabled = 0; p = strstr(p, "fake="); if (p) cmdline = p + strlen("fake="); return 0; } early_param("numa", early_numa); #ifdef CONFIG_MEMORY_HOTPLUG /* * Find the node associated with a hot added memory section for * memory represented in the device tree by the property * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. */ static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) { struct drmem_lmb *lmb; unsigned long lmb_size; int nid = NUMA_NO_NODE; lmb_size = drmem_lmb_size(); for_each_drmem_lmb(lmb) { /* skip this block if it is reserved or not assigned to * this partition */ if ((lmb->flags & DRCONF_MEM_RESERVED) || !(lmb->flags & DRCONF_MEM_ASSIGNED)) continue; if ((scn_addr < lmb->base_addr) || (scn_addr >= (lmb->base_addr + lmb_size))) continue; nid = of_drconf_to_nid_single(lmb); break; } return nid; } /* * Find the node associated with a hot added memory section for memory * represented in the device tree as a node (i.e. memory@XXXX) for * each memblock. */ static int hot_add_node_scn_to_nid(unsigned long scn_addr) { struct device_node *memory; int nid = NUMA_NO_NODE; for_each_node_by_type(memory, "memory") { int i = 0; while (1) { struct resource res; if (of_address_to_resource(memory, i++, &res)) break; if ((scn_addr < res.start) || (scn_addr > res.end)) continue; nid = of_node_to_nid_single(memory); break; } if (nid >= 0) break; } of_node_put(memory); return nid; } /* * Find the node associated with a hot added memory section. Section * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that * sections are fully contained within a single MEMBLOCK. */ int hot_add_scn_to_nid(unsigned long scn_addr) { struct device_node *memory = NULL; int nid; if (!numa_enabled) return first_online_node; memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); if (memory) { nid = hot_add_drconf_scn_to_nid(scn_addr); of_node_put(memory); } else { nid = hot_add_node_scn_to_nid(scn_addr); } if (nid < 0 || !node_possible(nid)) nid = first_online_node; return nid; } static u64 hot_add_drconf_memory_max(void) { struct device_node *memory = NULL; struct device_node *dn = NULL; const __be64 *lrdr = NULL; dn = of_find_node_by_path("/rtas"); if (dn) { lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); of_node_put(dn); if (lrdr) return be64_to_cpup(lrdr); } memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); if (memory) { of_node_put(memory); return drmem_lmb_memory_max(); } return 0; } /* * memory_hotplug_max - return max address of memory that may be added * * This is currently only used on systems that support drconfig memory * hotplug. */ u64 memory_hotplug_max(void) { return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); } #endif /* CONFIG_MEMORY_HOTPLUG */ /* Virtual Processor Home Node (VPHN) support */ #ifdef CONFIG_PPC_SPLPAR static int topology_inited; /* * Retrieve the new associativity information for a virtual processor's * home node. */ static long vphn_get_associativity(unsigned long cpu, __be32 *associativity) { long rc; rc = hcall_vphn(get_hard_smp_processor_id(cpu), VPHN_FLAG_VCPU, associativity); switch (rc) { case H_SUCCESS: pr_debug("VPHN hcall succeeded. Reset polling...\n"); goto out; case H_FUNCTION: pr_err_ratelimited("VPHN unsupported. Disabling polling...\n"); break; case H_HARDWARE: pr_err_ratelimited("hcall_vphn() experienced a hardware fault " "preventing VPHN. Disabling polling...\n"); break; case H_PARAMETER: pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. " "Disabling polling...\n"); break; default: pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n" , rc); break; } out: return rc; } void find_and_update_cpu_nid(int cpu) { __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; int new_nid; /* Use associativity from first thread for all siblings */ if (vphn_get_associativity(cpu, associativity)) return; /* Do not have previous associativity, so find it now. */ new_nid = associativity_to_nid(associativity); if (new_nid < 0 || !node_possible(new_nid)) new_nid = first_online_node; else // Associate node <-> cpu, so cpu_up() calls // try_online_node() on the right node. set_cpu_numa_node(cpu, new_nid); pr_debug("%s:%d cpu %d nid %d\n", __func__, __LINE__, cpu, new_nid); } int cpu_to_coregroup_id(int cpu) { __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; int index; if (cpu < 0 || cpu > nr_cpu_ids) return -1; if (!coregroup_enabled) goto out; if (!firmware_has_feature(FW_FEATURE_VPHN)) goto out; if (vphn_get_associativity(cpu, associativity)) goto out; index = of_read_number(associativity, 1); if (index > primary_domain_index + 1) return of_read_number(&associativity[index - 1], 1); out: return cpu_to_core_id(cpu); } static int topology_update_init(void) { topology_inited = 1; return 0; } device_initcall(topology_update_init); #endif /* CONFIG_PPC_SPLPAR */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1