Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Naveen N. Rao | 4042 | 61.79% | 21 | 35.00% |
Jiong Wang | 715 | 10.93% | 3 | 5.00% |
Hari Bathini | 569 | 8.70% | 7 | 11.67% |
Balamuruhan S | 512 | 7.83% | 2 | 3.33% |
Daniel Borkmann | 226 | 3.46% | 6 | 10.00% |
Ravi Bangoria | 150 | 2.29% | 2 | 3.33% |
Jordan Niethe | 107 | 1.64% | 1 | 1.67% |
Sandipan Das | 73 | 1.12% | 3 | 5.00% |
Nicholas Piggin | 62 | 0.95% | 1 | 1.67% |
Christophe Leroy | 36 | 0.55% | 8 | 13.33% |
Puranjay Mohan | 34 | 0.52% | 1 | 1.67% |
Brendan Jackman | 7 | 0.11% | 1 | 1.67% |
Michael Ellerman | 3 | 0.05% | 1 | 1.67% |
Tiezhu Yang | 2 | 0.03% | 1 | 1.67% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.67% |
Alexei Starovoitov | 1 | 0.02% | 1 | 1.67% |
Total | 6541 | 60 |
// SPDX-License-Identifier: GPL-2.0-only /* * bpf_jit_comp64.c: eBPF JIT compiler * * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> * IBM Corporation * * Based on the powerpc classic BPF JIT compiler by Matt Evans */ #include <linux/moduleloader.h> #include <asm/cacheflush.h> #include <asm/asm-compat.h> #include <linux/netdevice.h> #include <linux/filter.h> #include <linux/if_vlan.h> #include <asm/kprobes.h> #include <linux/bpf.h> #include <asm/security_features.h> #include "bpf_jit.h" /* * Stack layout: * Ensure the top half (upto local_tmp_var) stays consistent * with our redzone usage. * * [ prev sp ] <------------- * [ nv gpr save area ] 5*8 | * [ tail_call_cnt ] 8 | * [ local_tmp_var ] 16 | * fp (r31) --> [ ebpf stack space ] upto 512 | * [ frame header ] 32/112 | * sp (r1) ---> [ stack pointer ] -------------- */ /* for gpr non volatile registers BPG_REG_6 to 10 */ #define BPF_PPC_STACK_SAVE (5*8) /* for bpf JIT code internal usage */ #define BPF_PPC_STACK_LOCALS 24 /* stack frame excluding BPF stack, ensure this is quadword aligned */ #define BPF_PPC_STACKFRAME (STACK_FRAME_MIN_SIZE + \ BPF_PPC_STACK_LOCALS + BPF_PPC_STACK_SAVE) /* BPF register usage */ #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* BPF to ppc register mappings */ void bpf_jit_init_reg_mapping(struct codegen_context *ctx) { /* function return value */ ctx->b2p[BPF_REG_0] = _R8; /* function arguments */ ctx->b2p[BPF_REG_1] = _R3; ctx->b2p[BPF_REG_2] = _R4; ctx->b2p[BPF_REG_3] = _R5; ctx->b2p[BPF_REG_4] = _R6; ctx->b2p[BPF_REG_5] = _R7; /* non volatile registers */ ctx->b2p[BPF_REG_6] = _R27; ctx->b2p[BPF_REG_7] = _R28; ctx->b2p[BPF_REG_8] = _R29; ctx->b2p[BPF_REG_9] = _R30; /* frame pointer aka BPF_REG_10 */ ctx->b2p[BPF_REG_FP] = _R31; /* eBPF jit internal registers */ ctx->b2p[BPF_REG_AX] = _R12; ctx->b2p[TMP_REG_1] = _R9; ctx->b2p[TMP_REG_2] = _R10; } /* PPC NVR range -- update this if we ever use NVRs below r27 */ #define BPF_PPC_NVR_MIN _R27 static inline bool bpf_has_stack_frame(struct codegen_context *ctx) { /* * We only need a stack frame if: * - we call other functions (kernel helpers), or * - the bpf program uses its stack area * The latter condition is deduced from the usage of BPF_REG_FP */ return ctx->seen & SEEN_FUNC || bpf_is_seen_register(ctx, bpf_to_ppc(BPF_REG_FP)); } /* * When not setting up our own stackframe, the redzone usage is: * * [ prev sp ] <------------- * [ ... ] | * sp (r1) ---> [ stack pointer ] -------------- * [ nv gpr save area ] 5*8 * [ tail_call_cnt ] 8 * [ local_tmp_var ] 16 * [ unused red zone ] 208 bytes protected */ static int bpf_jit_stack_local(struct codegen_context *ctx) { if (bpf_has_stack_frame(ctx)) return STACK_FRAME_MIN_SIZE + ctx->stack_size; else return -(BPF_PPC_STACK_SAVE + 24); } static int bpf_jit_stack_tailcallcnt(struct codegen_context *ctx) { return bpf_jit_stack_local(ctx) + 16; } static int bpf_jit_stack_offsetof(struct codegen_context *ctx, int reg) { if (reg >= BPF_PPC_NVR_MIN && reg < 32) return (bpf_has_stack_frame(ctx) ? (BPF_PPC_STACKFRAME + ctx->stack_size) : 0) - (8 * (32 - reg)); pr_err("BPF JIT is asking about unknown registers"); BUG(); } void bpf_jit_realloc_regs(struct codegen_context *ctx) { } void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx) { int i; #ifndef CONFIG_PPC_KERNEL_PCREL if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2)) EMIT(PPC_RAW_LD(_R2, _R13, offsetof(struct paca_struct, kernel_toc))); #endif /* * Initialize tail_call_cnt if we do tail calls. * Otherwise, put in NOPs so that it can be skipped when we are * invoked through a tail call. */ if (ctx->seen & SEEN_TAILCALL) { EMIT(PPC_RAW_LI(bpf_to_ppc(TMP_REG_1), 0)); /* this goes in the redzone */ EMIT(PPC_RAW_STD(bpf_to_ppc(TMP_REG_1), _R1, -(BPF_PPC_STACK_SAVE + 8))); } else { EMIT(PPC_RAW_NOP()); EMIT(PPC_RAW_NOP()); } if (bpf_has_stack_frame(ctx)) { /* * We need a stack frame, but we don't necessarily need to * save/restore LR unless we call other functions */ if (ctx->seen & SEEN_FUNC) { EMIT(PPC_RAW_MFLR(_R0)); EMIT(PPC_RAW_STD(_R0, _R1, PPC_LR_STKOFF)); } EMIT(PPC_RAW_STDU(_R1, _R1, -(BPF_PPC_STACKFRAME + ctx->stack_size))); } /* * Back up non-volatile regs -- BPF registers 6-10 * If we haven't created our own stack frame, we save these * in the protected zone below the previous stack frame */ for (i = BPF_REG_6; i <= BPF_REG_10; i++) if (bpf_is_seen_register(ctx, bpf_to_ppc(i))) EMIT(PPC_RAW_STD(bpf_to_ppc(i), _R1, bpf_jit_stack_offsetof(ctx, bpf_to_ppc(i)))); /* Setup frame pointer to point to the bpf stack area */ if (bpf_is_seen_register(ctx, bpf_to_ppc(BPF_REG_FP))) EMIT(PPC_RAW_ADDI(bpf_to_ppc(BPF_REG_FP), _R1, STACK_FRAME_MIN_SIZE + ctx->stack_size)); } static void bpf_jit_emit_common_epilogue(u32 *image, struct codegen_context *ctx) { int i; /* Restore NVRs */ for (i = BPF_REG_6; i <= BPF_REG_10; i++) if (bpf_is_seen_register(ctx, bpf_to_ppc(i))) EMIT(PPC_RAW_LD(bpf_to_ppc(i), _R1, bpf_jit_stack_offsetof(ctx, bpf_to_ppc(i)))); /* Tear down our stack frame */ if (bpf_has_stack_frame(ctx)) { EMIT(PPC_RAW_ADDI(_R1, _R1, BPF_PPC_STACKFRAME + ctx->stack_size)); if (ctx->seen & SEEN_FUNC) { EMIT(PPC_RAW_LD(_R0, _R1, PPC_LR_STKOFF)); EMIT(PPC_RAW_MTLR(_R0)); } } } void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx) { bpf_jit_emit_common_epilogue(image, ctx); /* Move result to r3 */ EMIT(PPC_RAW_MR(_R3, bpf_to_ppc(BPF_REG_0))); EMIT(PPC_RAW_BLR()); } static int bpf_jit_emit_func_call_hlp(u32 *image, u32 *fimage, struct codegen_context *ctx, u64 func) { unsigned long func_addr = func ? ppc_function_entry((void *)func) : 0; long reladdr; if (WARN_ON_ONCE(!kernel_text_address(func_addr))) return -EINVAL; #ifdef CONFIG_PPC_KERNEL_PCREL reladdr = func_addr - local_paca->kernelbase; if (reladdr < (long)SZ_8G && reladdr >= -(long)SZ_8G) { EMIT(PPC_RAW_LD(_R12, _R13, offsetof(struct paca_struct, kernelbase))); /* Align for subsequent prefix instruction */ if (!IS_ALIGNED((unsigned long)fimage + CTX_NIA(ctx), 8)) EMIT(PPC_RAW_NOP()); /* paddi r12,r12,addr */ EMIT(PPC_PREFIX_MLS | __PPC_PRFX_R(0) | IMM_H18(reladdr)); EMIT(PPC_INST_PADDI | ___PPC_RT(_R12) | ___PPC_RA(_R12) | IMM_L(reladdr)); } else { unsigned long pc = (unsigned long)fimage + CTX_NIA(ctx); bool alignment_needed = !IS_ALIGNED(pc, 8); reladdr = func_addr - (alignment_needed ? pc + 4 : pc); if (reladdr < (long)SZ_8G && reladdr >= -(long)SZ_8G) { if (alignment_needed) EMIT(PPC_RAW_NOP()); /* pla r12,addr */ EMIT(PPC_PREFIX_MLS | __PPC_PRFX_R(1) | IMM_H18(reladdr)); EMIT(PPC_INST_PADDI | ___PPC_RT(_R12) | IMM_L(reladdr)); } else { /* We can clobber r12 */ PPC_LI64(_R12, func); } } EMIT(PPC_RAW_MTCTR(_R12)); EMIT(PPC_RAW_BCTRL()); #else if (core_kernel_text(func_addr)) { reladdr = func_addr - kernel_toc_addr(); if (reladdr > 0x7FFFFFFF || reladdr < -(0x80000000L)) { pr_err("eBPF: address of %ps out of range of kernel_toc.\n", (void *)func); return -ERANGE; } EMIT(PPC_RAW_ADDIS(_R12, _R2, PPC_HA(reladdr))); EMIT(PPC_RAW_ADDI(_R12, _R12, PPC_LO(reladdr))); EMIT(PPC_RAW_MTCTR(_R12)); EMIT(PPC_RAW_BCTRL()); } else { if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V1)) { /* func points to the function descriptor */ PPC_LI64(bpf_to_ppc(TMP_REG_2), func); /* Load actual entry point from function descriptor */ EMIT(PPC_RAW_LD(bpf_to_ppc(TMP_REG_1), bpf_to_ppc(TMP_REG_2), 0)); /* ... and move it to CTR */ EMIT(PPC_RAW_MTCTR(bpf_to_ppc(TMP_REG_1))); /* * Load TOC from function descriptor at offset 8. * We can clobber r2 since we get called through a * function pointer (so caller will save/restore r2). */ EMIT(PPC_RAW_LD(_R2, bpf_to_ppc(TMP_REG_2), 8)); } else { PPC_LI64(_R12, func); EMIT(PPC_RAW_MTCTR(_R12)); } EMIT(PPC_RAW_BCTRL()); /* * Load r2 with kernel TOC as kernel TOC is used if function address falls * within core kernel text. */ EMIT(PPC_RAW_LD(_R2, _R13, offsetof(struct paca_struct, kernel_toc))); } #endif return 0; } int bpf_jit_emit_func_call_rel(u32 *image, u32 *fimage, struct codegen_context *ctx, u64 func) { unsigned int i, ctx_idx = ctx->idx; if (WARN_ON_ONCE(func && is_module_text_address(func))) return -EINVAL; /* skip past descriptor if elf v1 */ func += FUNCTION_DESCR_SIZE; /* Load function address into r12 */ PPC_LI64(_R12, func); /* For bpf-to-bpf function calls, the callee's address is unknown * until the last extra pass. As seen above, we use PPC_LI64() to * load the callee's address, but this may optimize the number of * instructions required based on the nature of the address. * * Since we don't want the number of instructions emitted to increase, * we pad the optimized PPC_LI64() call with NOPs to guarantee that * we always have a five-instruction sequence, which is the maximum * that PPC_LI64() can emit. */ if (!image) for (i = ctx->idx - ctx_idx; i < 5; i++) EMIT(PPC_RAW_NOP()); EMIT(PPC_RAW_MTCTR(_R12)); EMIT(PPC_RAW_BCTRL()); return 0; } static int bpf_jit_emit_tail_call(u32 *image, struct codegen_context *ctx, u32 out) { /* * By now, the eBPF program has already setup parameters in r3, r4 and r5 * r3/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program * r4/BPF_REG_2 - pointer to bpf_array * r5/BPF_REG_3 - index in bpf_array */ int b2p_bpf_array = bpf_to_ppc(BPF_REG_2); int b2p_index = bpf_to_ppc(BPF_REG_3); int bpf_tailcall_prologue_size = 8; if (!IS_ENABLED(CONFIG_PPC_KERNEL_PCREL) && IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2)) bpf_tailcall_prologue_size += 4; /* skip past the toc load */ /* * if (index >= array->map.max_entries) * goto out; */ EMIT(PPC_RAW_LWZ(bpf_to_ppc(TMP_REG_1), b2p_bpf_array, offsetof(struct bpf_array, map.max_entries))); EMIT(PPC_RAW_RLWINM(b2p_index, b2p_index, 0, 0, 31)); EMIT(PPC_RAW_CMPLW(b2p_index, bpf_to_ppc(TMP_REG_1))); PPC_BCC_SHORT(COND_GE, out); /* * if (tail_call_cnt >= MAX_TAIL_CALL_CNT) * goto out; */ EMIT(PPC_RAW_LD(bpf_to_ppc(TMP_REG_1), _R1, bpf_jit_stack_tailcallcnt(ctx))); EMIT(PPC_RAW_CMPLWI(bpf_to_ppc(TMP_REG_1), MAX_TAIL_CALL_CNT)); PPC_BCC_SHORT(COND_GE, out); /* * tail_call_cnt++; */ EMIT(PPC_RAW_ADDI(bpf_to_ppc(TMP_REG_1), bpf_to_ppc(TMP_REG_1), 1)); EMIT(PPC_RAW_STD(bpf_to_ppc(TMP_REG_1), _R1, bpf_jit_stack_tailcallcnt(ctx))); /* prog = array->ptrs[index]; */ EMIT(PPC_RAW_MULI(bpf_to_ppc(TMP_REG_1), b2p_index, 8)); EMIT(PPC_RAW_ADD(bpf_to_ppc(TMP_REG_1), bpf_to_ppc(TMP_REG_1), b2p_bpf_array)); EMIT(PPC_RAW_LD(bpf_to_ppc(TMP_REG_1), bpf_to_ppc(TMP_REG_1), offsetof(struct bpf_array, ptrs))); /* * if (prog == NULL) * goto out; */ EMIT(PPC_RAW_CMPLDI(bpf_to_ppc(TMP_REG_1), 0)); PPC_BCC_SHORT(COND_EQ, out); /* goto *(prog->bpf_func + prologue_size); */ EMIT(PPC_RAW_LD(bpf_to_ppc(TMP_REG_1), bpf_to_ppc(TMP_REG_1), offsetof(struct bpf_prog, bpf_func))); EMIT(PPC_RAW_ADDI(bpf_to_ppc(TMP_REG_1), bpf_to_ppc(TMP_REG_1), FUNCTION_DESCR_SIZE + bpf_tailcall_prologue_size)); EMIT(PPC_RAW_MTCTR(bpf_to_ppc(TMP_REG_1))); /* tear down stack, restore NVRs, ... */ bpf_jit_emit_common_epilogue(image, ctx); EMIT(PPC_RAW_BCTR()); /* out: */ return 0; } /* * We spill into the redzone always, even if the bpf program has its own stackframe. * Offsets hardcoded based on BPF_PPC_STACK_SAVE -- see bpf_jit_stack_local() */ void bpf_stf_barrier(void); asm ( " .global bpf_stf_barrier ;" " bpf_stf_barrier: ;" " std 21,-64(1) ;" " std 22,-56(1) ;" " sync ;" " ld 21,-64(1) ;" " ld 22,-56(1) ;" " ori 31,31,0 ;" " .rept 14 ;" " b 1f ;" " 1: ;" " .endr ;" " blr ;" ); /* Assemble the body code between the prologue & epilogue */ int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, u32 *fimage, struct codegen_context *ctx, u32 *addrs, int pass, bool extra_pass) { enum stf_barrier_type stf_barrier = stf_barrier_type_get(); const struct bpf_insn *insn = fp->insnsi; int flen = fp->len; int i, ret; /* Start of epilogue code - will only be valid 2nd pass onwards */ u32 exit_addr = addrs[flen]; for (i = 0; i < flen; i++) { u32 code = insn[i].code; u32 dst_reg = bpf_to_ppc(insn[i].dst_reg); u32 src_reg = bpf_to_ppc(insn[i].src_reg); u32 size = BPF_SIZE(code); u32 tmp1_reg = bpf_to_ppc(TMP_REG_1); u32 tmp2_reg = bpf_to_ppc(TMP_REG_2); u32 save_reg, ret_reg; s16 off = insn[i].off; s32 imm = insn[i].imm; bool func_addr_fixed; u64 func_addr; u64 imm64; u32 true_cond; u32 tmp_idx; int j; /* * addrs[] maps a BPF bytecode address into a real offset from * the start of the body code. */ addrs[i] = ctx->idx * 4; /* * As an optimization, we note down which non-volatile registers * are used so that we can only save/restore those in our * prologue and epilogue. We do this here regardless of whether * the actual BPF instruction uses src/dst registers or not * (for instance, BPF_CALL does not use them). The expectation * is that those instructions will have src_reg/dst_reg set to * 0. Even otherwise, we just lose some prologue/epilogue * optimization but everything else should work without * any issues. */ if (dst_reg >= BPF_PPC_NVR_MIN && dst_reg < 32) bpf_set_seen_register(ctx, dst_reg); if (src_reg >= BPF_PPC_NVR_MIN && src_reg < 32) bpf_set_seen_register(ctx, src_reg); switch (code) { /* * Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG */ case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */ case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */ EMIT(PPC_RAW_ADD(dst_reg, dst_reg, src_reg)); goto bpf_alu32_trunc; case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */ case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */ EMIT(PPC_RAW_SUB(dst_reg, dst_reg, src_reg)); goto bpf_alu32_trunc; case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */ case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */ if (!imm) { goto bpf_alu32_trunc; } else if (imm >= -32768 && imm < 32768) { EMIT(PPC_RAW_ADDI(dst_reg, dst_reg, IMM_L(imm))); } else { PPC_LI32(tmp1_reg, imm); EMIT(PPC_RAW_ADD(dst_reg, dst_reg, tmp1_reg)); } goto bpf_alu32_trunc; case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */ case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */ if (!imm) { goto bpf_alu32_trunc; } else if (imm > -32768 && imm <= 32768) { EMIT(PPC_RAW_ADDI(dst_reg, dst_reg, IMM_L(-imm))); } else { PPC_LI32(tmp1_reg, imm); EMIT(PPC_RAW_SUB(dst_reg, dst_reg, tmp1_reg)); } goto bpf_alu32_trunc; case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */ case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */ if (BPF_CLASS(code) == BPF_ALU) EMIT(PPC_RAW_MULW(dst_reg, dst_reg, src_reg)); else EMIT(PPC_RAW_MULD(dst_reg, dst_reg, src_reg)); goto bpf_alu32_trunc; case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */ case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */ if (imm >= -32768 && imm < 32768) EMIT(PPC_RAW_MULI(dst_reg, dst_reg, IMM_L(imm))); else { PPC_LI32(tmp1_reg, imm); if (BPF_CLASS(code) == BPF_ALU) EMIT(PPC_RAW_MULW(dst_reg, dst_reg, tmp1_reg)); else EMIT(PPC_RAW_MULD(dst_reg, dst_reg, tmp1_reg)); } goto bpf_alu32_trunc; case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */ case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */ if (BPF_OP(code) == BPF_MOD) { EMIT(PPC_RAW_DIVWU(tmp1_reg, dst_reg, src_reg)); EMIT(PPC_RAW_MULW(tmp1_reg, src_reg, tmp1_reg)); EMIT(PPC_RAW_SUB(dst_reg, dst_reg, tmp1_reg)); } else EMIT(PPC_RAW_DIVWU(dst_reg, dst_reg, src_reg)); goto bpf_alu32_trunc; case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */ case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */ if (BPF_OP(code) == BPF_MOD) { EMIT(PPC_RAW_DIVDU(tmp1_reg, dst_reg, src_reg)); EMIT(PPC_RAW_MULD(tmp1_reg, src_reg, tmp1_reg)); EMIT(PPC_RAW_SUB(dst_reg, dst_reg, tmp1_reg)); } else EMIT(PPC_RAW_DIVDU(dst_reg, dst_reg, src_reg)); break; case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */ case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */ case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */ case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */ if (imm == 0) return -EINVAL; if (imm == 1) { if (BPF_OP(code) == BPF_DIV) { goto bpf_alu32_trunc; } else { EMIT(PPC_RAW_LI(dst_reg, 0)); break; } } PPC_LI32(tmp1_reg, imm); switch (BPF_CLASS(code)) { case BPF_ALU: if (BPF_OP(code) == BPF_MOD) { EMIT(PPC_RAW_DIVWU(tmp2_reg, dst_reg, tmp1_reg)); EMIT(PPC_RAW_MULW(tmp1_reg, tmp1_reg, tmp2_reg)); EMIT(PPC_RAW_SUB(dst_reg, dst_reg, tmp1_reg)); } else EMIT(PPC_RAW_DIVWU(dst_reg, dst_reg, tmp1_reg)); break; case BPF_ALU64: if (BPF_OP(code) == BPF_MOD) { EMIT(PPC_RAW_DIVDU(tmp2_reg, dst_reg, tmp1_reg)); EMIT(PPC_RAW_MULD(tmp1_reg, tmp1_reg, tmp2_reg)); EMIT(PPC_RAW_SUB(dst_reg, dst_reg, tmp1_reg)); } else EMIT(PPC_RAW_DIVDU(dst_reg, dst_reg, tmp1_reg)); break; } goto bpf_alu32_trunc; case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */ case BPF_ALU64 | BPF_NEG: /* dst = -dst */ EMIT(PPC_RAW_NEG(dst_reg, dst_reg)); goto bpf_alu32_trunc; /* * Logical operations: AND/OR/XOR/[A]LSH/[A]RSH */ case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */ case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */ EMIT(PPC_RAW_AND(dst_reg, dst_reg, src_reg)); goto bpf_alu32_trunc; case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */ case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */ if (!IMM_H(imm)) EMIT(PPC_RAW_ANDI(dst_reg, dst_reg, IMM_L(imm))); else { /* Sign-extended */ PPC_LI32(tmp1_reg, imm); EMIT(PPC_RAW_AND(dst_reg, dst_reg, tmp1_reg)); } goto bpf_alu32_trunc; case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */ case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */ EMIT(PPC_RAW_OR(dst_reg, dst_reg, src_reg)); goto bpf_alu32_trunc; case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */ case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */ if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) { /* Sign-extended */ PPC_LI32(tmp1_reg, imm); EMIT(PPC_RAW_OR(dst_reg, dst_reg, tmp1_reg)); } else { if (IMM_L(imm)) EMIT(PPC_RAW_ORI(dst_reg, dst_reg, IMM_L(imm))); if (IMM_H(imm)) EMIT(PPC_RAW_ORIS(dst_reg, dst_reg, IMM_H(imm))); } goto bpf_alu32_trunc; case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */ case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */ EMIT(PPC_RAW_XOR(dst_reg, dst_reg, src_reg)); goto bpf_alu32_trunc; case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */ case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */ if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) { /* Sign-extended */ PPC_LI32(tmp1_reg, imm); EMIT(PPC_RAW_XOR(dst_reg, dst_reg, tmp1_reg)); } else { if (IMM_L(imm)) EMIT(PPC_RAW_XORI(dst_reg, dst_reg, IMM_L(imm))); if (IMM_H(imm)) EMIT(PPC_RAW_XORIS(dst_reg, dst_reg, IMM_H(imm))); } goto bpf_alu32_trunc; case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */ /* slw clears top 32 bits */ EMIT(PPC_RAW_SLW(dst_reg, dst_reg, src_reg)); /* skip zero extension move, but set address map. */ if (insn_is_zext(&insn[i + 1])) addrs[++i] = ctx->idx * 4; break; case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */ EMIT(PPC_RAW_SLD(dst_reg, dst_reg, src_reg)); break; case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<== (u32) imm */ /* with imm 0, we still need to clear top 32 bits */ EMIT(PPC_RAW_SLWI(dst_reg, dst_reg, imm)); if (insn_is_zext(&insn[i + 1])) addrs[++i] = ctx->idx * 4; break; case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<== imm */ if (imm != 0) EMIT(PPC_RAW_SLDI(dst_reg, dst_reg, imm)); break; case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */ EMIT(PPC_RAW_SRW(dst_reg, dst_reg, src_reg)); if (insn_is_zext(&insn[i + 1])) addrs[++i] = ctx->idx * 4; break; case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */ EMIT(PPC_RAW_SRD(dst_reg, dst_reg, src_reg)); break; case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */ EMIT(PPC_RAW_SRWI(dst_reg, dst_reg, imm)); if (insn_is_zext(&insn[i + 1])) addrs[++i] = ctx->idx * 4; break; case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */ if (imm != 0) EMIT(PPC_RAW_SRDI(dst_reg, dst_reg, imm)); break; case BPF_ALU | BPF_ARSH | BPF_X: /* (s32) dst >>= src */ EMIT(PPC_RAW_SRAW(dst_reg, dst_reg, src_reg)); goto bpf_alu32_trunc; case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */ EMIT(PPC_RAW_SRAD(dst_reg, dst_reg, src_reg)); break; case BPF_ALU | BPF_ARSH | BPF_K: /* (s32) dst >>= imm */ EMIT(PPC_RAW_SRAWI(dst_reg, dst_reg, imm)); goto bpf_alu32_trunc; case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */ if (imm != 0) EMIT(PPC_RAW_SRADI(dst_reg, dst_reg, imm)); break; /* * MOV */ case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */ case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */ if (imm == 1) { /* special mov32 for zext */ EMIT(PPC_RAW_RLWINM(dst_reg, dst_reg, 0, 0, 31)); break; } EMIT(PPC_RAW_MR(dst_reg, src_reg)); goto bpf_alu32_trunc; case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */ case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */ PPC_LI32(dst_reg, imm); if (imm < 0) goto bpf_alu32_trunc; else if (insn_is_zext(&insn[i + 1])) addrs[++i] = ctx->idx * 4; break; bpf_alu32_trunc: /* Truncate to 32-bits */ if (BPF_CLASS(code) == BPF_ALU && !fp->aux->verifier_zext) EMIT(PPC_RAW_RLWINM(dst_reg, dst_reg, 0, 0, 31)); break; /* * BPF_FROM_BE/LE */ case BPF_ALU | BPF_END | BPF_FROM_LE: case BPF_ALU | BPF_END | BPF_FROM_BE: #ifdef __BIG_ENDIAN__ if (BPF_SRC(code) == BPF_FROM_BE) goto emit_clear; #else /* !__BIG_ENDIAN__ */ if (BPF_SRC(code) == BPF_FROM_LE) goto emit_clear; #endif switch (imm) { case 16: /* Rotate 8 bits left & mask with 0x0000ff00 */ EMIT(PPC_RAW_RLWINM(tmp1_reg, dst_reg, 8, 16, 23)); /* Rotate 8 bits right & insert LSB to reg */ EMIT(PPC_RAW_RLWIMI(tmp1_reg, dst_reg, 24, 24, 31)); /* Move result back to dst_reg */ EMIT(PPC_RAW_MR(dst_reg, tmp1_reg)); break; case 32: /* * Rotate word left by 8 bits: * 2 bytes are already in their final position * -- byte 2 and 4 (of bytes 1, 2, 3 and 4) */ EMIT(PPC_RAW_RLWINM(tmp1_reg, dst_reg, 8, 0, 31)); /* Rotate 24 bits and insert byte 1 */ EMIT(PPC_RAW_RLWIMI(tmp1_reg, dst_reg, 24, 0, 7)); /* Rotate 24 bits and insert byte 3 */ EMIT(PPC_RAW_RLWIMI(tmp1_reg, dst_reg, 24, 16, 23)); EMIT(PPC_RAW_MR(dst_reg, tmp1_reg)); break; case 64: /* Store the value to stack and then use byte-reverse loads */ EMIT(PPC_RAW_STD(dst_reg, _R1, bpf_jit_stack_local(ctx))); EMIT(PPC_RAW_ADDI(tmp1_reg, _R1, bpf_jit_stack_local(ctx))); if (cpu_has_feature(CPU_FTR_ARCH_206)) { EMIT(PPC_RAW_LDBRX(dst_reg, 0, tmp1_reg)); } else { EMIT(PPC_RAW_LWBRX(dst_reg, 0, tmp1_reg)); if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN)) EMIT(PPC_RAW_SLDI(dst_reg, dst_reg, 32)); EMIT(PPC_RAW_LI(tmp2_reg, 4)); EMIT(PPC_RAW_LWBRX(tmp2_reg, tmp2_reg, tmp1_reg)); if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) EMIT(PPC_RAW_SLDI(tmp2_reg, tmp2_reg, 32)); EMIT(PPC_RAW_OR(dst_reg, dst_reg, tmp2_reg)); } break; } break; emit_clear: switch (imm) { case 16: /* zero-extend 16 bits into 64 bits */ EMIT(PPC_RAW_RLDICL(dst_reg, dst_reg, 0, 48)); if (insn_is_zext(&insn[i + 1])) addrs[++i] = ctx->idx * 4; break; case 32: if (!fp->aux->verifier_zext) /* zero-extend 32 bits into 64 bits */ EMIT(PPC_RAW_RLDICL(dst_reg, dst_reg, 0, 32)); break; case 64: /* nop */ break; } break; /* * BPF_ST NOSPEC (speculation barrier) */ case BPF_ST | BPF_NOSPEC: if (!security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) || !security_ftr_enabled(SEC_FTR_STF_BARRIER)) break; switch (stf_barrier) { case STF_BARRIER_EIEIO: EMIT(PPC_RAW_EIEIO() | 0x02000000); break; case STF_BARRIER_SYNC_ORI: EMIT(PPC_RAW_SYNC()); EMIT(PPC_RAW_LD(tmp1_reg, _R13, 0)); EMIT(PPC_RAW_ORI(_R31, _R31, 0)); break; case STF_BARRIER_FALLBACK: ctx->seen |= SEEN_FUNC; PPC_LI64(_R12, dereference_kernel_function_descriptor(bpf_stf_barrier)); EMIT(PPC_RAW_MTCTR(_R12)); EMIT(PPC_RAW_BCTRL()); break; case STF_BARRIER_NONE: break; } break; /* * BPF_ST(X) */ case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */ case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */ if (BPF_CLASS(code) == BPF_ST) { EMIT(PPC_RAW_LI(tmp1_reg, imm)); src_reg = tmp1_reg; } EMIT(PPC_RAW_STB(src_reg, dst_reg, off)); break; case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */ case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */ if (BPF_CLASS(code) == BPF_ST) { EMIT(PPC_RAW_LI(tmp1_reg, imm)); src_reg = tmp1_reg; } EMIT(PPC_RAW_STH(src_reg, dst_reg, off)); break; case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */ case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */ if (BPF_CLASS(code) == BPF_ST) { PPC_LI32(tmp1_reg, imm); src_reg = tmp1_reg; } EMIT(PPC_RAW_STW(src_reg, dst_reg, off)); break; case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */ case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */ if (BPF_CLASS(code) == BPF_ST) { PPC_LI32(tmp1_reg, imm); src_reg = tmp1_reg; } if (off % 4) { EMIT(PPC_RAW_LI(tmp2_reg, off)); EMIT(PPC_RAW_STDX(src_reg, dst_reg, tmp2_reg)); } else { EMIT(PPC_RAW_STD(src_reg, dst_reg, off)); } break; /* * BPF_STX ATOMIC (atomic ops) */ case BPF_STX | BPF_ATOMIC | BPF_W: case BPF_STX | BPF_ATOMIC | BPF_DW: save_reg = tmp2_reg; ret_reg = src_reg; /* Get offset into TMP_REG_1 */ EMIT(PPC_RAW_LI(tmp1_reg, off)); /* * Enforce full ordering for operations with BPF_FETCH by emitting a 'sync' * before and after the operation. * * This is a requirement in the Linux Kernel Memory Model. * See __cmpxchg_u64() in asm/cmpxchg.h as an example. */ if ((imm & BPF_FETCH) && IS_ENABLED(CONFIG_SMP)) EMIT(PPC_RAW_SYNC()); tmp_idx = ctx->idx * 4; /* load value from memory into TMP_REG_2 */ if (size == BPF_DW) EMIT(PPC_RAW_LDARX(tmp2_reg, tmp1_reg, dst_reg, 0)); else EMIT(PPC_RAW_LWARX(tmp2_reg, tmp1_reg, dst_reg, 0)); /* Save old value in _R0 */ if (imm & BPF_FETCH) EMIT(PPC_RAW_MR(_R0, tmp2_reg)); switch (imm) { case BPF_ADD: case BPF_ADD | BPF_FETCH: EMIT(PPC_RAW_ADD(tmp2_reg, tmp2_reg, src_reg)); break; case BPF_AND: case BPF_AND | BPF_FETCH: EMIT(PPC_RAW_AND(tmp2_reg, tmp2_reg, src_reg)); break; case BPF_OR: case BPF_OR | BPF_FETCH: EMIT(PPC_RAW_OR(tmp2_reg, tmp2_reg, src_reg)); break; case BPF_XOR: case BPF_XOR | BPF_FETCH: EMIT(PPC_RAW_XOR(tmp2_reg, tmp2_reg, src_reg)); break; case BPF_CMPXCHG: /* * Return old value in BPF_REG_0 for BPF_CMPXCHG & * in src_reg for other cases. */ ret_reg = bpf_to_ppc(BPF_REG_0); /* Compare with old value in BPF_R0 */ if (size == BPF_DW) EMIT(PPC_RAW_CMPD(bpf_to_ppc(BPF_REG_0), tmp2_reg)); else EMIT(PPC_RAW_CMPW(bpf_to_ppc(BPF_REG_0), tmp2_reg)); /* Don't set if different from old value */ PPC_BCC_SHORT(COND_NE, (ctx->idx + 3) * 4); fallthrough; case BPF_XCHG: save_reg = src_reg; break; default: pr_err_ratelimited( "eBPF filter atomic op code %02x (@%d) unsupported\n", code, i); return -EOPNOTSUPP; } /* store new value */ if (size == BPF_DW) EMIT(PPC_RAW_STDCX(save_reg, tmp1_reg, dst_reg)); else EMIT(PPC_RAW_STWCX(save_reg, tmp1_reg, dst_reg)); /* we're done if this succeeded */ PPC_BCC_SHORT(COND_NE, tmp_idx); if (imm & BPF_FETCH) { /* Emit 'sync' to enforce full ordering */ if (IS_ENABLED(CONFIG_SMP)) EMIT(PPC_RAW_SYNC()); EMIT(PPC_RAW_MR(ret_reg, _R0)); /* * Skip unnecessary zero-extension for 32-bit cmpxchg. * For context, see commit 39491867ace5. */ if (size != BPF_DW && imm == BPF_CMPXCHG && insn_is_zext(&insn[i + 1])) addrs[++i] = ctx->idx * 4; } break; /* * BPF_LDX */ /* dst = *(u8 *)(ul) (src + off) */ case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_PROBE_MEM | BPF_B: /* dst = *(u16 *)(ul) (src + off) */ case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_PROBE_MEM | BPF_H: /* dst = *(u32 *)(ul) (src + off) */ case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_PROBE_MEM | BPF_W: /* dst = *(u64 *)(ul) (src + off) */ case BPF_LDX | BPF_MEM | BPF_DW: case BPF_LDX | BPF_PROBE_MEM | BPF_DW: /* * As PTR_TO_BTF_ID that uses BPF_PROBE_MEM mode could either be a valid * kernel pointer or NULL but not a userspace address, execute BPF_PROBE_MEM * load only if addr is kernel address (see is_kernel_addr()), otherwise * set dst_reg=0 and move on. */ if (BPF_MODE(code) == BPF_PROBE_MEM) { EMIT(PPC_RAW_ADDI(tmp1_reg, src_reg, off)); if (IS_ENABLED(CONFIG_PPC_BOOK3E_64)) PPC_LI64(tmp2_reg, 0x8000000000000000ul); else /* BOOK3S_64 */ PPC_LI64(tmp2_reg, PAGE_OFFSET); EMIT(PPC_RAW_CMPLD(tmp1_reg, tmp2_reg)); PPC_BCC_SHORT(COND_GT, (ctx->idx + 3) * 4); EMIT(PPC_RAW_LI(dst_reg, 0)); /* * Check if 'off' is word aligned for BPF_DW, because * we might generate two instructions. */ if (BPF_SIZE(code) == BPF_DW && (off & 3)) PPC_JMP((ctx->idx + 3) * 4); else PPC_JMP((ctx->idx + 2) * 4); } switch (size) { case BPF_B: EMIT(PPC_RAW_LBZ(dst_reg, src_reg, off)); break; case BPF_H: EMIT(PPC_RAW_LHZ(dst_reg, src_reg, off)); break; case BPF_W: EMIT(PPC_RAW_LWZ(dst_reg, src_reg, off)); break; case BPF_DW: if (off % 4) { EMIT(PPC_RAW_LI(tmp1_reg, off)); EMIT(PPC_RAW_LDX(dst_reg, src_reg, tmp1_reg)); } else { EMIT(PPC_RAW_LD(dst_reg, src_reg, off)); } break; } if (size != BPF_DW && insn_is_zext(&insn[i + 1])) addrs[++i] = ctx->idx * 4; if (BPF_MODE(code) == BPF_PROBE_MEM) { ret = bpf_add_extable_entry(fp, image, fimage, pass, ctx, ctx->idx - 1, 4, dst_reg); if (ret) return ret; } break; /* * Doubleword load * 16 byte instruction that uses two 'struct bpf_insn' */ case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */ imm64 = ((u64)(u32) insn[i].imm) | (((u64)(u32) insn[i+1].imm) << 32); tmp_idx = ctx->idx; PPC_LI64(dst_reg, imm64); /* padding to allow full 5 instructions for later patching */ if (!image) for (j = ctx->idx - tmp_idx; j < 5; j++) EMIT(PPC_RAW_NOP()); /* Adjust for two bpf instructions */ addrs[++i] = ctx->idx * 4; break; /* * Return/Exit */ case BPF_JMP | BPF_EXIT: /* * If this isn't the very last instruction, branch to * the epilogue. If we _are_ the last instruction, * we'll just fall through to the epilogue. */ if (i != flen - 1) { ret = bpf_jit_emit_exit_insn(image, ctx, tmp1_reg, exit_addr); if (ret) return ret; } /* else fall through to the epilogue */ break; /* * Call kernel helper or bpf function */ case BPF_JMP | BPF_CALL: ctx->seen |= SEEN_FUNC; ret = bpf_jit_get_func_addr(fp, &insn[i], extra_pass, &func_addr, &func_addr_fixed); if (ret < 0) return ret; if (func_addr_fixed) ret = bpf_jit_emit_func_call_hlp(image, fimage, ctx, func_addr); else ret = bpf_jit_emit_func_call_rel(image, fimage, ctx, func_addr); if (ret) return ret; /* move return value from r3 to BPF_REG_0 */ EMIT(PPC_RAW_MR(bpf_to_ppc(BPF_REG_0), _R3)); break; /* * Jumps and branches */ case BPF_JMP | BPF_JA: PPC_JMP(addrs[i + 1 + off]); break; case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_X: true_cond = COND_GT; goto cond_branch; case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_X: true_cond = COND_LT; goto cond_branch; case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_X: true_cond = COND_GE; goto cond_branch; case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_X: true_cond = COND_LE; goto cond_branch; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_X: true_cond = COND_EQ; goto cond_branch; case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_X: true_cond = COND_NE; goto cond_branch; case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_X: true_cond = COND_NE; /* Fall through */ cond_branch: switch (code) { case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_X: /* unsigned comparison */ if (BPF_CLASS(code) == BPF_JMP32) EMIT(PPC_RAW_CMPLW(dst_reg, src_reg)); else EMIT(PPC_RAW_CMPLD(dst_reg, src_reg)); break; case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_X: /* signed comparison */ if (BPF_CLASS(code) == BPF_JMP32) EMIT(PPC_RAW_CMPW(dst_reg, src_reg)); else EMIT(PPC_RAW_CMPD(dst_reg, src_reg)); break; case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_X: if (BPF_CLASS(code) == BPF_JMP) { EMIT(PPC_RAW_AND_DOT(tmp1_reg, dst_reg, src_reg)); } else { EMIT(PPC_RAW_AND(tmp1_reg, dst_reg, src_reg)); EMIT(PPC_RAW_RLWINM_DOT(tmp1_reg, tmp1_reg, 0, 0, 31)); } break; case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: { bool is_jmp32 = BPF_CLASS(code) == BPF_JMP32; /* * Need sign-extended load, so only positive * values can be used as imm in cmpldi */ if (imm >= 0 && imm < 32768) { if (is_jmp32) EMIT(PPC_RAW_CMPLWI(dst_reg, imm)); else EMIT(PPC_RAW_CMPLDI(dst_reg, imm)); } else { /* sign-extending load */ PPC_LI32(tmp1_reg, imm); /* ... but unsigned comparison */ if (is_jmp32) EMIT(PPC_RAW_CMPLW(dst_reg, tmp1_reg)); else EMIT(PPC_RAW_CMPLD(dst_reg, tmp1_reg)); } break; } case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: { bool is_jmp32 = BPF_CLASS(code) == BPF_JMP32; /* * signed comparison, so any 16-bit value * can be used in cmpdi */ if (imm >= -32768 && imm < 32768) { if (is_jmp32) EMIT(PPC_RAW_CMPWI(dst_reg, imm)); else EMIT(PPC_RAW_CMPDI(dst_reg, imm)); } else { PPC_LI32(tmp1_reg, imm); if (is_jmp32) EMIT(PPC_RAW_CMPW(dst_reg, tmp1_reg)); else EMIT(PPC_RAW_CMPD(dst_reg, tmp1_reg)); } break; } case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: /* andi does not sign-extend the immediate */ if (imm >= 0 && imm < 32768) /* PPC_ANDI is _only/always_ dot-form */ EMIT(PPC_RAW_ANDI(tmp1_reg, dst_reg, imm)); else { PPC_LI32(tmp1_reg, imm); if (BPF_CLASS(code) == BPF_JMP) { EMIT(PPC_RAW_AND_DOT(tmp1_reg, dst_reg, tmp1_reg)); } else { EMIT(PPC_RAW_AND(tmp1_reg, dst_reg, tmp1_reg)); EMIT(PPC_RAW_RLWINM_DOT(tmp1_reg, tmp1_reg, 0, 0, 31)); } } break; } PPC_BCC(true_cond, addrs[i + 1 + off]); break; /* * Tail call */ case BPF_JMP | BPF_TAIL_CALL: ctx->seen |= SEEN_TAILCALL; ret = bpf_jit_emit_tail_call(image, ctx, addrs[i + 1]); if (ret < 0) return ret; break; default: /* * The filter contains something cruel & unusual. * We don't handle it, but also there shouldn't be * anything missing from our list. */ pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n", code, i); return -ENOTSUPP; } } /* Set end-of-body-code address for exit. */ addrs[i] = ctx->idx * 4; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1