Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Palmer Dabbelt | 1305 | 39.40% | 3 | 3.45% |
Nanyong Sun | 480 | 14.49% | 5 | 5.75% |
tongtiangen | 202 | 6.10% | 1 | 1.15% |
Alexandre Ghiti | 196 | 5.92% | 15 | 17.24% |
Qinglin Pan | 166 | 5.01% | 3 | 3.45% |
Heiko Stübner | 142 | 4.29% | 3 | 3.45% |
JiSheng Zhang | 98 | 2.96% | 6 | 6.90% |
Atish Patra | 93 | 2.81% | 4 | 4.60% |
Greentime Hu | 92 | 2.78% | 1 | 1.15% |
Matthew Wilcox | 70 | 2.11% | 2 | 2.30% |
Vitaly Wool | 62 | 1.87% | 2 | 2.30% |
Andrew Waterman | 54 | 1.63% | 1 | 1.15% |
Anup Patel | 54 | 1.63% | 5 | 5.75% |
Charlie Jenkins | 52 | 1.57% | 2 | 2.30% |
David Hildenbrand | 49 | 1.48% | 2 | 2.30% |
Christoph Hellwig | 26 | 0.79% | 3 | 3.45% |
Steven Price | 21 | 0.63% | 1 | 1.15% |
Björn Töpel | 18 | 0.54% | 1 | 1.15% |
Yash Shah | 16 | 0.48% | 1 | 1.15% |
Stefan O'Rear | 15 | 0.45% | 1 | 1.15% |
Guo Ren | 15 | 0.45% | 3 | 3.45% |
Logan Gunthorpe | 12 | 0.36% | 1 | 1.15% |
Zong Li | 11 | 0.33% | 1 | 1.15% |
Nick Desaulniers | 10 | 0.30% | 1 | 1.15% |
Mayuresh Chitale | 9 | 0.27% | 1 | 1.15% |
Jinyu Tang | 7 | 0.21% | 1 | 1.15% |
Peter Xu | 5 | 0.15% | 2 | 2.30% |
Kefeng Wang | 4 | 0.12% | 2 | 2.30% |
Kinsey Ho | 4 | 0.12% | 1 | 1.15% |
Mike Rapoport | 4 | 0.12% | 1 | 1.15% |
Juergen Gross | 4 | 0.12% | 1 | 1.15% |
Samuel Holland | 3 | 0.09% | 2 | 2.30% |
Rick Edgecombe | 3 | 0.09% | 1 | 1.15% |
Conor Dooley | 3 | 0.09% | 1 | 1.15% |
Thomas Gleixner | 2 | 0.06% | 1 | 1.15% |
Xiao Wang | 1 | 0.03% | 1 | 1.15% |
Sergey Matyukevich | 1 | 0.03% | 1 | 1.15% |
Dimitris Vlachos | 1 | 0.03% | 1 | 1.15% |
Baoquan He | 1 | 0.03% | 1 | 1.15% |
Leonardo Brás | 1 | 0.03% | 1 | 1.15% |
Total | 3312 | 87 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012 Regents of the University of California */ #ifndef _ASM_RISCV_PGTABLE_H #define _ASM_RISCV_PGTABLE_H #include <linux/mmzone.h> #include <linux/sizes.h> #include <asm/pgtable-bits.h> #ifndef CONFIG_MMU #define KERNEL_LINK_ADDR PAGE_OFFSET #define KERN_VIRT_SIZE (UL(-1)) #else #define ADDRESS_SPACE_END (UL(-1)) #ifdef CONFIG_64BIT /* Leave 2GB for kernel and BPF at the end of the address space */ #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) #else #define KERNEL_LINK_ADDR PAGE_OFFSET #endif /* Number of entries in the page global directory */ #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) /* Number of entries in the page table */ #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) /* * Half of the kernel address space (1/4 of the entries of the page global * directory) is for the direct mapping. */ #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) #define VMALLOC_END PAGE_OFFSET #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) #define BPF_JIT_REGION_SIZE (SZ_128M) #ifdef CONFIG_64BIT #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) #define BPF_JIT_REGION_END (MODULES_END) #else #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) #define BPF_JIT_REGION_END (VMALLOC_END) #endif /* Modules always live before the kernel */ #ifdef CONFIG_64BIT /* This is used to define the end of the KASAN shadow region */ #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) #define MODULES_END (PFN_ALIGN((unsigned long)&_start)) #else #define MODULES_VADDR VMALLOC_START #define MODULES_END VMALLOC_END #endif /* * Roughly size the vmemmap space to be large enough to fit enough * struct pages to map half the virtual address space. Then * position vmemmap directly below the VMALLOC region. */ #define VA_BITS_SV32 32 #ifdef CONFIG_64BIT #define VA_BITS_SV39 39 #define VA_BITS_SV48 48 #define VA_BITS_SV57 57 #define VA_BITS (pgtable_l5_enabled ? \ VA_BITS_SV57 : (pgtable_l4_enabled ? VA_BITS_SV48 : VA_BITS_SV39)) #else #define VA_BITS VA_BITS_SV32 #endif #define VMEMMAP_SHIFT \ (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) #define VMEMMAP_END VMALLOC_START #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) /* * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. */ #define vmemmap ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)) #define PCI_IO_SIZE SZ_16M #define PCI_IO_END VMEMMAP_START #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) #define FIXADDR_TOP PCI_IO_START #ifdef CONFIG_64BIT #define MAX_FDT_SIZE PMD_SIZE #define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M) #define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE) #else #define MAX_FDT_SIZE PGDIR_SIZE #define FIX_FDT_SIZE MAX_FDT_SIZE #define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE) #endif #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) #endif #ifdef CONFIG_XIP_KERNEL #define XIP_OFFSET SZ_32M #define XIP_OFFSET_MASK (SZ_32M - 1) #else #define XIP_OFFSET 0 #endif #ifndef __ASSEMBLY__ #include <asm/page.h> #include <asm/tlbflush.h> #include <linux/mm_types.h> #include <asm/compat.h> #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) #ifdef CONFIG_64BIT #include <asm/pgtable-64.h> #define VA_USER_SV39 (UL(1) << (VA_BITS_SV39 - 1)) #define VA_USER_SV48 (UL(1) << (VA_BITS_SV48 - 1)) #define VA_USER_SV57 (UL(1) << (VA_BITS_SV57 - 1)) #define MMAP_VA_BITS_64 ((VA_BITS >= VA_BITS_SV48) ? VA_BITS_SV48 : VA_BITS) #define MMAP_MIN_VA_BITS_64 (VA_BITS_SV39) #define MMAP_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_VA_BITS_64) #define MMAP_MIN_VA_BITS (is_compat_task() ? VA_BITS_SV32 : MMAP_MIN_VA_BITS_64) #else #include <asm/pgtable-32.h> #endif /* CONFIG_64BIT */ #include <linux/page_table_check.h> #ifdef CONFIG_XIP_KERNEL #define XIP_FIXUP(addr) ({ \ uintptr_t __a = (uintptr_t)(addr); \ (__a >= CONFIG_XIP_PHYS_ADDR && \ __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \ __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\ __a; \ }) #else #define XIP_FIXUP(addr) (addr) #endif /* CONFIG_XIP_KERNEL */ struct pt_alloc_ops { pte_t *(*get_pte_virt)(phys_addr_t pa); phys_addr_t (*alloc_pte)(uintptr_t va); #ifndef __PAGETABLE_PMD_FOLDED pmd_t *(*get_pmd_virt)(phys_addr_t pa); phys_addr_t (*alloc_pmd)(uintptr_t va); pud_t *(*get_pud_virt)(phys_addr_t pa); phys_addr_t (*alloc_pud)(uintptr_t va); p4d_t *(*get_p4d_virt)(phys_addr_t pa); phys_addr_t (*alloc_p4d)(uintptr_t va); #endif }; extern struct pt_alloc_ops pt_ops __initdata; #ifdef CONFIG_MMU /* Number of PGD entries that a user-mode program can use */ #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) /* Page protection bits */ #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ _PAGE_EXEC | _PAGE_WRITE) #define PAGE_COPY PAGE_READ #define PAGE_COPY_EXEC PAGE_READ_EXEC #define PAGE_SHARED PAGE_WRITE #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC #define _PAGE_KERNEL (_PAGE_READ \ | _PAGE_WRITE \ | _PAGE_PRESENT \ | _PAGE_ACCESSED \ | _PAGE_DIRTY \ | _PAGE_GLOBAL) #define PAGE_KERNEL __pgprot(_PAGE_KERNEL) #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ | _PAGE_EXEC) #define PAGE_TABLE __pgprot(_PAGE_TABLE) #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) extern pgd_t swapper_pg_dir[]; extern pgd_t trampoline_pg_dir[]; extern pgd_t early_pg_dir[]; #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmd_present(pmd_t pmd) { /* * Checking for _PAGE_LEAF is needed too because: * When splitting a THP, split_huge_page() will temporarily clear * the present bit, in this situation, pmd_present() and * pmd_trans_huge() still needs to return true. */ return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); } #else static inline int pmd_present(pmd_t pmd) { return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); } #endif static inline int pmd_none(pmd_t pmd) { return (pmd_val(pmd) == 0); } static inline int pmd_bad(pmd_t pmd) { return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); } #define pmd_leaf pmd_leaf static inline bool pmd_leaf(pmd_t pmd) { return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); } static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) { WRITE_ONCE(*pmdp, pmd); } static inline void pmd_clear(pmd_t *pmdp) { set_pmd(pmdp, __pmd(0)); } static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) { unsigned long prot_val = pgprot_val(prot); ALT_THEAD_PMA(prot_val); return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); } static inline unsigned long _pgd_pfn(pgd_t pgd) { return __page_val_to_pfn(pgd_val(pgd)); } static inline struct page *pmd_page(pmd_t pmd) { return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); } static inline pte_t pmd_pte(pmd_t pmd) { return __pte(pmd_val(pmd)); } static inline pte_t pud_pte(pud_t pud) { return __pte(pud_val(pud)); } #ifdef CONFIG_RISCV_ISA_SVNAPOT #include <asm/cpufeature.h> static __always_inline bool has_svnapot(void) { return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT); } static inline unsigned long pte_napot(pte_t pte) { return pte_val(pte) & _PAGE_NAPOT; } static inline pte_t pte_mknapot(pte_t pte, unsigned int order) { int pos = order - 1 + _PAGE_PFN_SHIFT; unsigned long napot_bit = BIT(pos); unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT); return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT); } #else static __always_inline bool has_svnapot(void) { return false; } static inline unsigned long pte_napot(pte_t pte) { return 0; } #endif /* CONFIG_RISCV_ISA_SVNAPOT */ /* Yields the page frame number (PFN) of a page table entry */ static inline unsigned long pte_pfn(pte_t pte) { unsigned long res = __page_val_to_pfn(pte_val(pte)); if (has_svnapot() && pte_napot(pte)) res = res & (res - 1UL); return res; } #define pte_page(x) pfn_to_page(pte_pfn(x)) /* Constructs a page table entry */ static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) { unsigned long prot_val = pgprot_val(prot); ALT_THEAD_PMA(prot_val); return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); } #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) static inline int pte_present(pte_t pte) { return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); } static inline int pte_none(pte_t pte) { return (pte_val(pte) == 0); } static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } static inline int pte_user(pte_t pte) { return pte_val(pte) & _PAGE_USER; } static inline int pte_huge(pte_t pte) { return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); } static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } /* static inline pte_t pte_rdprotect(pte_t pte) */ static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~(_PAGE_WRITE)); } /* static inline pte_t pte_mkread(pte_t pte) */ static inline pte_t pte_mkwrite_novma(pte_t pte) { return __pte(pte_val(pte) | _PAGE_WRITE); } /* static inline pte_t pte_mkexec(pte_t pte) */ static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); } static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); } static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); } static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); } static inline pte_t pte_mkspecial(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SPECIAL); } static inline pte_t pte_mkhuge(pte_t pte) { return pte; } #ifdef CONFIG_RISCV_ISA_SVNAPOT #define pte_leaf_size(pte) (pte_napot(pte) ? \ napot_cont_size(napot_cont_order(pte)) :\ PAGE_SIZE) #endif #ifdef CONFIG_NUMA_BALANCING /* * See the comment in include/asm-generic/pgtable.h */ static inline int pte_protnone(pte_t pte) { return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; } static inline int pmd_protnone(pmd_t pmd) { return pte_protnone(pmd_pte(pmd)); } #endif /* Modify page protection bits */ static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { unsigned long newprot_val = pgprot_val(newprot); ALT_THEAD_PMA(newprot_val); return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); } #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) /* Commit new configuration to MMU hardware */ static inline void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, unsigned int nr) { /* * The kernel assumes that TLBs don't cache invalid entries, but * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a * cache flush; it is necessary even after writing invalid entries. * Relying on flush_tlb_fix_spurious_fault would suffice, but * the extra traps reduce performance. So, eagerly SFENCE.VMA. */ while (nr--) local_flush_tlb_page(address + nr * PAGE_SIZE); } #define update_mmu_cache(vma, addr, ptep) \ update_mmu_cache_range(NULL, vma, addr, ptep, 1) #define __HAVE_ARCH_UPDATE_MMU_TLB #define update_mmu_tlb update_mmu_cache static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pte_t *ptep = (pte_t *)pmdp; update_mmu_cache(vma, address, ptep); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t pte_a, pte_t pte_b) { return pte_val(pte_a) == pte_val(pte_b); } /* * Certain architectures need to do special things when PTEs within * a page table are directly modified. Thus, the following hook is * made available. */ static inline void set_pte(pte_t *ptep, pte_t pteval) { WRITE_ONCE(*ptep, pteval); } void flush_icache_pte(struct mm_struct *mm, pte_t pte); static inline void __set_pte_at(struct mm_struct *mm, pte_t *ptep, pte_t pteval) { if (pte_present(pteval) && pte_exec(pteval)) flush_icache_pte(mm, pteval); set_pte(ptep, pteval); } #define PFN_PTE_SHIFT _PAGE_PFN_SHIFT static inline void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval, unsigned int nr) { page_table_check_ptes_set(mm, ptep, pteval, nr); for (;;) { __set_pte_at(mm, ptep, pteval); if (--nr == 0) break; ptep++; pte_val(pteval) += 1 << _PAGE_PFN_SHIFT; } } #define set_ptes set_ptes static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { __set_pte_at(mm, ptep, __pte(0)); } #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* defined in mm/pgtable.c */ extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG /* defined in mm/pgtable.c */ extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); page_table_check_pte_clear(mm, pte); return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) { atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); } #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH static inline int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { /* * This comment is borrowed from x86, but applies equally to RISC-V: * * Clearing the accessed bit without a TLB flush * doesn't cause data corruption. [ It could cause incorrect * page aging and the (mistaken) reclaim of hot pages, but the * chance of that should be relatively low. ] * * So as a performance optimization don't flush the TLB when * clearing the accessed bit, it will eventually be flushed by * a context switch or a VM operation anyway. [ In the rare * event of it not getting flushed for a long time the delay * shouldn't really matter because there's no real memory * pressure for swapout to react to. ] */ return ptep_test_and_clear_young(vma, address, ptep); } #define pgprot_nx pgprot_nx static inline pgprot_t pgprot_nx(pgprot_t _prot) { return __pgprot(pgprot_val(_prot) & ~_PAGE_EXEC); } #define pgprot_noncached pgprot_noncached static inline pgprot_t pgprot_noncached(pgprot_t _prot) { unsigned long prot = pgprot_val(_prot); prot &= ~_PAGE_MTMASK; prot |= _PAGE_IO; return __pgprot(prot); } #define pgprot_writecombine pgprot_writecombine static inline pgprot_t pgprot_writecombine(pgprot_t _prot) { unsigned long prot = pgprot_val(_prot); prot &= ~_PAGE_MTMASK; prot |= _PAGE_NOCACHE; return __pgprot(prot); } /* * THP functions */ static inline pmd_t pte_pmd(pte_t pte) { return __pmd(pte_val(pte)); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { return pmd; } static inline pmd_t pmd_mkinvalid(pmd_t pmd) { return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); } #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) static inline unsigned long pmd_pfn(pmd_t pmd) { return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); } #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) #define pud_pfn pud_pfn static inline unsigned long pud_pfn(pud_t pud) { return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); } static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); } #define pmd_write pmd_write static inline int pmd_write(pmd_t pmd) { return pte_write(pmd_pte(pmd)); } #define pud_write pud_write static inline int pud_write(pud_t pud) { return pte_write(pud_pte(pud)); } #define pmd_dirty pmd_dirty static inline int pmd_dirty(pmd_t pmd) { return pte_dirty(pmd_pte(pmd)); } #define pmd_young pmd_young static inline int pmd_young(pmd_t pmd) { return pte_young(pmd_pte(pmd)); } static inline int pmd_user(pmd_t pmd) { return pte_user(pmd_pte(pmd)); } static inline pmd_t pmd_mkold(pmd_t pmd) { return pte_pmd(pte_mkold(pmd_pte(pmd))); } static inline pmd_t pmd_mkyoung(pmd_t pmd) { return pte_pmd(pte_mkyoung(pmd_pte(pmd))); } static inline pmd_t pmd_mkwrite_novma(pmd_t pmd) { return pte_pmd(pte_mkwrite_novma(pmd_pte(pmd))); } static inline pmd_t pmd_wrprotect(pmd_t pmd) { return pte_pmd(pte_wrprotect(pmd_pte(pmd))); } static inline pmd_t pmd_mkclean(pmd_t pmd) { return pte_pmd(pte_mkclean(pmd_pte(pmd))); } static inline pmd_t pmd_mkdirty(pmd_t pmd) { return pte_pmd(pte_mkdirty(pmd_pte(pmd))); } static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { page_table_check_pmd_set(mm, pmdp, pmd); return __set_pte_at(mm, (pte_t *)pmdp, pmd_pte(pmd)); } static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, pud_t *pudp, pud_t pud) { page_table_check_pud_set(mm, pudp, pud); return __set_pte_at(mm, (pte_t *)pudp, pud_pte(pud)); } #ifdef CONFIG_PAGE_TABLE_CHECK static inline bool pte_user_accessible_page(pte_t pte) { return pte_present(pte) && pte_user(pte); } static inline bool pmd_user_accessible_page(pmd_t pmd) { return pmd_leaf(pmd) && pmd_user(pmd); } static inline bool pud_user_accessible_page(pud_t pud) { return pud_leaf(pud) && pud_user(pud); } #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmd_trans_huge(pmd_t pmd) { return pmd_leaf(pmd); } #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS static inline int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty) { return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); } #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); } #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); page_table_check_pmd_clear(mm, pmd); return pmd; } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { ptep_set_wrprotect(mm, address, (pte_t *)pmdp); } #define pmdp_establish pmdp_establish static inline pmd_t pmdp_establish(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t pmd) { page_table_check_pmd_set(vma->vm_mm, pmdp, pmd); return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); } #define pmdp_collapse_flush pmdp_collapse_flush extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ /* * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that * are !pte_none() && !pte_present(). * * Format of swap PTE: * bit 0: _PAGE_PRESENT (zero) * bit 1 to 3: _PAGE_LEAF (zero) * bit 5: _PAGE_PROT_NONE (zero) * bit 6: exclusive marker * bits 7 to 11: swap type * bits 12 to XLEN-1: swap offset */ #define __SWP_TYPE_SHIFT 7 #define __SWP_TYPE_BITS 5 #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) #define MAX_SWAPFILES_CHECK() \ BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) #define __swp_entry(type, offset) ((swp_entry_t) \ { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \ ((offset) << __SWP_OFFSET_SHIFT) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) static inline int pte_swp_exclusive(pte_t pte) { return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; } static inline pte_t pte_swp_mkexclusive(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); } static inline pte_t pte_swp_clear_exclusive(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); } #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) #define __swp_entry_to_pmd(swp) __pmd((swp).val) #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ /* * In the RV64 Linux scheme, we give the user half of the virtual-address space * and give the kernel the other (upper) half. */ #ifdef CONFIG_64BIT #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) #else #define KERN_VIRT_START FIXADDR_START #endif /* * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. * Note that PGDIR_SIZE must evenly divide TASK_SIZE. * Task size is: * - 0x9fc00000 (~2.5GB) for RV32. * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu * - 0x100000000000000 ( 64PB) for RV64 using SV57 mmu * * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V * Instruction Set Manual Volume II: Privileged Architecture" states that * "load and store effective addresses, which are 64bits, must have bits * 63–48 all equal to bit 47, or else a page-fault exception will occur." * Similarly for SV57, bits 63–57 must be equal to bit 56. */ #ifdef CONFIG_64BIT #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) #define TASK_SIZE_MAX LONG_MAX #ifdef CONFIG_COMPAT #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE) #define TASK_SIZE (is_compat_task() ? \ TASK_SIZE_32 : TASK_SIZE_64) #else #define TASK_SIZE TASK_SIZE_64 #endif #else #define TASK_SIZE FIXADDR_START #endif #else /* CONFIG_MMU */ #define PAGE_SHARED __pgprot(0) #define PAGE_KERNEL __pgprot(0) #define swapper_pg_dir NULL #define TASK_SIZE _AC(-1, UL) #define VMALLOC_START _AC(0, UL) #define VMALLOC_END TASK_SIZE #endif /* !CONFIG_MMU */ extern char _start[]; extern void *_dtb_early_va; extern uintptr_t _dtb_early_pa; #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) #else #define dtb_early_va _dtb_early_va #define dtb_early_pa _dtb_early_pa #endif /* CONFIG_XIP_KERNEL */ extern u64 satp_mode; void paging_init(void); void misc_mem_init(void); /* * ZERO_PAGE is a global shared page that is always zero, * used for zero-mapped memory areas, etc. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) #endif /* !__ASSEMBLY__ */ #endif /* _ASM_RISCV_PGTABLE_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1