Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anup Patel | 2483 | 66.89% | 20 | 39.22% |
Atish Patra | 365 | 9.83% | 8 | 15.69% |
Mayuresh Chitale | 318 | 8.57% | 5 | 9.80% |
Yong-Xuan Wang | 164 | 4.42% | 2 | 3.92% |
Haibo Xu | 103 | 2.77% | 1 | 1.96% |
Chao Du | 86 | 2.32% | 1 | 1.96% |
Vincent Chen | 63 | 1.70% | 1 | 1.96% |
Andrew Jones | 60 | 1.62% | 6 | 11.76% |
Sean Christopherson | 25 | 0.67% | 2 | 3.92% |
JiSheng Zhang | 21 | 0.57% | 2 | 3.92% |
Mark Rutland | 20 | 0.54% | 1 | 1.96% |
Heiko Stübner | 3 | 0.08% | 1 | 1.96% |
Mauro Carvalho Chehab | 1 | 0.03% | 1 | 1.96% |
Total | 3712 | 51 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Western Digital Corporation or its affiliates. * * Authors: * Anup Patel <anup.patel@wdc.com> */ #include <linux/bitops.h> #include <linux/entry-kvm.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/kdebug.h> #include <linux/module.h> #include <linux/percpu.h> #include <linux/vmalloc.h> #include <linux/sched/signal.h> #include <linux/fs.h> #include <linux/kvm_host.h> #include <asm/csr.h> #include <asm/cacheflush.h> #include <asm/kvm_vcpu_vector.h> const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { KVM_GENERIC_VCPU_STATS(), STATS_DESC_COUNTER(VCPU, ecall_exit_stat), STATS_DESC_COUNTER(VCPU, wfi_exit_stat), STATS_DESC_COUNTER(VCPU, mmio_exit_user), STATS_DESC_COUNTER(VCPU, mmio_exit_kernel), STATS_DESC_COUNTER(VCPU, csr_exit_user), STATS_DESC_COUNTER(VCPU, csr_exit_kernel), STATS_DESC_COUNTER(VCPU, signal_exits), STATS_DESC_COUNTER(VCPU, exits) }; const struct kvm_stats_header kvm_vcpu_stats_header = { .name_size = KVM_STATS_NAME_SIZE, .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), .id_offset = sizeof(struct kvm_stats_header), .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + sizeof(kvm_vcpu_stats_desc), }; static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr; struct kvm_cpu_context *cntx = &vcpu->arch.guest_context; struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context; bool loaded; /** * The preemption should be disabled here because it races with * kvm_sched_out/kvm_sched_in(called from preempt notifiers) which * also calls vcpu_load/put. */ get_cpu(); loaded = (vcpu->cpu != -1); if (loaded) kvm_arch_vcpu_put(vcpu); vcpu->arch.last_exit_cpu = -1; memcpy(csr, reset_csr, sizeof(*csr)); spin_lock(&vcpu->arch.reset_cntx_lock); memcpy(cntx, reset_cntx, sizeof(*cntx)); spin_unlock(&vcpu->arch.reset_cntx_lock); kvm_riscv_vcpu_fp_reset(vcpu); kvm_riscv_vcpu_vector_reset(vcpu); kvm_riscv_vcpu_timer_reset(vcpu); kvm_riscv_vcpu_aia_reset(vcpu); bitmap_zero(vcpu->arch.irqs_pending, KVM_RISCV_VCPU_NR_IRQS); bitmap_zero(vcpu->arch.irqs_pending_mask, KVM_RISCV_VCPU_NR_IRQS); kvm_riscv_vcpu_pmu_reset(vcpu); vcpu->arch.hfence_head = 0; vcpu->arch.hfence_tail = 0; memset(vcpu->arch.hfence_queue, 0, sizeof(vcpu->arch.hfence_queue)); kvm_riscv_vcpu_sbi_sta_reset(vcpu); /* Reset the guest CSRs for hotplug usecase */ if (loaded) kvm_arch_vcpu_load(vcpu, smp_processor_id()); put_cpu(); } int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) { return 0; } int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) { int rc; struct kvm_cpu_context *cntx; struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr; spin_lock_init(&vcpu->arch.mp_state_lock); /* Mark this VCPU never ran */ vcpu->arch.ran_atleast_once = false; vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; bitmap_zero(vcpu->arch.isa, RISCV_ISA_EXT_MAX); /* Setup ISA features available to VCPU */ kvm_riscv_vcpu_setup_isa(vcpu); /* Setup vendor, arch, and implementation details */ vcpu->arch.mvendorid = sbi_get_mvendorid(); vcpu->arch.marchid = sbi_get_marchid(); vcpu->arch.mimpid = sbi_get_mimpid(); /* Setup VCPU hfence queue */ spin_lock_init(&vcpu->arch.hfence_lock); /* Setup reset state of shadow SSTATUS and HSTATUS CSRs */ spin_lock_init(&vcpu->arch.reset_cntx_lock); spin_lock(&vcpu->arch.reset_cntx_lock); cntx = &vcpu->arch.guest_reset_context; cntx->sstatus = SR_SPP | SR_SPIE; cntx->hstatus = 0; cntx->hstatus |= HSTATUS_VTW; cntx->hstatus |= HSTATUS_SPVP; cntx->hstatus |= HSTATUS_SPV; spin_unlock(&vcpu->arch.reset_cntx_lock); if (kvm_riscv_vcpu_alloc_vector_context(vcpu, cntx)) return -ENOMEM; /* By default, make CY, TM, and IR counters accessible in VU mode */ reset_csr->scounteren = 0x7; /* Setup VCPU timer */ kvm_riscv_vcpu_timer_init(vcpu); /* setup performance monitoring */ kvm_riscv_vcpu_pmu_init(vcpu); /* Setup VCPU AIA */ rc = kvm_riscv_vcpu_aia_init(vcpu); if (rc) return rc; /* * Setup SBI extensions * NOTE: This must be the last thing to be initialized. */ kvm_riscv_vcpu_sbi_init(vcpu); /* Reset VCPU */ kvm_riscv_reset_vcpu(vcpu); return 0; } void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) { /** * vcpu with id 0 is the designated boot cpu. * Keep all vcpus with non-zero id in power-off state so that * they can be brought up using SBI HSM extension. */ if (vcpu->vcpu_idx != 0) kvm_riscv_vcpu_power_off(vcpu); } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { /* Cleanup VCPU AIA context */ kvm_riscv_vcpu_aia_deinit(vcpu); /* Cleanup VCPU timer */ kvm_riscv_vcpu_timer_deinit(vcpu); kvm_riscv_vcpu_pmu_deinit(vcpu); /* Free unused pages pre-allocated for G-stage page table mappings */ kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); /* Free vector context space for host and guest kernel */ kvm_riscv_vcpu_free_vector_context(vcpu); } int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) { return kvm_riscv_vcpu_timer_pending(vcpu); } void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) { kvm_riscv_aia_wakeon_hgei(vcpu, true); } void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) { kvm_riscv_aia_wakeon_hgei(vcpu, false); } int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) { return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) && !kvm_riscv_vcpu_stopped(vcpu) && !vcpu->arch.pause); } int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) { return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; } bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) { return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false; } vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) { return VM_FAULT_SIGBUS; } long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; if (ioctl == KVM_INTERRUPT) { struct kvm_interrupt irq; if (copy_from_user(&irq, argp, sizeof(irq))) return -EFAULT; if (irq.irq == KVM_INTERRUPT_SET) return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT); else return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT); } return -ENOIOCTLCMD; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; long r = -EINVAL; switch (ioctl) { case KVM_SET_ONE_REG: case KVM_GET_ONE_REG: { struct kvm_one_reg reg; r = -EFAULT; if (copy_from_user(®, argp, sizeof(reg))) break; if (ioctl == KVM_SET_ONE_REG) r = kvm_riscv_vcpu_set_reg(vcpu, ®); else r = kvm_riscv_vcpu_get_reg(vcpu, ®); break; } case KVM_GET_REG_LIST: { struct kvm_reg_list __user *user_list = argp; struct kvm_reg_list reg_list; unsigned int n; r = -EFAULT; if (copy_from_user(®_list, user_list, sizeof(reg_list))) break; n = reg_list.n; reg_list.n = kvm_riscv_vcpu_num_regs(vcpu); if (copy_to_user(user_list, ®_list, sizeof(reg_list))) break; r = -E2BIG; if (n < reg_list.n) break; r = kvm_riscv_vcpu_copy_reg_indices(vcpu, user_list->reg); break; } default: break; } return r; } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { return -EINVAL; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { return -EINVAL; } void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; unsigned long mask, val; if (READ_ONCE(vcpu->arch.irqs_pending_mask[0])) { mask = xchg_acquire(&vcpu->arch.irqs_pending_mask[0], 0); val = READ_ONCE(vcpu->arch.irqs_pending[0]) & mask; csr->hvip &= ~mask; csr->hvip |= val; } /* Flush AIA high interrupts */ kvm_riscv_vcpu_aia_flush_interrupts(vcpu); } void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu) { unsigned long hvip; struct kvm_vcpu_arch *v = &vcpu->arch; struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; /* Read current HVIP and VSIE CSRs */ csr->vsie = csr_read(CSR_VSIE); /* Sync-up HVIP.VSSIP bit changes does by Guest */ hvip = csr_read(CSR_HVIP); if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) { if (hvip & (1UL << IRQ_VS_SOFT)) { if (!test_and_set_bit(IRQ_VS_SOFT, v->irqs_pending_mask)) set_bit(IRQ_VS_SOFT, v->irqs_pending); } else { if (!test_and_set_bit(IRQ_VS_SOFT, v->irqs_pending_mask)) clear_bit(IRQ_VS_SOFT, v->irqs_pending); } } /* Sync up the HVIP.LCOFIP bit changes (only clear) by the guest */ if ((csr->hvip ^ hvip) & (1UL << IRQ_PMU_OVF)) { if (!(hvip & (1UL << IRQ_PMU_OVF)) && !test_and_set_bit(IRQ_PMU_OVF, v->irqs_pending_mask)) clear_bit(IRQ_PMU_OVF, v->irqs_pending); } /* Sync-up AIA high interrupts */ kvm_riscv_vcpu_aia_sync_interrupts(vcpu); /* Sync-up timer CSRs */ kvm_riscv_vcpu_timer_sync(vcpu); } int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq) { /* * We only allow VS-mode software, timer, and external * interrupts when irq is one of the local interrupts * defined by RISC-V privilege specification. */ if (irq < IRQ_LOCAL_MAX && irq != IRQ_VS_SOFT && irq != IRQ_VS_TIMER && irq != IRQ_VS_EXT && irq != IRQ_PMU_OVF) return -EINVAL; set_bit(irq, vcpu->arch.irqs_pending); smp_mb__before_atomic(); set_bit(irq, vcpu->arch.irqs_pending_mask); kvm_vcpu_kick(vcpu); return 0; } int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq) { /* * We only allow VS-mode software, timer, counter overflow and external * interrupts when irq is one of the local interrupts * defined by RISC-V privilege specification. */ if (irq < IRQ_LOCAL_MAX && irq != IRQ_VS_SOFT && irq != IRQ_VS_TIMER && irq != IRQ_VS_EXT && irq != IRQ_PMU_OVF) return -EINVAL; clear_bit(irq, vcpu->arch.irqs_pending); smp_mb__before_atomic(); set_bit(irq, vcpu->arch.irqs_pending_mask); return 0; } bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, u64 mask) { unsigned long ie; ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK) << VSIP_TO_HVIP_SHIFT) & (unsigned long)mask; ie |= vcpu->arch.guest_csr.vsie & ~IRQ_LOCAL_MASK & (unsigned long)mask; if (READ_ONCE(vcpu->arch.irqs_pending[0]) & ie) return true; /* Check AIA high interrupts */ return kvm_riscv_vcpu_aia_has_interrupts(vcpu, mask); } void __kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu) { WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); kvm_make_request(KVM_REQ_SLEEP, vcpu); kvm_vcpu_kick(vcpu); } void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu) { spin_lock(&vcpu->arch.mp_state_lock); __kvm_riscv_vcpu_power_off(vcpu); spin_unlock(&vcpu->arch.mp_state_lock); } void __kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu) { WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); kvm_vcpu_wake_up(vcpu); } void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu) { spin_lock(&vcpu->arch.mp_state_lock); __kvm_riscv_vcpu_power_on(vcpu); spin_unlock(&vcpu->arch.mp_state_lock); } bool kvm_riscv_vcpu_stopped(struct kvm_vcpu *vcpu) { return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { *mp_state = READ_ONCE(vcpu->arch.mp_state); return 0; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { int ret = 0; spin_lock(&vcpu->arch.mp_state_lock); switch (mp_state->mp_state) { case KVM_MP_STATE_RUNNABLE: WRITE_ONCE(vcpu->arch.mp_state, *mp_state); break; case KVM_MP_STATE_STOPPED: __kvm_riscv_vcpu_power_off(vcpu); break; default: ret = -EINVAL; } spin_unlock(&vcpu->arch.mp_state_lock); return ret; } int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) { if (dbg->control & KVM_GUESTDBG_ENABLE) { vcpu->guest_debug = dbg->control; vcpu->arch.cfg.hedeleg &= ~BIT(EXC_BREAKPOINT); } else { vcpu->guest_debug = 0; vcpu->arch.cfg.hedeleg |= BIT(EXC_BREAKPOINT); } return 0; } static void kvm_riscv_vcpu_setup_config(struct kvm_vcpu *vcpu) { const unsigned long *isa = vcpu->arch.isa; struct kvm_vcpu_config *cfg = &vcpu->arch.cfg; if (riscv_isa_extension_available(isa, SVPBMT)) cfg->henvcfg |= ENVCFG_PBMTE; if (riscv_isa_extension_available(isa, SSTC)) cfg->henvcfg |= ENVCFG_STCE; if (riscv_isa_extension_available(isa, ZICBOM)) cfg->henvcfg |= (ENVCFG_CBIE | ENVCFG_CBCFE); if (riscv_isa_extension_available(isa, ZICBOZ)) cfg->henvcfg |= ENVCFG_CBZE; if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) { cfg->hstateen0 |= SMSTATEEN0_HSENVCFG; if (riscv_isa_extension_available(isa, SSAIA)) cfg->hstateen0 |= SMSTATEEN0_AIA_IMSIC | SMSTATEEN0_AIA | SMSTATEEN0_AIA_ISEL; if (riscv_isa_extension_available(isa, SMSTATEEN)) cfg->hstateen0 |= SMSTATEEN0_SSTATEEN0; } cfg->hedeleg = KVM_HEDELEG_DEFAULT; if (vcpu->guest_debug) cfg->hedeleg &= ~BIT(EXC_BREAKPOINT); } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; struct kvm_vcpu_config *cfg = &vcpu->arch.cfg; csr_write(CSR_VSSTATUS, csr->vsstatus); csr_write(CSR_VSIE, csr->vsie); csr_write(CSR_VSTVEC, csr->vstvec); csr_write(CSR_VSSCRATCH, csr->vsscratch); csr_write(CSR_VSEPC, csr->vsepc); csr_write(CSR_VSCAUSE, csr->vscause); csr_write(CSR_VSTVAL, csr->vstval); csr_write(CSR_HEDELEG, cfg->hedeleg); csr_write(CSR_HVIP, csr->hvip); csr_write(CSR_VSATP, csr->vsatp); csr_write(CSR_HENVCFG, cfg->henvcfg); if (IS_ENABLED(CONFIG_32BIT)) csr_write(CSR_HENVCFGH, cfg->henvcfg >> 32); if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN)) { csr_write(CSR_HSTATEEN0, cfg->hstateen0); if (IS_ENABLED(CONFIG_32BIT)) csr_write(CSR_HSTATEEN0H, cfg->hstateen0 >> 32); } kvm_riscv_gstage_update_hgatp(vcpu); kvm_riscv_vcpu_timer_restore(vcpu); kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context); kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context, vcpu->arch.isa); kvm_riscv_vcpu_host_vector_save(&vcpu->arch.host_context); kvm_riscv_vcpu_guest_vector_restore(&vcpu->arch.guest_context, vcpu->arch.isa); kvm_riscv_vcpu_aia_load(vcpu, cpu); kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); vcpu->cpu = cpu; } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; vcpu->cpu = -1; kvm_riscv_vcpu_aia_put(vcpu); kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context, vcpu->arch.isa); kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context); kvm_riscv_vcpu_timer_save(vcpu); kvm_riscv_vcpu_guest_vector_save(&vcpu->arch.guest_context, vcpu->arch.isa); kvm_riscv_vcpu_host_vector_restore(&vcpu->arch.host_context); csr->vsstatus = csr_read(CSR_VSSTATUS); csr->vsie = csr_read(CSR_VSIE); csr->vstvec = csr_read(CSR_VSTVEC); csr->vsscratch = csr_read(CSR_VSSCRATCH); csr->vsepc = csr_read(CSR_VSEPC); csr->vscause = csr_read(CSR_VSCAUSE); csr->vstval = csr_read(CSR_VSTVAL); csr->hvip = csr_read(CSR_HVIP); csr->vsatp = csr_read(CSR_VSATP); } static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu) { struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); if (kvm_request_pending(vcpu)) { if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) { kvm_vcpu_srcu_read_unlock(vcpu); rcuwait_wait_event(wait, (!kvm_riscv_vcpu_stopped(vcpu)) && (!vcpu->arch.pause), TASK_INTERRUPTIBLE); kvm_vcpu_srcu_read_lock(vcpu); if (kvm_riscv_vcpu_stopped(vcpu) || vcpu->arch.pause) { /* * Awaken to handle a signal, request to * sleep again later. */ kvm_make_request(KVM_REQ_SLEEP, vcpu); } } if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) kvm_riscv_reset_vcpu(vcpu); if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu)) kvm_riscv_gstage_update_hgatp(vcpu); if (kvm_check_request(KVM_REQ_FENCE_I, vcpu)) kvm_riscv_fence_i_process(vcpu); /* * The generic KVM_REQ_TLB_FLUSH is same as * KVM_REQ_HFENCE_GVMA_VMID_ALL */ if (kvm_check_request(KVM_REQ_HFENCE_GVMA_VMID_ALL, vcpu)) kvm_riscv_hfence_gvma_vmid_all_process(vcpu); if (kvm_check_request(KVM_REQ_HFENCE_VVMA_ALL, vcpu)) kvm_riscv_hfence_vvma_all_process(vcpu); if (kvm_check_request(KVM_REQ_HFENCE, vcpu)) kvm_riscv_hfence_process(vcpu); if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) kvm_riscv_vcpu_record_steal_time(vcpu); } } static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu) { struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; csr_write(CSR_HVIP, csr->hvip); kvm_riscv_vcpu_aia_update_hvip(vcpu); } static __always_inline void kvm_riscv_vcpu_swap_in_guest_state(struct kvm_vcpu *vcpu) { struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr; struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; struct kvm_vcpu_config *cfg = &vcpu->arch.cfg; vcpu->arch.host_senvcfg = csr_swap(CSR_SENVCFG, csr->senvcfg); if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) && (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0)) vcpu->arch.host_sstateen0 = csr_swap(CSR_SSTATEEN0, smcsr->sstateen0); } static __always_inline void kvm_riscv_vcpu_swap_in_host_state(struct kvm_vcpu *vcpu) { struct kvm_vcpu_smstateen_csr *smcsr = &vcpu->arch.smstateen_csr; struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr; struct kvm_vcpu_config *cfg = &vcpu->arch.cfg; csr->senvcfg = csr_swap(CSR_SENVCFG, vcpu->arch.host_senvcfg); if (riscv_has_extension_unlikely(RISCV_ISA_EXT_SMSTATEEN) && (cfg->hstateen0 & SMSTATEEN0_SSTATEEN0)) smcsr->sstateen0 = csr_swap(CSR_SSTATEEN0, vcpu->arch.host_sstateen0); } /* * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while * the vCPU is running. * * This must be noinstr as instrumentation may make use of RCU, and this is not * safe during the EQS. */ static void noinstr kvm_riscv_vcpu_enter_exit(struct kvm_vcpu *vcpu) { kvm_riscv_vcpu_swap_in_guest_state(vcpu); guest_state_enter_irqoff(); __kvm_riscv_switch_to(&vcpu->arch); vcpu->arch.last_exit_cpu = vcpu->cpu; guest_state_exit_irqoff(); kvm_riscv_vcpu_swap_in_host_state(vcpu); } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) { int ret; struct kvm_cpu_trap trap; struct kvm_run *run = vcpu->run; if (!vcpu->arch.ran_atleast_once) kvm_riscv_vcpu_setup_config(vcpu); /* Mark this VCPU ran at least once */ vcpu->arch.ran_atleast_once = true; kvm_vcpu_srcu_read_lock(vcpu); switch (run->exit_reason) { case KVM_EXIT_MMIO: /* Process MMIO value returned from user-space */ ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run); break; case KVM_EXIT_RISCV_SBI: /* Process SBI value returned from user-space */ ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run); break; case KVM_EXIT_RISCV_CSR: /* Process CSR value returned from user-space */ ret = kvm_riscv_vcpu_csr_return(vcpu, vcpu->run); break; default: ret = 0; break; } if (ret) { kvm_vcpu_srcu_read_unlock(vcpu); return ret; } if (run->immediate_exit) { kvm_vcpu_srcu_read_unlock(vcpu); return -EINTR; } vcpu_load(vcpu); kvm_sigset_activate(vcpu); ret = 1; run->exit_reason = KVM_EXIT_UNKNOWN; while (ret > 0) { /* Check conditions before entering the guest */ ret = xfer_to_guest_mode_handle_work(vcpu); if (ret) continue; ret = 1; kvm_riscv_gstage_vmid_update(vcpu); kvm_riscv_check_vcpu_requests(vcpu); preempt_disable(); /* Update AIA HW state before entering guest */ ret = kvm_riscv_vcpu_aia_update(vcpu); if (ret <= 0) { preempt_enable(); continue; } local_irq_disable(); /* * Ensure we set mode to IN_GUEST_MODE after we disable * interrupts and before the final VCPU requests check. * See the comment in kvm_vcpu_exiting_guest_mode() and * Documentation/virt/kvm/vcpu-requests.rst */ vcpu->mode = IN_GUEST_MODE; kvm_vcpu_srcu_read_unlock(vcpu); smp_mb__after_srcu_read_unlock(); /* * We might have got VCPU interrupts updated asynchronously * so update it in HW. */ kvm_riscv_vcpu_flush_interrupts(vcpu); /* Update HVIP CSR for current CPU */ kvm_riscv_update_hvip(vcpu); if (kvm_riscv_gstage_vmid_ver_changed(&vcpu->kvm->arch.vmid) || kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending()) { vcpu->mode = OUTSIDE_GUEST_MODE; local_irq_enable(); preempt_enable(); kvm_vcpu_srcu_read_lock(vcpu); continue; } /* * Cleanup stale TLB enteries * * Note: This should be done after G-stage VMID has been * updated using kvm_riscv_gstage_vmid_ver_changed() */ kvm_riscv_local_tlb_sanitize(vcpu); guest_timing_enter_irqoff(); kvm_riscv_vcpu_enter_exit(vcpu); vcpu->mode = OUTSIDE_GUEST_MODE; vcpu->stat.exits++; /* * Save SCAUSE, STVAL, HTVAL, and HTINST because we might * get an interrupt between __kvm_riscv_switch_to() and * local_irq_enable() which can potentially change CSRs. */ trap.sepc = vcpu->arch.guest_context.sepc; trap.scause = csr_read(CSR_SCAUSE); trap.stval = csr_read(CSR_STVAL); trap.htval = csr_read(CSR_HTVAL); trap.htinst = csr_read(CSR_HTINST); /* Syncup interrupts state with HW */ kvm_riscv_vcpu_sync_interrupts(vcpu); /* * We must ensure that any pending interrupts are taken before * we exit guest timing so that timer ticks are accounted as * guest time. Transiently unmask interrupts so that any * pending interrupts are taken. * * There's no barrier which ensures that pending interrupts are * recognised, so we just hope that the CPU takes any pending * interrupts between the enable and disable. */ local_irq_enable(); local_irq_disable(); guest_timing_exit_irqoff(); local_irq_enable(); preempt_enable(); kvm_vcpu_srcu_read_lock(vcpu); ret = kvm_riscv_vcpu_exit(vcpu, run, &trap); } kvm_sigset_deactivate(vcpu); vcpu_put(vcpu); kvm_vcpu_srcu_read_unlock(vcpu); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1