Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anup Patel | 3384 | 99.47% | 9 | 64.29% |
Atish Patra | 15 | 0.44% | 3 | 21.43% |
Sean Christopherson | 3 | 0.09% | 2 | 14.29% |
Total | 3402 | 14 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Western Digital Corporation or its affiliates. * Copyright (c) 2022 Ventana Micro Systems Inc. */ #include <linux/bitops.h> #include <linux/kvm_host.h> #include <asm/cpufeature.h> #define INSN_OPCODE_MASK 0x007c #define INSN_OPCODE_SHIFT 2 #define INSN_OPCODE_SYSTEM 28 #define INSN_MASK_WFI 0xffffffff #define INSN_MATCH_WFI 0x10500073 #define INSN_MATCH_CSRRW 0x1073 #define INSN_MASK_CSRRW 0x707f #define INSN_MATCH_CSRRS 0x2073 #define INSN_MASK_CSRRS 0x707f #define INSN_MATCH_CSRRC 0x3073 #define INSN_MASK_CSRRC 0x707f #define INSN_MATCH_CSRRWI 0x5073 #define INSN_MASK_CSRRWI 0x707f #define INSN_MATCH_CSRRSI 0x6073 #define INSN_MASK_CSRRSI 0x707f #define INSN_MATCH_CSRRCI 0x7073 #define INSN_MASK_CSRRCI 0x707f #define INSN_MATCH_LB 0x3 #define INSN_MASK_LB 0x707f #define INSN_MATCH_LH 0x1003 #define INSN_MASK_LH 0x707f #define INSN_MATCH_LW 0x2003 #define INSN_MASK_LW 0x707f #define INSN_MATCH_LD 0x3003 #define INSN_MASK_LD 0x707f #define INSN_MATCH_LBU 0x4003 #define INSN_MASK_LBU 0x707f #define INSN_MATCH_LHU 0x5003 #define INSN_MASK_LHU 0x707f #define INSN_MATCH_LWU 0x6003 #define INSN_MASK_LWU 0x707f #define INSN_MATCH_SB 0x23 #define INSN_MASK_SB 0x707f #define INSN_MATCH_SH 0x1023 #define INSN_MASK_SH 0x707f #define INSN_MATCH_SW 0x2023 #define INSN_MASK_SW 0x707f #define INSN_MATCH_SD 0x3023 #define INSN_MASK_SD 0x707f #define INSN_MATCH_C_LD 0x6000 #define INSN_MASK_C_LD 0xe003 #define INSN_MATCH_C_SD 0xe000 #define INSN_MASK_C_SD 0xe003 #define INSN_MATCH_C_LW 0x4000 #define INSN_MASK_C_LW 0xe003 #define INSN_MATCH_C_SW 0xc000 #define INSN_MASK_C_SW 0xe003 #define INSN_MATCH_C_LDSP 0x6002 #define INSN_MASK_C_LDSP 0xe003 #define INSN_MATCH_C_SDSP 0xe002 #define INSN_MASK_C_SDSP 0xe003 #define INSN_MATCH_C_LWSP 0x4002 #define INSN_MASK_C_LWSP 0xe003 #define INSN_MATCH_C_SWSP 0xc002 #define INSN_MASK_C_SWSP 0xe003 #define INSN_16BIT_MASK 0x3 #define INSN_IS_16BIT(insn) (((insn) & INSN_16BIT_MASK) != INSN_16BIT_MASK) #define INSN_LEN(insn) (INSN_IS_16BIT(insn) ? 2 : 4) #ifdef CONFIG_64BIT #define LOG_REGBYTES 3 #else #define LOG_REGBYTES 2 #endif #define REGBYTES (1 << LOG_REGBYTES) #define SH_RD 7 #define SH_RS1 15 #define SH_RS2 20 #define SH_RS2C 2 #define MASK_RX 0x1f #define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1)) #define RVC_LW_IMM(x) ((RV_X(x, 6, 1) << 2) | \ (RV_X(x, 10, 3) << 3) | \ (RV_X(x, 5, 1) << 6)) #define RVC_LD_IMM(x) ((RV_X(x, 10, 3) << 3) | \ (RV_X(x, 5, 2) << 6)) #define RVC_LWSP_IMM(x) ((RV_X(x, 4, 3) << 2) | \ (RV_X(x, 12, 1) << 5) | \ (RV_X(x, 2, 2) << 6)) #define RVC_LDSP_IMM(x) ((RV_X(x, 5, 2) << 3) | \ (RV_X(x, 12, 1) << 5) | \ (RV_X(x, 2, 3) << 6)) #define RVC_SWSP_IMM(x) ((RV_X(x, 9, 4) << 2) | \ (RV_X(x, 7, 2) << 6)) #define RVC_SDSP_IMM(x) ((RV_X(x, 10, 3) << 3) | \ (RV_X(x, 7, 3) << 6)) #define RVC_RS1S(insn) (8 + RV_X(insn, SH_RD, 3)) #define RVC_RS2S(insn) (8 + RV_X(insn, SH_RS2C, 3)) #define RVC_RS2(insn) RV_X(insn, SH_RS2C, 5) #define SHIFT_RIGHT(x, y) \ ((y) < 0 ? ((x) << -(y)) : ((x) >> (y))) #define REG_MASK \ ((1 << (5 + LOG_REGBYTES)) - (1 << LOG_REGBYTES)) #define REG_OFFSET(insn, pos) \ (SHIFT_RIGHT((insn), (pos) - LOG_REGBYTES) & REG_MASK) #define REG_PTR(insn, pos, regs) \ ((ulong *)((ulong)(regs) + REG_OFFSET(insn, pos))) #define GET_FUNCT3(insn) (((insn) >> 12) & 7) #define GET_RS1(insn, regs) (*REG_PTR(insn, SH_RS1, regs)) #define GET_RS2(insn, regs) (*REG_PTR(insn, SH_RS2, regs)) #define GET_RS1S(insn, regs) (*REG_PTR(RVC_RS1S(insn), 0, regs)) #define GET_RS2S(insn, regs) (*REG_PTR(RVC_RS2S(insn), 0, regs)) #define GET_RS2C(insn, regs) (*REG_PTR(insn, SH_RS2C, regs)) #define GET_SP(regs) (*REG_PTR(2, 0, regs)) #define SET_RD(insn, regs, val) (*REG_PTR(insn, SH_RD, regs) = (val)) #define IMM_I(insn) ((s32)(insn) >> 20) #define IMM_S(insn) (((s32)(insn) >> 25 << 5) | \ (s32)(((insn) >> 7) & 0x1f)) struct insn_func { unsigned long mask; unsigned long match; /* * Possible return values are as follows: * 1) Returns < 0 for error case * 2) Returns 0 for exit to user-space * 3) Returns 1 to continue with next sepc * 4) Returns 2 to continue with same sepc * 5) Returns 3 to inject illegal instruction trap and continue * 6) Returns 4 to inject virtual instruction trap and continue * * Use enum kvm_insn_return for return values */ int (*func)(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn); }; static int truly_illegal_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn) { struct kvm_cpu_trap utrap = { 0 }; /* Redirect trap to Guest VCPU */ utrap.sepc = vcpu->arch.guest_context.sepc; utrap.scause = EXC_INST_ILLEGAL; utrap.stval = insn; utrap.htval = 0; utrap.htinst = 0; kvm_riscv_vcpu_trap_redirect(vcpu, &utrap); return 1; } static int truly_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn) { struct kvm_cpu_trap utrap = { 0 }; /* Redirect trap to Guest VCPU */ utrap.sepc = vcpu->arch.guest_context.sepc; utrap.scause = EXC_VIRTUAL_INST_FAULT; utrap.stval = insn; utrap.htval = 0; utrap.htinst = 0; kvm_riscv_vcpu_trap_redirect(vcpu, &utrap); return 1; } /** * kvm_riscv_vcpu_wfi -- Emulate wait for interrupt (WFI) behaviour * * @vcpu: The VCPU pointer */ void kvm_riscv_vcpu_wfi(struct kvm_vcpu *vcpu) { if (!kvm_arch_vcpu_runnable(vcpu)) { kvm_vcpu_srcu_read_unlock(vcpu); kvm_vcpu_halt(vcpu); kvm_vcpu_srcu_read_lock(vcpu); } } static int wfi_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn) { vcpu->stat.wfi_exit_stat++; kvm_riscv_vcpu_wfi(vcpu); return KVM_INSN_CONTINUE_NEXT_SEPC; } struct csr_func { unsigned int base; unsigned int count; /* * Possible return values are as same as "func" callback in * "struct insn_func". */ int (*func)(struct kvm_vcpu *vcpu, unsigned int csr_num, unsigned long *val, unsigned long new_val, unsigned long wr_mask); }; static int seed_csr_rmw(struct kvm_vcpu *vcpu, unsigned int csr_num, unsigned long *val, unsigned long new_val, unsigned long wr_mask) { if (!riscv_isa_extension_available(vcpu->arch.isa, ZKR)) return KVM_INSN_ILLEGAL_TRAP; return KVM_INSN_EXIT_TO_USER_SPACE; } static const struct csr_func csr_funcs[] = { KVM_RISCV_VCPU_AIA_CSR_FUNCS KVM_RISCV_VCPU_HPMCOUNTER_CSR_FUNCS { .base = CSR_SEED, .count = 1, .func = seed_csr_rmw }, }; /** * kvm_riscv_vcpu_csr_return -- Handle CSR read/write after user space * emulation or in-kernel emulation * * @vcpu: The VCPU pointer * @run: The VCPU run struct containing the CSR data * * Returns > 0 upon failure and 0 upon success */ int kvm_riscv_vcpu_csr_return(struct kvm_vcpu *vcpu, struct kvm_run *run) { ulong insn; if (vcpu->arch.csr_decode.return_handled) return 0; vcpu->arch.csr_decode.return_handled = 1; /* Update destination register for CSR reads */ insn = vcpu->arch.csr_decode.insn; if ((insn >> SH_RD) & MASK_RX) SET_RD(insn, &vcpu->arch.guest_context, run->riscv_csr.ret_value); /* Move to next instruction */ vcpu->arch.guest_context.sepc += INSN_LEN(insn); return 0; } static int csr_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn) { int i, rc = KVM_INSN_ILLEGAL_TRAP; unsigned int csr_num = insn >> SH_RS2; unsigned int rs1_num = (insn >> SH_RS1) & MASK_RX; ulong rs1_val = GET_RS1(insn, &vcpu->arch.guest_context); const struct csr_func *tcfn, *cfn = NULL; ulong val = 0, wr_mask = 0, new_val = 0; /* Decode the CSR instruction */ switch (GET_FUNCT3(insn)) { case GET_FUNCT3(INSN_MATCH_CSRRW): wr_mask = -1UL; new_val = rs1_val; break; case GET_FUNCT3(INSN_MATCH_CSRRS): wr_mask = rs1_val; new_val = -1UL; break; case GET_FUNCT3(INSN_MATCH_CSRRC): wr_mask = rs1_val; new_val = 0; break; case GET_FUNCT3(INSN_MATCH_CSRRWI): wr_mask = -1UL; new_val = rs1_num; break; case GET_FUNCT3(INSN_MATCH_CSRRSI): wr_mask = rs1_num; new_val = -1UL; break; case GET_FUNCT3(INSN_MATCH_CSRRCI): wr_mask = rs1_num; new_val = 0; break; default: return rc; } /* Save instruction decode info */ vcpu->arch.csr_decode.insn = insn; vcpu->arch.csr_decode.return_handled = 0; /* Update CSR details in kvm_run struct */ run->riscv_csr.csr_num = csr_num; run->riscv_csr.new_value = new_val; run->riscv_csr.write_mask = wr_mask; run->riscv_csr.ret_value = 0; /* Find in-kernel CSR function */ for (i = 0; i < ARRAY_SIZE(csr_funcs); i++) { tcfn = &csr_funcs[i]; if ((tcfn->base <= csr_num) && (csr_num < (tcfn->base + tcfn->count))) { cfn = tcfn; break; } } /* First try in-kernel CSR emulation */ if (cfn && cfn->func) { rc = cfn->func(vcpu, csr_num, &val, new_val, wr_mask); if (rc > KVM_INSN_EXIT_TO_USER_SPACE) { if (rc == KVM_INSN_CONTINUE_NEXT_SEPC) { run->riscv_csr.ret_value = val; vcpu->stat.csr_exit_kernel++; kvm_riscv_vcpu_csr_return(vcpu, run); rc = KVM_INSN_CONTINUE_SAME_SEPC; } return rc; } } /* Exit to user-space for CSR emulation */ if (rc <= KVM_INSN_EXIT_TO_USER_SPACE) { vcpu->stat.csr_exit_user++; run->exit_reason = KVM_EXIT_RISCV_CSR; } return rc; } static const struct insn_func system_opcode_funcs[] = { { .mask = INSN_MASK_CSRRW, .match = INSN_MATCH_CSRRW, .func = csr_insn, }, { .mask = INSN_MASK_CSRRS, .match = INSN_MATCH_CSRRS, .func = csr_insn, }, { .mask = INSN_MASK_CSRRC, .match = INSN_MATCH_CSRRC, .func = csr_insn, }, { .mask = INSN_MASK_CSRRWI, .match = INSN_MATCH_CSRRWI, .func = csr_insn, }, { .mask = INSN_MASK_CSRRSI, .match = INSN_MATCH_CSRRSI, .func = csr_insn, }, { .mask = INSN_MASK_CSRRCI, .match = INSN_MATCH_CSRRCI, .func = csr_insn, }, { .mask = INSN_MASK_WFI, .match = INSN_MATCH_WFI, .func = wfi_insn, }, }; static int system_opcode_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, ulong insn) { int i, rc = KVM_INSN_ILLEGAL_TRAP; const struct insn_func *ifn; for (i = 0; i < ARRAY_SIZE(system_opcode_funcs); i++) { ifn = &system_opcode_funcs[i]; if ((insn & ifn->mask) == ifn->match) { rc = ifn->func(vcpu, run, insn); break; } } switch (rc) { case KVM_INSN_ILLEGAL_TRAP: return truly_illegal_insn(vcpu, run, insn); case KVM_INSN_VIRTUAL_TRAP: return truly_virtual_insn(vcpu, run, insn); case KVM_INSN_CONTINUE_NEXT_SEPC: vcpu->arch.guest_context.sepc += INSN_LEN(insn); break; default: break; } return (rc <= 0) ? rc : 1; } /** * kvm_riscv_vcpu_virtual_insn -- Handle virtual instruction trap * * @vcpu: The VCPU pointer * @run: The VCPU run struct containing the mmio data * @trap: Trap details * * Returns > 0 to continue run-loop * Returns 0 to exit run-loop and handle in user-space. * Returns < 0 to report failure and exit run-loop */ int kvm_riscv_vcpu_virtual_insn(struct kvm_vcpu *vcpu, struct kvm_run *run, struct kvm_cpu_trap *trap) { unsigned long insn = trap->stval; struct kvm_cpu_trap utrap = { 0 }; struct kvm_cpu_context *ct; if (unlikely(INSN_IS_16BIT(insn))) { if (insn == 0) { ct = &vcpu->arch.guest_context; insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc, &utrap); if (utrap.scause) { utrap.sepc = ct->sepc; kvm_riscv_vcpu_trap_redirect(vcpu, &utrap); return 1; } } if (INSN_IS_16BIT(insn)) return truly_illegal_insn(vcpu, run, insn); } switch ((insn & INSN_OPCODE_MASK) >> INSN_OPCODE_SHIFT) { case INSN_OPCODE_SYSTEM: return system_opcode_insn(vcpu, run, insn); default: return truly_illegal_insn(vcpu, run, insn); } } /** * kvm_riscv_vcpu_mmio_load -- Emulate MMIO load instruction * * @vcpu: The VCPU pointer * @run: The VCPU run struct containing the mmio data * @fault_addr: Guest physical address to load * @htinst: Transformed encoding of the load instruction * * Returns > 0 to continue run-loop * Returns 0 to exit run-loop and handle in user-space. * Returns < 0 to report failure and exit run-loop */ int kvm_riscv_vcpu_mmio_load(struct kvm_vcpu *vcpu, struct kvm_run *run, unsigned long fault_addr, unsigned long htinst) { u8 data_buf[8]; unsigned long insn; int shift = 0, len = 0, insn_len = 0; struct kvm_cpu_trap utrap = { 0 }; struct kvm_cpu_context *ct = &vcpu->arch.guest_context; /* Determine trapped instruction */ if (htinst & 0x1) { /* * Bit[0] == 1 implies trapped instruction value is * transformed instruction or custom instruction. */ insn = htinst | INSN_16BIT_MASK; insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2; } else { /* * Bit[0] == 0 implies trapped instruction value is * zero or special value. */ insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc, &utrap); if (utrap.scause) { /* Redirect trap if we failed to read instruction */ utrap.sepc = ct->sepc; kvm_riscv_vcpu_trap_redirect(vcpu, &utrap); return 1; } insn_len = INSN_LEN(insn); } /* Decode length of MMIO and shift */ if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) { len = 4; shift = 8 * (sizeof(ulong) - len); } else if ((insn & INSN_MASK_LB) == INSN_MATCH_LB) { len = 1; shift = 8 * (sizeof(ulong) - len); } else if ((insn & INSN_MASK_LBU) == INSN_MATCH_LBU) { len = 1; shift = 8 * (sizeof(ulong) - len); #ifdef CONFIG_64BIT } else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) { len = 8; shift = 8 * (sizeof(ulong) - len); } else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) { len = 4; #endif } else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) { len = 2; shift = 8 * (sizeof(ulong) - len); } else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) { len = 2; #ifdef CONFIG_64BIT } else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) { len = 8; shift = 8 * (sizeof(ulong) - len); insn = RVC_RS2S(insn) << SH_RD; } else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP && ((insn >> SH_RD) & 0x1f)) { len = 8; shift = 8 * (sizeof(ulong) - len); #endif } else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) { len = 4; shift = 8 * (sizeof(ulong) - len); insn = RVC_RS2S(insn) << SH_RD; } else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP && ((insn >> SH_RD) & 0x1f)) { len = 4; shift = 8 * (sizeof(ulong) - len); } else { return -EOPNOTSUPP; } /* Fault address should be aligned to length of MMIO */ if (fault_addr & (len - 1)) return -EIO; /* Save instruction decode info */ vcpu->arch.mmio_decode.insn = insn; vcpu->arch.mmio_decode.insn_len = insn_len; vcpu->arch.mmio_decode.shift = shift; vcpu->arch.mmio_decode.len = len; vcpu->arch.mmio_decode.return_handled = 0; /* Update MMIO details in kvm_run struct */ run->mmio.is_write = false; run->mmio.phys_addr = fault_addr; run->mmio.len = len; /* Try to handle MMIO access in the kernel */ if (!kvm_io_bus_read(vcpu, KVM_MMIO_BUS, fault_addr, len, data_buf)) { /* Successfully handled MMIO access in the kernel so resume */ memcpy(run->mmio.data, data_buf, len); vcpu->stat.mmio_exit_kernel++; kvm_riscv_vcpu_mmio_return(vcpu, run); return 1; } /* Exit to userspace for MMIO emulation */ vcpu->stat.mmio_exit_user++; run->exit_reason = KVM_EXIT_MMIO; return 0; } /** * kvm_riscv_vcpu_mmio_store -- Emulate MMIO store instruction * * @vcpu: The VCPU pointer * @run: The VCPU run struct containing the mmio data * @fault_addr: Guest physical address to store * @htinst: Transformed encoding of the store instruction * * Returns > 0 to continue run-loop * Returns 0 to exit run-loop and handle in user-space. * Returns < 0 to report failure and exit run-loop */ int kvm_riscv_vcpu_mmio_store(struct kvm_vcpu *vcpu, struct kvm_run *run, unsigned long fault_addr, unsigned long htinst) { u8 data8; u16 data16; u32 data32; u64 data64; ulong data; unsigned long insn; int len = 0, insn_len = 0; struct kvm_cpu_trap utrap = { 0 }; struct kvm_cpu_context *ct = &vcpu->arch.guest_context; /* Determine trapped instruction */ if (htinst & 0x1) { /* * Bit[0] == 1 implies trapped instruction value is * transformed instruction or custom instruction. */ insn = htinst | INSN_16BIT_MASK; insn_len = (htinst & BIT(1)) ? INSN_LEN(insn) : 2; } else { /* * Bit[0] == 0 implies trapped instruction value is * zero or special value. */ insn = kvm_riscv_vcpu_unpriv_read(vcpu, true, ct->sepc, &utrap); if (utrap.scause) { /* Redirect trap if we failed to read instruction */ utrap.sepc = ct->sepc; kvm_riscv_vcpu_trap_redirect(vcpu, &utrap); return 1; } insn_len = INSN_LEN(insn); } data = GET_RS2(insn, &vcpu->arch.guest_context); data8 = data16 = data32 = data64 = data; if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) { len = 4; } else if ((insn & INSN_MASK_SB) == INSN_MATCH_SB) { len = 1; #ifdef CONFIG_64BIT } else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) { len = 8; #endif } else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) { len = 2; #ifdef CONFIG_64BIT } else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) { len = 8; data64 = GET_RS2S(insn, &vcpu->arch.guest_context); } else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP && ((insn >> SH_RD) & 0x1f)) { len = 8; data64 = GET_RS2C(insn, &vcpu->arch.guest_context); #endif } else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) { len = 4; data32 = GET_RS2S(insn, &vcpu->arch.guest_context); } else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP && ((insn >> SH_RD) & 0x1f)) { len = 4; data32 = GET_RS2C(insn, &vcpu->arch.guest_context); } else { return -EOPNOTSUPP; } /* Fault address should be aligned to length of MMIO */ if (fault_addr & (len - 1)) return -EIO; /* Save instruction decode info */ vcpu->arch.mmio_decode.insn = insn; vcpu->arch.mmio_decode.insn_len = insn_len; vcpu->arch.mmio_decode.shift = 0; vcpu->arch.mmio_decode.len = len; vcpu->arch.mmio_decode.return_handled = 0; /* Copy data to kvm_run instance */ switch (len) { case 1: *((u8 *)run->mmio.data) = data8; break; case 2: *((u16 *)run->mmio.data) = data16; break; case 4: *((u32 *)run->mmio.data) = data32; break; case 8: *((u64 *)run->mmio.data) = data64; break; default: return -EOPNOTSUPP; } /* Update MMIO details in kvm_run struct */ run->mmio.is_write = true; run->mmio.phys_addr = fault_addr; run->mmio.len = len; /* Try to handle MMIO access in the kernel */ if (!kvm_io_bus_write(vcpu, KVM_MMIO_BUS, fault_addr, len, run->mmio.data)) { /* Successfully handled MMIO access in the kernel so resume */ vcpu->stat.mmio_exit_kernel++; kvm_riscv_vcpu_mmio_return(vcpu, run); return 1; } /* Exit to userspace for MMIO emulation */ vcpu->stat.mmio_exit_user++; run->exit_reason = KVM_EXIT_MMIO; return 0; } /** * kvm_riscv_vcpu_mmio_return -- Handle MMIO loads after user space emulation * or in-kernel IO emulation * * @vcpu: The VCPU pointer * @run: The VCPU run struct containing the mmio data */ int kvm_riscv_vcpu_mmio_return(struct kvm_vcpu *vcpu, struct kvm_run *run) { u8 data8; u16 data16; u32 data32; u64 data64; ulong insn; int len, shift; if (vcpu->arch.mmio_decode.return_handled) return 0; vcpu->arch.mmio_decode.return_handled = 1; insn = vcpu->arch.mmio_decode.insn; if (run->mmio.is_write) goto done; len = vcpu->arch.mmio_decode.len; shift = vcpu->arch.mmio_decode.shift; switch (len) { case 1: data8 = *((u8 *)run->mmio.data); SET_RD(insn, &vcpu->arch.guest_context, (ulong)data8 << shift >> shift); break; case 2: data16 = *((u16 *)run->mmio.data); SET_RD(insn, &vcpu->arch.guest_context, (ulong)data16 << shift >> shift); break; case 4: data32 = *((u32 *)run->mmio.data); SET_RD(insn, &vcpu->arch.guest_context, (ulong)data32 << shift >> shift); break; case 8: data64 = *((u64 *)run->mmio.data); SET_RD(insn, &vcpu->arch.guest_context, (ulong)data64 << shift >> shift); break; default: return -EOPNOTSUPP; } done: /* Move to next instruction */ vcpu->arch.guest_context.sepc += vcpu->arch.mmio_decode.insn_len; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1