Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anup Patel | 808 | 76.95% | 1 | 5.26% |
Gary Guo | 67 | 6.38% | 1 | 5.26% |
Palmer Dabbelt | 43 | 4.10% | 2 | 10.53% |
Andrew Waterman | 42 | 4.00% | 1 | 5.26% |
Samuel Holland | 32 | 3.05% | 4 | 21.05% |
Charlie Jenkins | 18 | 1.71% | 1 | 5.26% |
Andrea Parri | 9 | 0.86% | 1 | 5.26% |
Vineet Gupta | 9 | 0.86% | 1 | 5.26% |
JiSheng Zhang | 8 | 0.76% | 2 | 10.53% |
Guo Ren | 8 | 0.76% | 1 | 5.26% |
Alexandre Ghiti | 2 | 0.19% | 1 | 5.26% |
Bin Meng | 2 | 0.19% | 1 | 5.26% |
Kefeng Wang | 1 | 0.10% | 1 | 5.26% |
ye xingchen | 1 | 0.10% | 1 | 5.26% |
Total | 1050 | 19 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2012 Regents of the University of California * Copyright (C) 2017 SiFive * Copyright (C) 2021 Western Digital Corporation or its affiliates. */ #include <linux/bitops.h> #include <linux/cpumask.h> #include <linux/mm.h> #include <linux/percpu.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/static_key.h> #include <asm/tlbflush.h> #include <asm/cacheflush.h> #include <asm/mmu_context.h> #include <asm/switch_to.h> #ifdef CONFIG_MMU DEFINE_STATIC_KEY_FALSE(use_asid_allocator); static unsigned long num_asids; static atomic_long_t current_version; static DEFINE_RAW_SPINLOCK(context_lock); static cpumask_t context_tlb_flush_pending; static unsigned long *context_asid_map; static DEFINE_PER_CPU(atomic_long_t, active_context); static DEFINE_PER_CPU(unsigned long, reserved_context); static bool check_update_reserved_context(unsigned long cntx, unsigned long newcntx) { int cpu; bool hit = false; /* * Iterate over the set of reserved CONTEXT looking for a match. * If we find one, then we can update our mm to use new CONTEXT * (i.e. the same CONTEXT in the current_version) but we can't * exit the loop early, since we need to ensure that all copies * of the old CONTEXT are updated to reflect the mm. Failure to do * so could result in us missing the reserved CONTEXT in a future * version. */ for_each_possible_cpu(cpu) { if (per_cpu(reserved_context, cpu) == cntx) { hit = true; per_cpu(reserved_context, cpu) = newcntx; } } return hit; } static void __flush_context(void) { int i; unsigned long cntx; /* Must be called with context_lock held */ lockdep_assert_held(&context_lock); /* Update the list of reserved ASIDs and the ASID bitmap. */ bitmap_zero(context_asid_map, num_asids); /* Mark already active ASIDs as used */ for_each_possible_cpu(i) { cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0); /* * If this CPU has already been through a rollover, but * hasn't run another task in the meantime, we must preserve * its reserved CONTEXT, as this is the only trace we have of * the process it is still running. */ if (cntx == 0) cntx = per_cpu(reserved_context, i); __set_bit(cntx2asid(cntx), context_asid_map); per_cpu(reserved_context, i) = cntx; } /* Mark ASID #0 as used because it is used at boot-time */ __set_bit(0, context_asid_map); /* Queue a TLB invalidation for each CPU on next context-switch */ cpumask_setall(&context_tlb_flush_pending); } static unsigned long __new_context(struct mm_struct *mm) { static u32 cur_idx = 1; unsigned long cntx = atomic_long_read(&mm->context.id); unsigned long asid, ver = atomic_long_read(¤t_version); /* Must be called with context_lock held */ lockdep_assert_held(&context_lock); if (cntx != 0) { unsigned long newcntx = ver | cntx2asid(cntx); /* * If our current CONTEXT was active during a rollover, we * can continue to use it and this was just a false alarm. */ if (check_update_reserved_context(cntx, newcntx)) return newcntx; /* * We had a valid CONTEXT in a previous life, so try to * re-use it if possible. */ if (!__test_and_set_bit(cntx2asid(cntx), context_asid_map)) return newcntx; } /* * Allocate a free ASID. If we can't find one then increment * current_version and flush all ASIDs. */ asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx); if (asid != num_asids) goto set_asid; /* We're out of ASIDs, so increment current_version */ ver = atomic_long_add_return_relaxed(BIT(SATP_ASID_BITS), ¤t_version); /* Flush everything */ __flush_context(); /* We have more ASIDs than CPUs, so this will always succeed */ asid = find_next_zero_bit(context_asid_map, num_asids, 1); set_asid: __set_bit(asid, context_asid_map); cur_idx = asid; return asid | ver; } static void set_mm_asid(struct mm_struct *mm, unsigned int cpu) { unsigned long flags; bool need_flush_tlb = false; unsigned long cntx, old_active_cntx; cntx = atomic_long_read(&mm->context.id); /* * If our active_context is non-zero and the context matches the * current_version, then we update the active_context entry with a * relaxed cmpxchg. * * Following is how we handle racing with a concurrent rollover: * * - We get a zero back from the cmpxchg and end up waiting on the * lock. Taking the lock synchronises with the rollover and so * we are forced to see the updated verion. * * - We get a valid context back from the cmpxchg then we continue * using old ASID because __flush_context() would have marked ASID * of active_context as used and next context switch we will * allocate new context. */ old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu)); if (old_active_cntx && (cntx2version(cntx) == atomic_long_read(¤t_version)) && atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu), old_active_cntx, cntx)) goto switch_mm_fast; raw_spin_lock_irqsave(&context_lock, flags); /* Check that our ASID belongs to the current_version. */ cntx = atomic_long_read(&mm->context.id); if (cntx2version(cntx) != atomic_long_read(¤t_version)) { cntx = __new_context(mm); atomic_long_set(&mm->context.id, cntx); } if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending)) need_flush_tlb = true; atomic_long_set(&per_cpu(active_context, cpu), cntx); raw_spin_unlock_irqrestore(&context_lock, flags); switch_mm_fast: csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | (cntx2asid(cntx) << SATP_ASID_SHIFT) | satp_mode); if (need_flush_tlb) local_flush_tlb_all(); } static void set_mm_noasid(struct mm_struct *mm) { /* Switch the page table and blindly nuke entire local TLB */ csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode); local_flush_tlb_all_asid(0); } static inline void set_mm(struct mm_struct *prev, struct mm_struct *next, unsigned int cpu) { /* * The mm_cpumask indicates which harts' TLBs contain the virtual * address mapping of the mm. Compared to noasid, using asid * can't guarantee that stale TLB entries are invalidated because * the asid mechanism wouldn't flush TLB for every switch_mm for * performance. So when using asid, keep all CPUs footmarks in * cpumask() until mm reset. */ cpumask_set_cpu(cpu, mm_cpumask(next)); if (static_branch_unlikely(&use_asid_allocator)) { set_mm_asid(next, cpu); } else { cpumask_clear_cpu(cpu, mm_cpumask(prev)); set_mm_noasid(next); } } static int __init asids_init(void) { unsigned long asid_bits, old; /* Figure-out number of ASID bits in HW */ old = csr_read(CSR_SATP); asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT); csr_write(CSR_SATP, asid_bits); asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT) & SATP_ASID_MASK; asid_bits = fls_long(asid_bits); csr_write(CSR_SATP, old); /* * In the process of determining number of ASID bits (above) * we polluted the TLB of current HART so let's do TLB flushed * to remove unwanted TLB enteries. */ local_flush_tlb_all(); /* Pre-compute ASID details */ if (asid_bits) { num_asids = 1 << asid_bits; } /* * Use ASID allocator only if number of HW ASIDs are * at-least twice more than CPUs */ if (num_asids > (2 * num_possible_cpus())) { atomic_long_set(¤t_version, BIT(SATP_ASID_BITS)); context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL); if (!context_asid_map) panic("Failed to allocate bitmap for %lu ASIDs\n", num_asids); __set_bit(0, context_asid_map); static_branch_enable(&use_asid_allocator); pr_info("ASID allocator using %lu bits (%lu entries)\n", asid_bits, num_asids); } else { pr_info("ASID allocator disabled (%lu bits)\n", asid_bits); } return 0; } early_initcall(asids_init); #else static inline void set_mm(struct mm_struct *prev, struct mm_struct *next, unsigned int cpu) { /* Nothing to do here when there is no MMU */ } #endif /* * When necessary, performs a deferred icache flush for the given MM context, * on the local CPU. RISC-V has no direct mechanism for instruction cache * shoot downs, so instead we send an IPI that informs the remote harts they * need to flush their local instruction caches. To avoid pathologically slow * behavior in a common case (a bunch of single-hart processes on a many-hart * machine, ie 'make -j') we avoid the IPIs for harts that are not currently * executing a MM context and instead schedule a deferred local instruction * cache flush to be performed before execution resumes on each hart. This * actually performs that local instruction cache flush, which implicitly only * refers to the current hart. * * The "cpu" argument must be the current local CPU number. */ static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu, struct task_struct *task) { #ifdef CONFIG_SMP if (cpumask_test_and_clear_cpu(cpu, &mm->context.icache_stale_mask)) { /* * Ensure the remote hart's writes are visible to this hart. * This pairs with a barrier in flush_icache_mm. */ smp_mb(); /* * If cache will be flushed in switch_to, no need to flush here. */ if (!(task && switch_to_should_flush_icache(task))) local_flush_icache_all(); } #endif } void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *task) { unsigned int cpu; if (unlikely(prev == next)) return; membarrier_arch_switch_mm(prev, next, task); /* * Mark the current MM context as inactive, and the next as * active. This is at least used by the icache flushing * routines in order to determine who should be flushed. */ cpu = smp_processor_id(); set_mm(prev, next, cpu); flush_icache_deferred(next, cpu, task); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1