Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hendrik Brueckner | 1043 | 97.93% | 1 | 14.29% |
Eric Biggers | 15 | 1.41% | 1 | 14.29% |
Heiko Carstens | 6 | 0.56% | 4 | 57.14% |
Greg Kroah-Hartman | 1 | 0.09% | 1 | 14.29% |
Total | 1065 | 7 |
// SPDX-License-Identifier: GPL-2.0 /* * Crypto-API module for CRC-32 algorithms implemented with the * z/Architecture Vector Extension Facility. * * Copyright IBM Corp. 2015 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> */ #define KMSG_COMPONENT "crc32-vx" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/cpufeature.h> #include <linux/crc32.h> #include <crypto/internal/hash.h> #include <asm/fpu.h> #include "crc32-vx.h" #define CRC32_BLOCK_SIZE 1 #define CRC32_DIGEST_SIZE 4 #define VX_MIN_LEN 64 #define VX_ALIGNMENT 16L #define VX_ALIGN_MASK (VX_ALIGNMENT - 1) struct crc_ctx { u32 key; }; struct crc_desc_ctx { u32 crc; }; /* * DEFINE_CRC32_VX() - Define a CRC-32 function using the vector extension * * Creates a function to perform a particular CRC-32 computation. Depending * on the message buffer, the hardware-accelerated or software implementation * is used. Note that the message buffer is aligned to improve fetch * operations of VECTOR LOAD MULTIPLE instructions. * */ #define DEFINE_CRC32_VX(___fname, ___crc32_vx, ___crc32_sw) \ static u32 __pure ___fname(u32 crc, \ unsigned char const *data, size_t datalen) \ { \ unsigned long prealign, aligned, remaining; \ DECLARE_KERNEL_FPU_ONSTACK16(vxstate); \ \ if (datalen < VX_MIN_LEN + VX_ALIGN_MASK) \ return ___crc32_sw(crc, data, datalen); \ \ if ((unsigned long)data & VX_ALIGN_MASK) { \ prealign = VX_ALIGNMENT - \ ((unsigned long)data & VX_ALIGN_MASK); \ datalen -= prealign; \ crc = ___crc32_sw(crc, data, prealign); \ data = (void *)((unsigned long)data + prealign); \ } \ \ aligned = datalen & ~VX_ALIGN_MASK; \ remaining = datalen & VX_ALIGN_MASK; \ \ kernel_fpu_begin(&vxstate, KERNEL_VXR_LOW); \ crc = ___crc32_vx(crc, data, aligned); \ kernel_fpu_end(&vxstate, KERNEL_VXR_LOW); \ \ if (remaining) \ crc = ___crc32_sw(crc, data + aligned, remaining); \ \ return crc; \ } DEFINE_CRC32_VX(crc32_le_vx, crc32_le_vgfm_16, crc32_le) DEFINE_CRC32_VX(crc32_be_vx, crc32_be_vgfm_16, crc32_be) DEFINE_CRC32_VX(crc32c_le_vx, crc32c_le_vgfm_16, __crc32c_le) static int crc32_vx_cra_init_zero(struct crypto_tfm *tfm) { struct crc_ctx *mctx = crypto_tfm_ctx(tfm); mctx->key = 0; return 0; } static int crc32_vx_cra_init_invert(struct crypto_tfm *tfm) { struct crc_ctx *mctx = crypto_tfm_ctx(tfm); mctx->key = ~0; return 0; } static int crc32_vx_init(struct shash_desc *desc) { struct crc_ctx *mctx = crypto_shash_ctx(desc->tfm); struct crc_desc_ctx *ctx = shash_desc_ctx(desc); ctx->crc = mctx->key; return 0; } static int crc32_vx_setkey(struct crypto_shash *tfm, const u8 *newkey, unsigned int newkeylen) { struct crc_ctx *mctx = crypto_shash_ctx(tfm); if (newkeylen != sizeof(mctx->key)) return -EINVAL; mctx->key = le32_to_cpu(*(__le32 *)newkey); return 0; } static int crc32be_vx_setkey(struct crypto_shash *tfm, const u8 *newkey, unsigned int newkeylen) { struct crc_ctx *mctx = crypto_shash_ctx(tfm); if (newkeylen != sizeof(mctx->key)) return -EINVAL; mctx->key = be32_to_cpu(*(__be32 *)newkey); return 0; } static int crc32le_vx_final(struct shash_desc *desc, u8 *out) { struct crc_desc_ctx *ctx = shash_desc_ctx(desc); *(__le32 *)out = cpu_to_le32p(&ctx->crc); return 0; } static int crc32be_vx_final(struct shash_desc *desc, u8 *out) { struct crc_desc_ctx *ctx = shash_desc_ctx(desc); *(__be32 *)out = cpu_to_be32p(&ctx->crc); return 0; } static int crc32c_vx_final(struct shash_desc *desc, u8 *out) { struct crc_desc_ctx *ctx = shash_desc_ctx(desc); /* * Perform a final XOR with 0xFFFFFFFF to be in sync * with the generic crc32c shash implementation. */ *(__le32 *)out = ~cpu_to_le32p(&ctx->crc); return 0; } static int __crc32le_vx_finup(u32 *crc, const u8 *data, unsigned int len, u8 *out) { *(__le32 *)out = cpu_to_le32(crc32_le_vx(*crc, data, len)); return 0; } static int __crc32be_vx_finup(u32 *crc, const u8 *data, unsigned int len, u8 *out) { *(__be32 *)out = cpu_to_be32(crc32_be_vx(*crc, data, len)); return 0; } static int __crc32c_vx_finup(u32 *crc, const u8 *data, unsigned int len, u8 *out) { /* * Perform a final XOR with 0xFFFFFFFF to be in sync * with the generic crc32c shash implementation. */ *(__le32 *)out = ~cpu_to_le32(crc32c_le_vx(*crc, data, len)); return 0; } #define CRC32_VX_FINUP(alg, func) \ static int alg ## _vx_finup(struct shash_desc *desc, const u8 *data, \ unsigned int datalen, u8 *out) \ { \ return __ ## alg ## _vx_finup(shash_desc_ctx(desc), \ data, datalen, out); \ } CRC32_VX_FINUP(crc32le, crc32_le_vx) CRC32_VX_FINUP(crc32be, crc32_be_vx) CRC32_VX_FINUP(crc32c, crc32c_le_vx) #define CRC32_VX_DIGEST(alg, func) \ static int alg ## _vx_digest(struct shash_desc *desc, const u8 *data, \ unsigned int len, u8 *out) \ { \ return __ ## alg ## _vx_finup(crypto_shash_ctx(desc->tfm), \ data, len, out); \ } CRC32_VX_DIGEST(crc32le, crc32_le_vx) CRC32_VX_DIGEST(crc32be, crc32_be_vx) CRC32_VX_DIGEST(crc32c, crc32c_le_vx) #define CRC32_VX_UPDATE(alg, func) \ static int alg ## _vx_update(struct shash_desc *desc, const u8 *data, \ unsigned int datalen) \ { \ struct crc_desc_ctx *ctx = shash_desc_ctx(desc); \ ctx->crc = func(ctx->crc, data, datalen); \ return 0; \ } CRC32_VX_UPDATE(crc32le, crc32_le_vx) CRC32_VX_UPDATE(crc32be, crc32_be_vx) CRC32_VX_UPDATE(crc32c, crc32c_le_vx) static struct shash_alg crc32_vx_algs[] = { /* CRC-32 LE */ { .init = crc32_vx_init, .setkey = crc32_vx_setkey, .update = crc32le_vx_update, .final = crc32le_vx_final, .finup = crc32le_vx_finup, .digest = crc32le_vx_digest, .descsize = sizeof(struct crc_desc_ctx), .digestsize = CRC32_DIGEST_SIZE, .base = { .cra_name = "crc32", .cra_driver_name = "crc32-vx", .cra_priority = 200, .cra_flags = CRYPTO_ALG_OPTIONAL_KEY, .cra_blocksize = CRC32_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crc_ctx), .cra_module = THIS_MODULE, .cra_init = crc32_vx_cra_init_zero, }, }, /* CRC-32 BE */ { .init = crc32_vx_init, .setkey = crc32be_vx_setkey, .update = crc32be_vx_update, .final = crc32be_vx_final, .finup = crc32be_vx_finup, .digest = crc32be_vx_digest, .descsize = sizeof(struct crc_desc_ctx), .digestsize = CRC32_DIGEST_SIZE, .base = { .cra_name = "crc32be", .cra_driver_name = "crc32be-vx", .cra_priority = 200, .cra_flags = CRYPTO_ALG_OPTIONAL_KEY, .cra_blocksize = CRC32_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crc_ctx), .cra_module = THIS_MODULE, .cra_init = crc32_vx_cra_init_zero, }, }, /* CRC-32C LE */ { .init = crc32_vx_init, .setkey = crc32_vx_setkey, .update = crc32c_vx_update, .final = crc32c_vx_final, .finup = crc32c_vx_finup, .digest = crc32c_vx_digest, .descsize = sizeof(struct crc_desc_ctx), .digestsize = CRC32_DIGEST_SIZE, .base = { .cra_name = "crc32c", .cra_driver_name = "crc32c-vx", .cra_priority = 200, .cra_flags = CRYPTO_ALG_OPTIONAL_KEY, .cra_blocksize = CRC32_BLOCK_SIZE, .cra_ctxsize = sizeof(struct crc_ctx), .cra_module = THIS_MODULE, .cra_init = crc32_vx_cra_init_invert, }, }, }; static int __init crc_vx_mod_init(void) { return crypto_register_shashes(crc32_vx_algs, ARRAY_SIZE(crc32_vx_algs)); } static void __exit crc_vx_mod_exit(void) { crypto_unregister_shashes(crc32_vx_algs, ARRAY_SIZE(crc32_vx_algs)); } module_cpu_feature_match(S390_CPU_FEATURE_VXRS, crc_vx_mod_init); module_exit(crc_vx_mod_exit); MODULE_AUTHOR("Hendrik Brueckner <brueckner@linux.vnet.ibm.com>"); MODULE_LICENSE("GPL"); MODULE_ALIAS_CRYPTO("crc32"); MODULE_ALIAS_CRYPTO("crc32-vx"); MODULE_ALIAS_CRYPTO("crc32c"); MODULE_ALIAS_CRYPTO("crc32c-vx");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1