Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin Schwidefsky | 1471 | 77.14% | 21 | 35.00% |
Andrew Morton | 234 | 12.27% | 4 | 6.67% |
Frédéric Weisbecker | 88 | 4.61% | 9 | 15.00% |
Jan Glauber | 41 | 2.15% | 1 | 1.67% |
Hendrik Brueckner | 16 | 0.84% | 3 | 5.00% |
Heiko Carstens | 16 | 0.84% | 6 | 10.00% |
Linus Torvalds (pre-git) | 11 | 0.58% | 4 | 6.67% |
Stanislaw Gruszka | 9 | 0.47% | 1 | 1.67% |
Thomas Gleixner | 4 | 0.21% | 1 | 1.67% |
Vasily Gorbik | 4 | 0.21% | 2 | 3.33% |
Ingo Molnar | 3 | 0.16% | 2 | 3.33% |
Gerald Schaefer | 3 | 0.16% | 1 | 1.67% |
Arnaldo Carvalho de Melo | 2 | 0.10% | 1 | 1.67% |
Mete Durlu | 2 | 0.10% | 1 | 1.67% |
Masahiro Yamada | 1 | 0.05% | 1 | 1.67% |
Greg Kroah-Hartman | 1 | 0.05% | 1 | 1.67% |
Sven Schnelle | 1 | 0.05% | 1 | 1.67% |
Total | 1907 | 60 |
// SPDX-License-Identifier: GPL-2.0 /* * Virtual cpu timer based timer functions. * * Copyright IBM Corp. 2004, 2012 * Author(s): Jan Glauber <jan.glauber@de.ibm.com> */ #include <linux/kernel_stat.h> #include <linux/export.h> #include <linux/kernel.h> #include <linux/timex.h> #include <linux/types.h> #include <linux/time.h> #include <asm/alternative.h> #include <asm/cputime.h> #include <asm/vtimer.h> #include <asm/vtime.h> #include <asm/cpu_mf.h> #include <asm/smp.h> #include "entry.h" static void virt_timer_expire(void); static LIST_HEAD(virt_timer_list); static DEFINE_SPINLOCK(virt_timer_lock); static atomic64_t virt_timer_current; static atomic64_t virt_timer_elapsed; DEFINE_PER_CPU(u64, mt_cycles[8]); static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 }; static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 }; static DEFINE_PER_CPU(u64, mt_scaling_jiffies); static inline void set_vtimer(u64 expires) { u64 timer; asm volatile( " stpt %0\n" /* Store current cpu timer value */ " spt %1" /* Set new value imm. afterwards */ : "=Q" (timer) : "Q" (expires)); S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer; S390_lowcore.last_update_timer = expires; } static inline int virt_timer_forward(u64 elapsed) { BUG_ON(!irqs_disabled()); if (list_empty(&virt_timer_list)) return 0; elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed); return elapsed >= atomic64_read(&virt_timer_current); } static void update_mt_scaling(void) { u64 cycles_new[8], *cycles_old; u64 delta, fac, mult, div; int i; stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new); cycles_old = this_cpu_ptr(mt_cycles); fac = 1; mult = div = 0; for (i = 0; i <= smp_cpu_mtid; i++) { delta = cycles_new[i] - cycles_old[i]; div += delta; mult *= i + 1; mult += delta * fac; fac *= i + 1; } div *= fac; if (div > 0) { /* Update scaling factor */ __this_cpu_write(mt_scaling_mult, mult); __this_cpu_write(mt_scaling_div, div); memcpy(cycles_old, cycles_new, sizeof(u64) * (smp_cpu_mtid + 1)); } __this_cpu_write(mt_scaling_jiffies, jiffies_64); } static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new) { u64 delta; delta = new - *tsk_vtime; *tsk_vtime = new; return delta; } static inline u64 scale_vtime(u64 vtime) { u64 mult = __this_cpu_read(mt_scaling_mult); u64 div = __this_cpu_read(mt_scaling_div); if (smp_cpu_mtid) return vtime * mult / div; return vtime; } static void account_system_index_scaled(struct task_struct *p, u64 cputime, enum cpu_usage_stat index) { p->stimescaled += cputime_to_nsecs(scale_vtime(cputime)); account_system_index_time(p, cputime_to_nsecs(cputime), index); } /* * Update process times based on virtual cpu times stored by entry.S * to the lowcore fields user_timer, system_timer & steal_clock. */ static int do_account_vtime(struct task_struct *tsk) { u64 timer, clock, user, guest, system, hardirq, softirq; timer = S390_lowcore.last_update_timer; clock = S390_lowcore.last_update_clock; asm volatile( " stpt %0\n" /* Store current cpu timer value */ " stckf %1" /* Store current tod clock value */ : "=Q" (S390_lowcore.last_update_timer), "=Q" (S390_lowcore.last_update_clock) : : "cc"); clock = S390_lowcore.last_update_clock - clock; timer -= S390_lowcore.last_update_timer; if (hardirq_count()) S390_lowcore.hardirq_timer += timer; else S390_lowcore.system_timer += timer; /* Update MT utilization calculation */ if (smp_cpu_mtid && time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies))) update_mt_scaling(); /* Calculate cputime delta */ user = update_tsk_timer(&tsk->thread.user_timer, READ_ONCE(S390_lowcore.user_timer)); guest = update_tsk_timer(&tsk->thread.guest_timer, READ_ONCE(S390_lowcore.guest_timer)); system = update_tsk_timer(&tsk->thread.system_timer, READ_ONCE(S390_lowcore.system_timer)); hardirq = update_tsk_timer(&tsk->thread.hardirq_timer, READ_ONCE(S390_lowcore.hardirq_timer)); softirq = update_tsk_timer(&tsk->thread.softirq_timer, READ_ONCE(S390_lowcore.softirq_timer)); S390_lowcore.steal_timer += clock - user - guest - system - hardirq - softirq; /* Push account value */ if (user) { account_user_time(tsk, cputime_to_nsecs(user)); tsk->utimescaled += cputime_to_nsecs(scale_vtime(user)); } if (guest) { account_guest_time(tsk, cputime_to_nsecs(guest)); tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest)); } if (system) account_system_index_scaled(tsk, system, CPUTIME_SYSTEM); if (hardirq) account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ); if (softirq) account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ); return virt_timer_forward(user + guest + system + hardirq + softirq); } void vtime_task_switch(struct task_struct *prev) { do_account_vtime(prev); prev->thread.user_timer = S390_lowcore.user_timer; prev->thread.guest_timer = S390_lowcore.guest_timer; prev->thread.system_timer = S390_lowcore.system_timer; prev->thread.hardirq_timer = S390_lowcore.hardirq_timer; prev->thread.softirq_timer = S390_lowcore.softirq_timer; S390_lowcore.user_timer = current->thread.user_timer; S390_lowcore.guest_timer = current->thread.guest_timer; S390_lowcore.system_timer = current->thread.system_timer; S390_lowcore.hardirq_timer = current->thread.hardirq_timer; S390_lowcore.softirq_timer = current->thread.softirq_timer; } /* * In s390, accounting pending user time also implies * accounting system time in order to correctly compute * the stolen time accounting. */ void vtime_flush(struct task_struct *tsk) { u64 steal, avg_steal; if (do_account_vtime(tsk)) virt_timer_expire(); steal = S390_lowcore.steal_timer; avg_steal = S390_lowcore.avg_steal_timer; if ((s64) steal > 0) { S390_lowcore.steal_timer = 0; account_steal_time(cputime_to_nsecs(steal)); avg_steal += steal; } S390_lowcore.avg_steal_timer = avg_steal / 2; } static u64 vtime_delta(void) { u64 timer = S390_lowcore.last_update_timer; S390_lowcore.last_update_timer = get_cpu_timer(); return timer - S390_lowcore.last_update_timer; } /* * Update process times based on virtual cpu times stored by entry.S * to the lowcore fields user_timer, system_timer & steal_clock. */ void vtime_account_kernel(struct task_struct *tsk) { u64 delta = vtime_delta(); if (tsk->flags & PF_VCPU) S390_lowcore.guest_timer += delta; else S390_lowcore.system_timer += delta; virt_timer_forward(delta); } EXPORT_SYMBOL_GPL(vtime_account_kernel); void vtime_account_softirq(struct task_struct *tsk) { u64 delta = vtime_delta(); S390_lowcore.softirq_timer += delta; virt_timer_forward(delta); } void vtime_account_hardirq(struct task_struct *tsk) { u64 delta = vtime_delta(); S390_lowcore.hardirq_timer += delta; virt_timer_forward(delta); } /* * Sorted add to a list. List is linear searched until first bigger * element is found. */ static void list_add_sorted(struct vtimer_list *timer, struct list_head *head) { struct vtimer_list *tmp; list_for_each_entry(tmp, head, entry) { if (tmp->expires > timer->expires) { list_add_tail(&timer->entry, &tmp->entry); return; } } list_add_tail(&timer->entry, head); } /* * Handler for expired virtual CPU timer. */ static void virt_timer_expire(void) { struct vtimer_list *timer, *tmp; unsigned long elapsed; LIST_HEAD(cb_list); /* walk timer list, fire all expired timers */ spin_lock(&virt_timer_lock); elapsed = atomic64_read(&virt_timer_elapsed); list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) { if (timer->expires < elapsed) /* move expired timer to the callback queue */ list_move_tail(&timer->entry, &cb_list); else timer->expires -= elapsed; } if (!list_empty(&virt_timer_list)) { timer = list_first_entry(&virt_timer_list, struct vtimer_list, entry); atomic64_set(&virt_timer_current, timer->expires); } atomic64_sub(elapsed, &virt_timer_elapsed); spin_unlock(&virt_timer_lock); /* Do callbacks and recharge periodic timers */ list_for_each_entry_safe(timer, tmp, &cb_list, entry) { list_del_init(&timer->entry); timer->function(timer->data); if (timer->interval) { /* Recharge interval timer */ timer->expires = timer->interval + atomic64_read(&virt_timer_elapsed); spin_lock(&virt_timer_lock); list_add_sorted(timer, &virt_timer_list); spin_unlock(&virt_timer_lock); } } } void init_virt_timer(struct vtimer_list *timer) { timer->function = NULL; INIT_LIST_HEAD(&timer->entry); } EXPORT_SYMBOL(init_virt_timer); static inline int vtimer_pending(struct vtimer_list *timer) { return !list_empty(&timer->entry); } static void internal_add_vtimer(struct vtimer_list *timer) { if (list_empty(&virt_timer_list)) { /* First timer, just program it. */ atomic64_set(&virt_timer_current, timer->expires); atomic64_set(&virt_timer_elapsed, 0); list_add(&timer->entry, &virt_timer_list); } else { /* Update timer against current base. */ timer->expires += atomic64_read(&virt_timer_elapsed); if (likely((s64) timer->expires < (s64) atomic64_read(&virt_timer_current))) /* The new timer expires before the current timer. */ atomic64_set(&virt_timer_current, timer->expires); /* Insert new timer into the list. */ list_add_sorted(timer, &virt_timer_list); } } static void __add_vtimer(struct vtimer_list *timer, int periodic) { unsigned long flags; timer->interval = periodic ? timer->expires : 0; spin_lock_irqsave(&virt_timer_lock, flags); internal_add_vtimer(timer); spin_unlock_irqrestore(&virt_timer_lock, flags); } /* * add_virt_timer - add a oneshot virtual CPU timer */ void add_virt_timer(struct vtimer_list *timer) { __add_vtimer(timer, 0); } EXPORT_SYMBOL(add_virt_timer); /* * add_virt_timer_int - add an interval virtual CPU timer */ void add_virt_timer_periodic(struct vtimer_list *timer) { __add_vtimer(timer, 1); } EXPORT_SYMBOL(add_virt_timer_periodic); static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic) { unsigned long flags; int rc; BUG_ON(!timer->function); if (timer->expires == expires && vtimer_pending(timer)) return 1; spin_lock_irqsave(&virt_timer_lock, flags); rc = vtimer_pending(timer); if (rc) list_del_init(&timer->entry); timer->interval = periodic ? expires : 0; timer->expires = expires; internal_add_vtimer(timer); spin_unlock_irqrestore(&virt_timer_lock, flags); return rc; } /* * returns whether it has modified a pending timer (1) or not (0) */ int mod_virt_timer(struct vtimer_list *timer, u64 expires) { return __mod_vtimer(timer, expires, 0); } EXPORT_SYMBOL(mod_virt_timer); /* * returns whether it has modified a pending timer (1) or not (0) */ int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires) { return __mod_vtimer(timer, expires, 1); } EXPORT_SYMBOL(mod_virt_timer_periodic); /* * Delete a virtual timer. * * returns whether the deleted timer was pending (1) or not (0) */ int del_virt_timer(struct vtimer_list *timer) { unsigned long flags; if (!vtimer_pending(timer)) return 0; spin_lock_irqsave(&virt_timer_lock, flags); list_del_init(&timer->entry); spin_unlock_irqrestore(&virt_timer_lock, flags); return 1; } EXPORT_SYMBOL(del_virt_timer); /* * Start the virtual CPU timer on the current CPU. */ void vtime_init(void) { /* set initial cpu timer */ set_vtimer(VTIMER_MAX_SLICE); /* Setup initial MT scaling values */ if (smp_cpu_mtid) { __this_cpu_write(mt_scaling_jiffies, jiffies); __this_cpu_write(mt_scaling_mult, 1); __this_cpu_write(mt_scaling_div, 1); stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles)); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1