Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Hildenbrand | 4915 | 69.76% | 37 | 31.62% |
Pierre Morel | 665 | 9.44% | 13 | 11.11% |
Claudio Imbrenda | 457 | 6.49% | 3 | 2.56% |
Heiko Carstens | 236 | 3.35% | 5 | 4.27% |
Christian Bornträger | 226 | 3.21% | 21 | 17.95% |
Fan Zhang | 200 | 2.84% | 1 | 0.85% |
Collin L. Walling | 58 | 0.82% | 1 | 0.85% |
Thomas Huth | 54 | 0.77% | 4 | 3.42% |
QingFeng Hao | 39 | 0.55% | 1 | 0.85% |
Carsten Otte | 31 | 0.44% | 4 | 3.42% |
Nina Schoetterl-Glausch | 27 | 0.38% | 4 | 3.42% |
Nico Boehr | 24 | 0.34% | 2 | 1.71% |
Hollis Blanchard | 18 | 0.26% | 1 | 0.85% |
Janosch Frank | 15 | 0.21% | 1 | 0.85% |
Collin Walling | 14 | 0.20% | 2 | 1.71% |
Farhan Ali | 13 | 0.18% | 1 | 0.85% |
Janis Schoetterl-Glausch | 11 | 0.16% | 1 | 0.85% |
Martin Schwidefsky | 9 | 0.13% | 4 | 3.42% |
Xiantao Zhang | 7 | 0.10% | 1 | 0.85% |
Konstantin Weitz | 7 | 0.10% | 1 | 0.85% |
Dominik Dingel | 5 | 0.07% | 1 | 0.85% |
Alexander Yarygin | 3 | 0.04% | 1 | 0.85% |
Ingo Molnar | 3 | 0.04% | 1 | 0.85% |
Eugene (jno) Dvurechenski | 2 | 0.03% | 2 | 1.71% |
Cornelia Huck | 2 | 0.03% | 1 | 0.85% |
Paolo Bonzini | 2 | 0.03% | 1 | 0.85% |
Sean Christopherson | 2 | 0.03% | 1 | 0.85% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 0.85% |
Total | 7046 | 117 |
// SPDX-License-Identifier: GPL-2.0 /* * kvm nested virtualization support for s390x * * Copyright IBM Corp. 2016, 2018 * * Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com> */ #include <linux/vmalloc.h> #include <linux/kvm_host.h> #include <linux/bug.h> #include <linux/list.h> #include <linux/bitmap.h> #include <linux/sched/signal.h> #include <linux/io.h> #include <asm/gmap.h> #include <asm/mmu_context.h> #include <asm/sclp.h> #include <asm/nmi.h> #include <asm/dis.h> #include <asm/facility.h> #include "kvm-s390.h" #include "gaccess.h" struct vsie_page { struct kvm_s390_sie_block scb_s; /* 0x0000 */ /* * the backup info for machine check. ensure it's at * the same offset as that in struct sie_page! */ struct mcck_volatile_info mcck_info; /* 0x0200 */ /* * The pinned original scb. Be aware that other VCPUs can modify * it while we read from it. Values that are used for conditions or * are reused conditionally, should be accessed via READ_ONCE. */ struct kvm_s390_sie_block *scb_o; /* 0x0218 */ /* the shadow gmap in use by the vsie_page */ struct gmap *gmap; /* 0x0220 */ /* address of the last reported fault to guest2 */ unsigned long fault_addr; /* 0x0228 */ /* calculated guest addresses of satellite control blocks */ gpa_t sca_gpa; /* 0x0230 */ gpa_t itdba_gpa; /* 0x0238 */ gpa_t gvrd_gpa; /* 0x0240 */ gpa_t riccbd_gpa; /* 0x0248 */ gpa_t sdnx_gpa; /* 0x0250 */ __u8 reserved[0x0700 - 0x0258]; /* 0x0258 */ struct kvm_s390_crypto_cb crycb; /* 0x0700 */ __u8 fac[S390_ARCH_FAC_LIST_SIZE_BYTE]; /* 0x0800 */ }; /* trigger a validity icpt for the given scb */ static int set_validity_icpt(struct kvm_s390_sie_block *scb, __u16 reason_code) { scb->ipa = 0x1000; scb->ipb = ((__u32) reason_code) << 16; scb->icptcode = ICPT_VALIDITY; return 1; } /* mark the prefix as unmapped, this will block the VSIE */ static void prefix_unmapped(struct vsie_page *vsie_page) { atomic_or(PROG_REQUEST, &vsie_page->scb_s.prog20); } /* mark the prefix as unmapped and wait until the VSIE has been left */ static void prefix_unmapped_sync(struct vsie_page *vsie_page) { prefix_unmapped(vsie_page); if (vsie_page->scb_s.prog0c & PROG_IN_SIE) atomic_or(CPUSTAT_STOP_INT, &vsie_page->scb_s.cpuflags); while (vsie_page->scb_s.prog0c & PROG_IN_SIE) cpu_relax(); } /* mark the prefix as mapped, this will allow the VSIE to run */ static void prefix_mapped(struct vsie_page *vsie_page) { atomic_andnot(PROG_REQUEST, &vsie_page->scb_s.prog20); } /* test if the prefix is mapped into the gmap shadow */ static int prefix_is_mapped(struct vsie_page *vsie_page) { return !(atomic_read(&vsie_page->scb_s.prog20) & PROG_REQUEST); } /* copy the updated intervention request bits into the shadow scb */ static void update_intervention_requests(struct vsie_page *vsie_page) { const int bits = CPUSTAT_STOP_INT | CPUSTAT_IO_INT | CPUSTAT_EXT_INT; int cpuflags; cpuflags = atomic_read(&vsie_page->scb_o->cpuflags); atomic_andnot(bits, &vsie_page->scb_s.cpuflags); atomic_or(cpuflags & bits, &vsie_page->scb_s.cpuflags); } /* shadow (filter and validate) the cpuflags */ static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; struct kvm_s390_sie_block *scb_o = vsie_page->scb_o; int newflags, cpuflags = atomic_read(&scb_o->cpuflags); /* we don't allow ESA/390 guests */ if (!(cpuflags & CPUSTAT_ZARCH)) return set_validity_icpt(scb_s, 0x0001U); if (cpuflags & (CPUSTAT_RRF | CPUSTAT_MCDS)) return set_validity_icpt(scb_s, 0x0001U); else if (cpuflags & (CPUSTAT_SLSV | CPUSTAT_SLSR)) return set_validity_icpt(scb_s, 0x0007U); /* intervention requests will be set later */ newflags = CPUSTAT_ZARCH; if (cpuflags & CPUSTAT_GED && test_kvm_facility(vcpu->kvm, 8)) newflags |= CPUSTAT_GED; if (cpuflags & CPUSTAT_GED2 && test_kvm_facility(vcpu->kvm, 78)) { if (cpuflags & CPUSTAT_GED) return set_validity_icpt(scb_s, 0x0001U); newflags |= CPUSTAT_GED2; } if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GPERE)) newflags |= cpuflags & CPUSTAT_P; if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GSLS)) newflags |= cpuflags & CPUSTAT_SM; if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IBS)) newflags |= cpuflags & CPUSTAT_IBS; if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_KSS)) newflags |= cpuflags & CPUSTAT_KSS; atomic_set(&scb_s->cpuflags, newflags); return 0; } /* Copy to APCB FORMAT1 from APCB FORMAT0 */ static int setup_apcb10(struct kvm_vcpu *vcpu, struct kvm_s390_apcb1 *apcb_s, unsigned long crycb_gpa, struct kvm_s390_apcb1 *apcb_h) { struct kvm_s390_apcb0 tmp; unsigned long apcb_gpa; apcb_gpa = crycb_gpa + offsetof(struct kvm_s390_crypto_cb, apcb0); if (read_guest_real(vcpu, apcb_gpa, &tmp, sizeof(struct kvm_s390_apcb0))) return -EFAULT; apcb_s->apm[0] = apcb_h->apm[0] & tmp.apm[0]; apcb_s->aqm[0] = apcb_h->aqm[0] & tmp.aqm[0] & 0xffff000000000000UL; apcb_s->adm[0] = apcb_h->adm[0] & tmp.adm[0] & 0xffff000000000000UL; return 0; } /** * setup_apcb00 - Copy to APCB FORMAT0 from APCB FORMAT0 * @vcpu: pointer to the virtual CPU * @apcb_s: pointer to start of apcb in the shadow crycb * @crycb_gpa: guest physical address to start of original guest crycb * @apcb_h: pointer to start of apcb in the guest1 * * Returns 0 and -EFAULT on error reading guest apcb */ static int setup_apcb00(struct kvm_vcpu *vcpu, unsigned long *apcb_s, unsigned long crycb_gpa, unsigned long *apcb_h) { unsigned long apcb_gpa; apcb_gpa = crycb_gpa + offsetof(struct kvm_s390_crypto_cb, apcb0); if (read_guest_real(vcpu, apcb_gpa, apcb_s, sizeof(struct kvm_s390_apcb0))) return -EFAULT; bitmap_and(apcb_s, apcb_s, apcb_h, BITS_PER_BYTE * sizeof(struct kvm_s390_apcb0)); return 0; } /** * setup_apcb11 - Copy the FORMAT1 APCB from the guest to the shadow CRYCB * @vcpu: pointer to the virtual CPU * @apcb_s: pointer to start of apcb in the shadow crycb * @crycb_gpa: guest physical address to start of original guest crycb * @apcb_h: pointer to start of apcb in the host * * Returns 0 and -EFAULT on error reading guest apcb */ static int setup_apcb11(struct kvm_vcpu *vcpu, unsigned long *apcb_s, unsigned long crycb_gpa, unsigned long *apcb_h) { unsigned long apcb_gpa; apcb_gpa = crycb_gpa + offsetof(struct kvm_s390_crypto_cb, apcb1); if (read_guest_real(vcpu, apcb_gpa, apcb_s, sizeof(struct kvm_s390_apcb1))) return -EFAULT; bitmap_and(apcb_s, apcb_s, apcb_h, BITS_PER_BYTE * sizeof(struct kvm_s390_apcb1)); return 0; } /** * setup_apcb - Create a shadow copy of the apcb. * @vcpu: pointer to the virtual CPU * @crycb_s: pointer to shadow crycb * @crycb_gpa: guest physical address of original guest crycb * @crycb_h: pointer to the host crycb * @fmt_o: format of the original guest crycb. * @fmt_h: format of the host crycb. * * Checks the compatibility between the guest and host crycb and calls the * appropriate copy function. * * Return 0 or an error number if the guest and host crycb are incompatible. */ static int setup_apcb(struct kvm_vcpu *vcpu, struct kvm_s390_crypto_cb *crycb_s, const u32 crycb_gpa, struct kvm_s390_crypto_cb *crycb_h, int fmt_o, int fmt_h) { switch (fmt_o) { case CRYCB_FORMAT2: if ((crycb_gpa & PAGE_MASK) != ((crycb_gpa + 256) & PAGE_MASK)) return -EACCES; if (fmt_h != CRYCB_FORMAT2) return -EINVAL; return setup_apcb11(vcpu, (unsigned long *)&crycb_s->apcb1, crycb_gpa, (unsigned long *)&crycb_h->apcb1); case CRYCB_FORMAT1: switch (fmt_h) { case CRYCB_FORMAT2: return setup_apcb10(vcpu, &crycb_s->apcb1, crycb_gpa, &crycb_h->apcb1); case CRYCB_FORMAT1: return setup_apcb00(vcpu, (unsigned long *) &crycb_s->apcb0, crycb_gpa, (unsigned long *) &crycb_h->apcb0); } break; case CRYCB_FORMAT0: if ((crycb_gpa & PAGE_MASK) != ((crycb_gpa + 32) & PAGE_MASK)) return -EACCES; switch (fmt_h) { case CRYCB_FORMAT2: return setup_apcb10(vcpu, &crycb_s->apcb1, crycb_gpa, &crycb_h->apcb1); case CRYCB_FORMAT1: case CRYCB_FORMAT0: return setup_apcb00(vcpu, (unsigned long *) &crycb_s->apcb0, crycb_gpa, (unsigned long *) &crycb_h->apcb0); } } return -EINVAL; } /** * shadow_crycb - Create a shadow copy of the crycb block * @vcpu: a pointer to the virtual CPU * @vsie_page: a pointer to internal date used for the vSIE * * Create a shadow copy of the crycb block and setup key wrapping, if * requested for guest 3 and enabled for guest 2. * * We accept format-1 or format-2, but we convert format-1 into format-2 * in the shadow CRYCB. * Using format-2 enables the firmware to choose the right format when * scheduling the SIE. * There is nothing to do for format-0. * * This function centralize the issuing of set_validity_icpt() for all * the subfunctions working on the crycb. * * Returns: - 0 if shadowed or nothing to do * - > 0 if control has to be given to guest 2 */ static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; struct kvm_s390_sie_block *scb_o = vsie_page->scb_o; const uint32_t crycbd_o = READ_ONCE(scb_o->crycbd); const u32 crycb_addr = crycbd_o & 0x7ffffff8U; unsigned long *b1, *b2; u8 ecb3_flags; u32 ecd_flags; int apie_h; int apie_s; int key_msk = test_kvm_facility(vcpu->kvm, 76); int fmt_o = crycbd_o & CRYCB_FORMAT_MASK; int fmt_h = vcpu->arch.sie_block->crycbd & CRYCB_FORMAT_MASK; int ret = 0; scb_s->crycbd = 0; apie_h = vcpu->arch.sie_block->eca & ECA_APIE; apie_s = apie_h & scb_o->eca; if (!apie_s && (!key_msk || (fmt_o == CRYCB_FORMAT0))) return 0; if (!crycb_addr) return set_validity_icpt(scb_s, 0x0039U); if (fmt_o == CRYCB_FORMAT1) if ((crycb_addr & PAGE_MASK) != ((crycb_addr + 128) & PAGE_MASK)) return set_validity_icpt(scb_s, 0x003CU); if (apie_s) { ret = setup_apcb(vcpu, &vsie_page->crycb, crycb_addr, vcpu->kvm->arch.crypto.crycb, fmt_o, fmt_h); if (ret) goto end; scb_s->eca |= scb_o->eca & ECA_APIE; } /* we may only allow it if enabled for guest 2 */ ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 & (ECB3_AES | ECB3_DEA); ecd_flags = scb_o->ecd & vcpu->arch.sie_block->ecd & ECD_ECC; if (!ecb3_flags && !ecd_flags) goto end; /* copy only the wrapping keys */ if (read_guest_real(vcpu, crycb_addr + 72, vsie_page->crycb.dea_wrapping_key_mask, 56)) return set_validity_icpt(scb_s, 0x0035U); scb_s->ecb3 |= ecb3_flags; scb_s->ecd |= ecd_flags; /* xor both blocks in one run */ b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask; b2 = (unsigned long *) vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask; /* as 56%8 == 0, bitmap_xor won't overwrite any data */ bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56); end: switch (ret) { case -EINVAL: return set_validity_icpt(scb_s, 0x0022U); case -EFAULT: return set_validity_icpt(scb_s, 0x0035U); case -EACCES: return set_validity_icpt(scb_s, 0x003CU); } scb_s->crycbd = (u32)virt_to_phys(&vsie_page->crycb) | CRYCB_FORMAT2; return 0; } /* shadow (round up/down) the ibc to avoid validity icpt */ static void prepare_ibc(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; struct kvm_s390_sie_block *scb_o = vsie_page->scb_o; /* READ_ONCE does not work on bitfields - use a temporary variable */ const uint32_t __new_ibc = scb_o->ibc; const uint32_t new_ibc = READ_ONCE(__new_ibc) & 0x0fffU; __u64 min_ibc = (sclp.ibc >> 16) & 0x0fffU; scb_s->ibc = 0; /* ibc installed in g2 and requested for g3 */ if (vcpu->kvm->arch.model.ibc && new_ibc) { scb_s->ibc = new_ibc; /* takte care of the minimum ibc level of the machine */ if (scb_s->ibc < min_ibc) scb_s->ibc = min_ibc; /* take care of the maximum ibc level set for the guest */ if (scb_s->ibc > vcpu->kvm->arch.model.ibc) scb_s->ibc = vcpu->kvm->arch.model.ibc; } } /* unshadow the scb, copying parameters back to the real scb */ static void unshadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; struct kvm_s390_sie_block *scb_o = vsie_page->scb_o; /* interception */ scb_o->icptcode = scb_s->icptcode; scb_o->icptstatus = scb_s->icptstatus; scb_o->ipa = scb_s->ipa; scb_o->ipb = scb_s->ipb; scb_o->gbea = scb_s->gbea; /* timer */ scb_o->cputm = scb_s->cputm; scb_o->ckc = scb_s->ckc; scb_o->todpr = scb_s->todpr; /* guest state */ scb_o->gpsw = scb_s->gpsw; scb_o->gg14 = scb_s->gg14; scb_o->gg15 = scb_s->gg15; memcpy(scb_o->gcr, scb_s->gcr, 128); scb_o->pp = scb_s->pp; /* branch prediction */ if (test_kvm_facility(vcpu->kvm, 82)) { scb_o->fpf &= ~FPF_BPBC; scb_o->fpf |= scb_s->fpf & FPF_BPBC; } /* interrupt intercept */ switch (scb_s->icptcode) { case ICPT_PROGI: case ICPT_INSTPROGI: case ICPT_EXTINT: memcpy((void *)((u64)scb_o + 0xc0), (void *)((u64)scb_s + 0xc0), 0xf0 - 0xc0); break; } if (scb_s->ihcpu != 0xffffU) scb_o->ihcpu = scb_s->ihcpu; } /* * Setup the shadow scb by copying and checking the relevant parts of the g2 * provided scb. * * Returns: - 0 if the scb has been shadowed * - > 0 if control has to be given to guest 2 */ static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_o = vsie_page->scb_o; struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; /* READ_ONCE does not work on bitfields - use a temporary variable */ const uint32_t __new_prefix = scb_o->prefix; const uint32_t new_prefix = READ_ONCE(__new_prefix); const bool wants_tx = READ_ONCE(scb_o->ecb) & ECB_TE; bool had_tx = scb_s->ecb & ECB_TE; unsigned long new_mso = 0; int rc; /* make sure we don't have any leftovers when reusing the scb */ scb_s->icptcode = 0; scb_s->eca = 0; scb_s->ecb = 0; scb_s->ecb2 = 0; scb_s->ecb3 = 0; scb_s->ecd = 0; scb_s->fac = 0; scb_s->fpf = 0; rc = prepare_cpuflags(vcpu, vsie_page); if (rc) goto out; /* timer */ scb_s->cputm = scb_o->cputm; scb_s->ckc = scb_o->ckc; scb_s->todpr = scb_o->todpr; scb_s->epoch = scb_o->epoch; /* guest state */ scb_s->gpsw = scb_o->gpsw; scb_s->gg14 = scb_o->gg14; scb_s->gg15 = scb_o->gg15; memcpy(scb_s->gcr, scb_o->gcr, 128); scb_s->pp = scb_o->pp; /* interception / execution handling */ scb_s->gbea = scb_o->gbea; scb_s->lctl = scb_o->lctl; scb_s->svcc = scb_o->svcc; scb_s->ictl = scb_o->ictl; /* * SKEY handling functions can't deal with false setting of PTE invalid * bits. Therefore we cannot provide interpretation and would later * have to provide own emulation handlers. */ if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_KSS)) scb_s->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; scb_s->icpua = scb_o->icpua; if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_SM)) new_mso = READ_ONCE(scb_o->mso) & 0xfffffffffff00000UL; /* if the hva of the prefix changes, we have to remap the prefix */ if (scb_s->mso != new_mso || scb_s->prefix != new_prefix) prefix_unmapped(vsie_page); /* SIE will do mso/msl validity and exception checks for us */ scb_s->msl = scb_o->msl & 0xfffffffffff00000UL; scb_s->mso = new_mso; scb_s->prefix = new_prefix; /* We have to definitely flush the tlb if this scb never ran */ if (scb_s->ihcpu != 0xffffU) scb_s->ihcpu = scb_o->ihcpu; /* MVPG and Protection Exception Interpretation are always available */ scb_s->eca |= scb_o->eca & (ECA_MVPGI | ECA_PROTEXCI); /* Host-protection-interruption introduced with ESOP */ if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_ESOP)) scb_s->ecb |= scb_o->ecb & ECB_HOSTPROTINT; /* * CPU Topology * This facility only uses the utility field of the SCA and none of * the cpu entries that are problematic with the other interpretation * facilities so we can pass it through */ if (test_kvm_facility(vcpu->kvm, 11)) scb_s->ecb |= scb_o->ecb & ECB_PTF; /* transactional execution */ if (test_kvm_facility(vcpu->kvm, 73) && wants_tx) { /* remap the prefix is tx is toggled on */ if (!had_tx) prefix_unmapped(vsie_page); scb_s->ecb |= ECB_TE; } /* specification exception interpretation */ scb_s->ecb |= scb_o->ecb & ECB_SPECI; /* branch prediction */ if (test_kvm_facility(vcpu->kvm, 82)) scb_s->fpf |= scb_o->fpf & FPF_BPBC; /* SIMD */ if (test_kvm_facility(vcpu->kvm, 129)) { scb_s->eca |= scb_o->eca & ECA_VX; scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT; } /* Run-time-Instrumentation */ if (test_kvm_facility(vcpu->kvm, 64)) scb_s->ecb3 |= scb_o->ecb3 & ECB3_RI; /* Instruction Execution Prevention */ if (test_kvm_facility(vcpu->kvm, 130)) scb_s->ecb2 |= scb_o->ecb2 & ECB2_IEP; /* Guarded Storage */ if (test_kvm_facility(vcpu->kvm, 133)) { scb_s->ecb |= scb_o->ecb & ECB_GS; scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT; } if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIIF)) scb_s->eca |= scb_o->eca & ECA_SII; if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IB)) scb_s->eca |= scb_o->eca & ECA_IB; if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_CEI)) scb_s->eca |= scb_o->eca & ECA_CEI; /* Epoch Extension */ if (test_kvm_facility(vcpu->kvm, 139)) { scb_s->ecd |= scb_o->ecd & ECD_MEF; scb_s->epdx = scb_o->epdx; } /* etoken */ if (test_kvm_facility(vcpu->kvm, 156)) scb_s->ecd |= scb_o->ecd & ECD_ETOKENF; scb_s->hpid = HPID_VSIE; scb_s->cpnc = scb_o->cpnc; prepare_ibc(vcpu, vsie_page); rc = shadow_crycb(vcpu, vsie_page); out: if (rc) unshadow_scb(vcpu, vsie_page); return rc; } void kvm_s390_vsie_gmap_notifier(struct gmap *gmap, unsigned long start, unsigned long end) { struct kvm *kvm = gmap->private; struct vsie_page *cur; unsigned long prefix; struct page *page; int i; if (!gmap_is_shadow(gmap)) return; /* * Only new shadow blocks are added to the list during runtime, * therefore we can safely reference them all the time. */ for (i = 0; i < kvm->arch.vsie.page_count; i++) { page = READ_ONCE(kvm->arch.vsie.pages[i]); if (!page) continue; cur = page_to_virt(page); if (READ_ONCE(cur->gmap) != gmap) continue; prefix = cur->scb_s.prefix << GUEST_PREFIX_SHIFT; /* with mso/msl, the prefix lies at an offset */ prefix += cur->scb_s.mso; if (prefix <= end && start <= prefix + 2 * PAGE_SIZE - 1) prefix_unmapped_sync(cur); } } /* * Map the first prefix page and if tx is enabled also the second prefix page. * * The prefix will be protected, a gmap notifier will inform about unmaps. * The shadow scb must not be executed until the prefix is remapped, this is * guaranteed by properly handling PROG_REQUEST. * * Returns: - 0 on if successfully mapped or already mapped * - > 0 if control has to be given to guest 2 * - -EAGAIN if the caller can retry immediately * - -ENOMEM if out of memory */ static int map_prefix(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; u64 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT; int rc; if (prefix_is_mapped(vsie_page)) return 0; /* mark it as mapped so we can catch any concurrent unmappers */ prefix_mapped(vsie_page); /* with mso/msl, the prefix lies at offset *mso* */ prefix += scb_s->mso; rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix, NULL); if (!rc && (scb_s->ecb & ECB_TE)) rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix + PAGE_SIZE, NULL); /* * We don't have to mprotect, we will be called for all unshadows. * SIE will detect if protection applies and trigger a validity. */ if (rc) prefix_unmapped(vsie_page); if (rc > 0 || rc == -EFAULT) rc = set_validity_icpt(scb_s, 0x0037U); return rc; } /* * Pin the guest page given by gpa and set hpa to the pinned host address. * Will always be pinned writable. * * Returns: - 0 on success * - -EINVAL if the gpa is not valid guest storage */ static int pin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t *hpa) { struct page *page; page = gfn_to_page(kvm, gpa_to_gfn(gpa)); if (is_error_page(page)) return -EINVAL; *hpa = (hpa_t)page_to_phys(page) + (gpa & ~PAGE_MASK); return 0; } /* Unpins a page previously pinned via pin_guest_page, marking it as dirty. */ static void unpin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t hpa) { kvm_release_pfn_dirty(hpa >> PAGE_SHIFT); /* mark the page always as dirty for migration */ mark_page_dirty(kvm, gpa_to_gfn(gpa)); } /* unpin all blocks previously pinned by pin_blocks(), marking them dirty */ static void unpin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; hpa_t hpa; hpa = (u64) scb_s->scaoh << 32 | scb_s->scaol; if (hpa) { unpin_guest_page(vcpu->kvm, vsie_page->sca_gpa, hpa); vsie_page->sca_gpa = 0; scb_s->scaol = 0; scb_s->scaoh = 0; } hpa = scb_s->itdba; if (hpa) { unpin_guest_page(vcpu->kvm, vsie_page->itdba_gpa, hpa); vsie_page->itdba_gpa = 0; scb_s->itdba = 0; } hpa = scb_s->gvrd; if (hpa) { unpin_guest_page(vcpu->kvm, vsie_page->gvrd_gpa, hpa); vsie_page->gvrd_gpa = 0; scb_s->gvrd = 0; } hpa = scb_s->riccbd; if (hpa) { unpin_guest_page(vcpu->kvm, vsie_page->riccbd_gpa, hpa); vsie_page->riccbd_gpa = 0; scb_s->riccbd = 0; } hpa = scb_s->sdnxo; if (hpa) { unpin_guest_page(vcpu->kvm, vsie_page->sdnx_gpa, hpa); vsie_page->sdnx_gpa = 0; scb_s->sdnxo = 0; } } /* * Instead of shadowing some blocks, we can simply forward them because the * addresses in the scb are 64 bit long. * * This works as long as the data lies in one page. If blocks ever exceed one * page, we have to fall back to shadowing. * * As we reuse the sca, the vcpu pointers contained in it are invalid. We must * therefore not enable any facilities that access these pointers (e.g. SIGPIF). * * Returns: - 0 if all blocks were pinned. * - > 0 if control has to be given to guest 2 * - -ENOMEM if out of memory */ static int pin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_o = vsie_page->scb_o; struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; hpa_t hpa; gpa_t gpa; int rc = 0; gpa = READ_ONCE(scb_o->scaol) & ~0xfUL; if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_64BSCAO)) gpa |= (u64) READ_ONCE(scb_o->scaoh) << 32; if (gpa) { if (gpa < 2 * PAGE_SIZE) rc = set_validity_icpt(scb_s, 0x0038U); else if ((gpa & ~0x1fffUL) == kvm_s390_get_prefix(vcpu)) rc = set_validity_icpt(scb_s, 0x0011U); else if ((gpa & PAGE_MASK) != ((gpa + sizeof(struct bsca_block) - 1) & PAGE_MASK)) rc = set_validity_icpt(scb_s, 0x003bU); if (!rc) { rc = pin_guest_page(vcpu->kvm, gpa, &hpa); if (rc) rc = set_validity_icpt(scb_s, 0x0034U); } if (rc) goto unpin; vsie_page->sca_gpa = gpa; scb_s->scaoh = (u32)((u64)hpa >> 32); scb_s->scaol = (u32)(u64)hpa; } gpa = READ_ONCE(scb_o->itdba) & ~0xffUL; if (gpa && (scb_s->ecb & ECB_TE)) { if (gpa < 2 * PAGE_SIZE) { rc = set_validity_icpt(scb_s, 0x0080U); goto unpin; } /* 256 bytes cannot cross page boundaries */ rc = pin_guest_page(vcpu->kvm, gpa, &hpa); if (rc) { rc = set_validity_icpt(scb_s, 0x0080U); goto unpin; } vsie_page->itdba_gpa = gpa; scb_s->itdba = hpa; } gpa = READ_ONCE(scb_o->gvrd) & ~0x1ffUL; if (gpa && (scb_s->eca & ECA_VX) && !(scb_s->ecd & ECD_HOSTREGMGMT)) { if (gpa < 2 * PAGE_SIZE) { rc = set_validity_icpt(scb_s, 0x1310U); goto unpin; } /* * 512 bytes vector registers cannot cross page boundaries * if this block gets bigger, we have to shadow it. */ rc = pin_guest_page(vcpu->kvm, gpa, &hpa); if (rc) { rc = set_validity_icpt(scb_s, 0x1310U); goto unpin; } vsie_page->gvrd_gpa = gpa; scb_s->gvrd = hpa; } gpa = READ_ONCE(scb_o->riccbd) & ~0x3fUL; if (gpa && (scb_s->ecb3 & ECB3_RI)) { if (gpa < 2 * PAGE_SIZE) { rc = set_validity_icpt(scb_s, 0x0043U); goto unpin; } /* 64 bytes cannot cross page boundaries */ rc = pin_guest_page(vcpu->kvm, gpa, &hpa); if (rc) { rc = set_validity_icpt(scb_s, 0x0043U); goto unpin; } /* Validity 0x0044 will be checked by SIE */ vsie_page->riccbd_gpa = gpa; scb_s->riccbd = hpa; } if (((scb_s->ecb & ECB_GS) && !(scb_s->ecd & ECD_HOSTREGMGMT)) || (scb_s->ecd & ECD_ETOKENF)) { unsigned long sdnxc; gpa = READ_ONCE(scb_o->sdnxo) & ~0xfUL; sdnxc = READ_ONCE(scb_o->sdnxo) & 0xfUL; if (!gpa || gpa < 2 * PAGE_SIZE) { rc = set_validity_icpt(scb_s, 0x10b0U); goto unpin; } if (sdnxc < 6 || sdnxc > 12) { rc = set_validity_icpt(scb_s, 0x10b1U); goto unpin; } if (gpa & ((1 << sdnxc) - 1)) { rc = set_validity_icpt(scb_s, 0x10b2U); goto unpin; } /* Due to alignment rules (checked above) this cannot * cross page boundaries */ rc = pin_guest_page(vcpu->kvm, gpa, &hpa); if (rc) { rc = set_validity_icpt(scb_s, 0x10b0U); goto unpin; } vsie_page->sdnx_gpa = gpa; scb_s->sdnxo = hpa | sdnxc; } return 0; unpin: unpin_blocks(vcpu, vsie_page); return rc; } /* unpin the scb provided by guest 2, marking it as dirty */ static void unpin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page, gpa_t gpa) { hpa_t hpa = (hpa_t) vsie_page->scb_o; if (hpa) unpin_guest_page(vcpu->kvm, gpa, hpa); vsie_page->scb_o = NULL; } /* * Pin the scb at gpa provided by guest 2 at vsie_page->scb_o. * * Returns: - 0 if the scb was pinned. * - > 0 if control has to be given to guest 2 */ static int pin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page, gpa_t gpa) { hpa_t hpa; int rc; rc = pin_guest_page(vcpu->kvm, gpa, &hpa); if (rc) { rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); WARN_ON_ONCE(rc); return 1; } vsie_page->scb_o = phys_to_virt(hpa); return 0; } /* * Inject a fault into guest 2. * * Returns: - > 0 if control has to be given to guest 2 * < 0 if an error occurred during injection. */ static int inject_fault(struct kvm_vcpu *vcpu, __u16 code, __u64 vaddr, bool write_flag) { struct kvm_s390_pgm_info pgm = { .code = code, .trans_exc_code = /* 0-51: virtual address */ (vaddr & 0xfffffffffffff000UL) | /* 52-53: store / fetch */ (((unsigned int) !write_flag) + 1) << 10, /* 62-63: asce id (always primary == 0) */ .exc_access_id = 0, /* always primary */ .op_access_id = 0, /* not MVPG */ }; int rc; if (code == PGM_PROTECTION) pgm.trans_exc_code |= 0x4UL; rc = kvm_s390_inject_prog_irq(vcpu, &pgm); return rc ? rc : 1; } /* * Handle a fault during vsie execution on a gmap shadow. * * Returns: - 0 if the fault was resolved * - > 0 if control has to be given to guest 2 * - < 0 if an error occurred */ static int handle_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { int rc; if (current->thread.gmap_int_code == PGM_PROTECTION) /* we can directly forward all protection exceptions */ return inject_fault(vcpu, PGM_PROTECTION, current->thread.gmap_addr, 1); rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, current->thread.gmap_addr, NULL); if (rc > 0) { rc = inject_fault(vcpu, rc, current->thread.gmap_addr, current->thread.gmap_write_flag); if (rc >= 0) vsie_page->fault_addr = current->thread.gmap_addr; } return rc; } /* * Retry the previous fault that required guest 2 intervention. This avoids * one superfluous SIE re-entry and direct exit. * * Will ignore any errors. The next SIE fault will do proper fault handling. */ static void handle_last_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { if (vsie_page->fault_addr) kvm_s390_shadow_fault(vcpu, vsie_page->gmap, vsie_page->fault_addr, NULL); vsie_page->fault_addr = 0; } static inline void clear_vsie_icpt(struct vsie_page *vsie_page) { vsie_page->scb_s.icptcode = 0; } /* rewind the psw and clear the vsie icpt, so we can retry execution */ static void retry_vsie_icpt(struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; int ilen = insn_length(scb_s->ipa >> 8); /* take care of EXECUTE instructions */ if (scb_s->icptstatus & 1) { ilen = (scb_s->icptstatus >> 4) & 0x6; if (!ilen) ilen = 4; } scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, ilen); clear_vsie_icpt(vsie_page); } /* * Try to shadow + enable the guest 2 provided facility list. * Retry instruction execution if enabled for and provided by guest 2. * * Returns: - 0 if handled (retry or guest 2 icpt) * - > 0 if control has to be given to guest 2 */ static int handle_stfle(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; __u32 fac = READ_ONCE(vsie_page->scb_o->fac); /* * Alternate-STFLE-Interpretive-Execution facilities are not supported * -> format-0 flcb */ if (fac && test_kvm_facility(vcpu->kvm, 7)) { retry_vsie_icpt(vsie_page); /* * The facility list origin (FLO) is in bits 1 - 28 of the FLD * so we need to mask here before reading. */ fac = fac & 0x7ffffff8U; /* * format-0 -> size of nested guest's facility list == guest's size * guest's size == host's size, since STFLE is interpretatively executed * using a format-0 for the guest, too. */ if (read_guest_real(vcpu, fac, &vsie_page->fac, stfle_size() * sizeof(u64))) return set_validity_icpt(scb_s, 0x1090U); scb_s->fac = (u32)virt_to_phys(&vsie_page->fac); } return 0; } /* * Get a register for a nested guest. * @vcpu the vcpu of the guest * @vsie_page the vsie_page for the nested guest * @reg the register number, the upper 4 bits are ignored. * returns: the value of the register. */ static u64 vsie_get_register(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page, u8 reg) { /* no need to validate the parameter and/or perform error handling */ reg &= 0xf; switch (reg) { case 15: return vsie_page->scb_s.gg15; case 14: return vsie_page->scb_s.gg14; default: return vcpu->run->s.regs.gprs[reg]; } } static int vsie_handle_mvpg(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; unsigned long pei_dest, pei_src, src, dest, mask, prefix; u64 *pei_block = &vsie_page->scb_o->mcic; int edat, rc_dest, rc_src; union ctlreg0 cr0; cr0.val = vcpu->arch.sie_block->gcr[0]; edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8); mask = _kvm_s390_logical_to_effective(&scb_s->gpsw, PAGE_MASK); prefix = scb_s->prefix << GUEST_PREFIX_SHIFT; dest = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 20) & mask; dest = _kvm_s390_real_to_abs(prefix, dest) + scb_s->mso; src = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 16) & mask; src = _kvm_s390_real_to_abs(prefix, src) + scb_s->mso; rc_dest = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, dest, &pei_dest); rc_src = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, src, &pei_src); /* * Either everything went well, or something non-critical went wrong * e.g. because of a race. In either case, simply retry. */ if (rc_dest == -EAGAIN || rc_src == -EAGAIN || (!rc_dest && !rc_src)) { retry_vsie_icpt(vsie_page); return -EAGAIN; } /* Something more serious went wrong, propagate the error */ if (rc_dest < 0) return rc_dest; if (rc_src < 0) return rc_src; /* The only possible suppressing exception: just deliver it */ if (rc_dest == PGM_TRANSLATION_SPEC || rc_src == PGM_TRANSLATION_SPEC) { clear_vsie_icpt(vsie_page); rc_dest = kvm_s390_inject_program_int(vcpu, PGM_TRANSLATION_SPEC); WARN_ON_ONCE(rc_dest); return 1; } /* * Forward the PEI intercept to the guest if it was a page fault, or * also for segment and region table faults if EDAT applies. */ if (edat) { rc_dest = rc_dest == PGM_ASCE_TYPE ? rc_dest : 0; rc_src = rc_src == PGM_ASCE_TYPE ? rc_src : 0; } else { rc_dest = rc_dest != PGM_PAGE_TRANSLATION ? rc_dest : 0; rc_src = rc_src != PGM_PAGE_TRANSLATION ? rc_src : 0; } if (!rc_dest && !rc_src) { pei_block[0] = pei_dest; pei_block[1] = pei_src; return 1; } retry_vsie_icpt(vsie_page); /* * The host has edat, and the guest does not, or it was an ASCE type * exception. The host needs to inject the appropriate DAT interrupts * into the guest. */ if (rc_dest) return inject_fault(vcpu, rc_dest, dest, 1); return inject_fault(vcpu, rc_src, src, 0); } /* * Run the vsie on a shadow scb and a shadow gmap, without any further * sanity checks, handling SIE faults. * * Returns: - 0 everything went fine * - > 0 if control has to be given to guest 2 * - < 0 if an error occurred */ static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) __releases(vcpu->kvm->srcu) __acquires(vcpu->kvm->srcu) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; struct kvm_s390_sie_block *scb_o = vsie_page->scb_o; int guest_bp_isolation; int rc = 0; handle_last_fault(vcpu, vsie_page); kvm_vcpu_srcu_read_unlock(vcpu); /* save current guest state of bp isolation override */ guest_bp_isolation = test_thread_flag(TIF_ISOLATE_BP_GUEST); /* * The guest is running with BPBC, so we have to force it on for our * nested guest. This is done by enabling BPBC globally, so the BPBC * control in the SCB (which the nested guest can modify) is simply * ignored. */ if (test_kvm_facility(vcpu->kvm, 82) && vcpu->arch.sie_block->fpf & FPF_BPBC) set_thread_flag(TIF_ISOLATE_BP_GUEST); local_irq_disable(); guest_enter_irqoff(); local_irq_enable(); /* * Simulate a SIE entry of the VCPU (see sie64a), so VCPU blocking * and VCPU requests also hinder the vSIE from running and lead * to an immediate exit. kvm_s390_vsie_kick() has to be used to * also kick the vSIE. */ vcpu->arch.sie_block->prog0c |= PROG_IN_SIE; barrier(); if (!kvm_s390_vcpu_sie_inhibited(vcpu)) rc = sie64a(scb_s, vcpu->run->s.regs.gprs); barrier(); vcpu->arch.sie_block->prog0c &= ~PROG_IN_SIE; local_irq_disable(); guest_exit_irqoff(); local_irq_enable(); /* restore guest state for bp isolation override */ if (!guest_bp_isolation) clear_thread_flag(TIF_ISOLATE_BP_GUEST); kvm_vcpu_srcu_read_lock(vcpu); if (rc == -EINTR) { VCPU_EVENT(vcpu, 3, "%s", "machine check"); kvm_s390_reinject_machine_check(vcpu, &vsie_page->mcck_info); return 0; } if (rc > 0) rc = 0; /* we could still have an icpt */ else if (rc == -EFAULT) return handle_fault(vcpu, vsie_page); switch (scb_s->icptcode) { case ICPT_INST: if (scb_s->ipa == 0xb2b0) rc = handle_stfle(vcpu, vsie_page); break; case ICPT_STOP: /* stop not requested by g2 - must have been a kick */ if (!(atomic_read(&scb_o->cpuflags) & CPUSTAT_STOP_INT)) clear_vsie_icpt(vsie_page); break; case ICPT_VALIDITY: if ((scb_s->ipa & 0xf000) != 0xf000) scb_s->ipa += 0x1000; break; case ICPT_PARTEXEC: if (scb_s->ipa == 0xb254) rc = vsie_handle_mvpg(vcpu, vsie_page); break; } return rc; } static void release_gmap_shadow(struct vsie_page *vsie_page) { if (vsie_page->gmap) gmap_put(vsie_page->gmap); WRITE_ONCE(vsie_page->gmap, NULL); prefix_unmapped(vsie_page); } static int acquire_gmap_shadow(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { unsigned long asce; union ctlreg0 cr0; struct gmap *gmap; int edat; asce = vcpu->arch.sie_block->gcr[1]; cr0.val = vcpu->arch.sie_block->gcr[0]; edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8); edat += edat && test_kvm_facility(vcpu->kvm, 78); /* * ASCE or EDAT could have changed since last icpt, or the gmap * we're holding has been unshadowed. If the gmap is still valid, * we can safely reuse it. */ if (vsie_page->gmap && gmap_shadow_valid(vsie_page->gmap, asce, edat)) { vcpu->kvm->stat.gmap_shadow_reuse++; return 0; } /* release the old shadow - if any, and mark the prefix as unmapped */ release_gmap_shadow(vsie_page); gmap = gmap_shadow(vcpu->arch.gmap, asce, edat); if (IS_ERR(gmap)) return PTR_ERR(gmap); vcpu->kvm->stat.gmap_shadow_create++; WRITE_ONCE(vsie_page->gmap, gmap); return 0; } /* * Register the shadow scb at the VCPU, e.g. for kicking out of vsie. */ static void register_shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; WRITE_ONCE(vcpu->arch.vsie_block, &vsie_page->scb_s); /* * External calls have to lead to a kick of the vcpu and * therefore the vsie -> Simulate Wait state. */ kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT); /* * We have to adjust the g3 epoch by the g2 epoch. The epoch will * automatically be adjusted on tod clock changes via kvm_sync_clock. */ preempt_disable(); scb_s->epoch += vcpu->kvm->arch.epoch; if (scb_s->ecd & ECD_MEF) { scb_s->epdx += vcpu->kvm->arch.epdx; if (scb_s->epoch < vcpu->kvm->arch.epoch) scb_s->epdx += 1; } preempt_enable(); } /* * Unregister a shadow scb from a VCPU. */ static void unregister_shadow_scb(struct kvm_vcpu *vcpu) { kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT); WRITE_ONCE(vcpu->arch.vsie_block, NULL); } /* * Run the vsie on a shadowed scb, managing the gmap shadow, handling * prefix pages and faults. * * Returns: - 0 if no errors occurred * - > 0 if control has to be given to guest 2 * - -ENOMEM if out of memory */ static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page) { struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s; int rc = 0; while (1) { rc = acquire_gmap_shadow(vcpu, vsie_page); if (!rc) rc = map_prefix(vcpu, vsie_page); if (!rc) { gmap_enable(vsie_page->gmap); update_intervention_requests(vsie_page); rc = do_vsie_run(vcpu, vsie_page); gmap_enable(vcpu->arch.gmap); } atomic_andnot(PROG_BLOCK_SIE, &scb_s->prog20); if (rc == -EAGAIN) rc = 0; if (rc || scb_s->icptcode || signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) || kvm_s390_vcpu_sie_inhibited(vcpu)) break; cond_resched(); } if (rc == -EFAULT) { /* * Addressing exceptions are always presentes as intercepts. * As addressing exceptions are suppressing and our guest 3 PSW * points at the responsible instruction, we have to * forward the PSW and set the ilc. If we can't read guest 3 * instruction, we can use an arbitrary ilc. Let's always use * ilen = 4 for now, so we can avoid reading in guest 3 virtual * memory. (we could also fake the shadow so the hardware * handles it). */ scb_s->icptcode = ICPT_PROGI; scb_s->iprcc = PGM_ADDRESSING; scb_s->pgmilc = 4; scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, 4); rc = 1; } return rc; } /* * Get or create a vsie page for a scb address. * * Returns: - address of a vsie page (cached or new one) * - NULL if the same scb address is already used by another VCPU * - ERR_PTR(-ENOMEM) if out of memory */ static struct vsie_page *get_vsie_page(struct kvm *kvm, unsigned long addr) { struct vsie_page *vsie_page; struct page *page; int nr_vcpus; rcu_read_lock(); page = radix_tree_lookup(&kvm->arch.vsie.addr_to_page, addr >> 9); rcu_read_unlock(); if (page) { if (page_ref_inc_return(page) == 2) return page_to_virt(page); page_ref_dec(page); } /* * We want at least #online_vcpus shadows, so every VCPU can execute * the VSIE in parallel. */ nr_vcpus = atomic_read(&kvm->online_vcpus); mutex_lock(&kvm->arch.vsie.mutex); if (kvm->arch.vsie.page_count < nr_vcpus) { page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO | GFP_DMA); if (!page) { mutex_unlock(&kvm->arch.vsie.mutex); return ERR_PTR(-ENOMEM); } page_ref_inc(page); kvm->arch.vsie.pages[kvm->arch.vsie.page_count] = page; kvm->arch.vsie.page_count++; } else { /* reuse an existing entry that belongs to nobody */ while (true) { page = kvm->arch.vsie.pages[kvm->arch.vsie.next]; if (page_ref_inc_return(page) == 2) break; page_ref_dec(page); kvm->arch.vsie.next++; kvm->arch.vsie.next %= nr_vcpus; } radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9); } page->index = addr; /* double use of the same address */ if (radix_tree_insert(&kvm->arch.vsie.addr_to_page, addr >> 9, page)) { page_ref_dec(page); mutex_unlock(&kvm->arch.vsie.mutex); return NULL; } mutex_unlock(&kvm->arch.vsie.mutex); vsie_page = page_to_virt(page); memset(&vsie_page->scb_s, 0, sizeof(struct kvm_s390_sie_block)); release_gmap_shadow(vsie_page); vsie_page->fault_addr = 0; vsie_page->scb_s.ihcpu = 0xffffU; return vsie_page; } /* put a vsie page acquired via get_vsie_page */ static void put_vsie_page(struct kvm *kvm, struct vsie_page *vsie_page) { struct page *page = pfn_to_page(__pa(vsie_page) >> PAGE_SHIFT); page_ref_dec(page); } int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu) { struct vsie_page *vsie_page; unsigned long scb_addr; int rc; vcpu->stat.instruction_sie++; if (!test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIEF2)) return -EOPNOTSUPP; if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE) return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP); BUILD_BUG_ON(sizeof(struct vsie_page) != PAGE_SIZE); scb_addr = kvm_s390_get_base_disp_s(vcpu, NULL); /* 512 byte alignment */ if (unlikely(scb_addr & 0x1ffUL)) return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION); if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) || kvm_s390_vcpu_sie_inhibited(vcpu)) return 0; vsie_page = get_vsie_page(vcpu->kvm, scb_addr); if (IS_ERR(vsie_page)) return PTR_ERR(vsie_page); else if (!vsie_page) /* double use of sie control block - simply do nothing */ return 0; rc = pin_scb(vcpu, vsie_page, scb_addr); if (rc) goto out_put; rc = shadow_scb(vcpu, vsie_page); if (rc) goto out_unpin_scb; rc = pin_blocks(vcpu, vsie_page); if (rc) goto out_unshadow; register_shadow_scb(vcpu, vsie_page); rc = vsie_run(vcpu, vsie_page); unregister_shadow_scb(vcpu); unpin_blocks(vcpu, vsie_page); out_unshadow: unshadow_scb(vcpu, vsie_page); out_unpin_scb: unpin_scb(vcpu, vsie_page, scb_addr); out_put: put_vsie_page(vcpu->kvm, vsie_page); return rc < 0 ? rc : 0; } /* Init the vsie data structures. To be called when a vm is initialized. */ void kvm_s390_vsie_init(struct kvm *kvm) { mutex_init(&kvm->arch.vsie.mutex); INIT_RADIX_TREE(&kvm->arch.vsie.addr_to_page, GFP_KERNEL_ACCOUNT); } /* Destroy the vsie data structures. To be called when a vm is destroyed. */ void kvm_s390_vsie_destroy(struct kvm *kvm) { struct vsie_page *vsie_page; struct page *page; int i; mutex_lock(&kvm->arch.vsie.mutex); for (i = 0; i < kvm->arch.vsie.page_count; i++) { page = kvm->arch.vsie.pages[i]; kvm->arch.vsie.pages[i] = NULL; vsie_page = page_to_virt(page); release_gmap_shadow(vsie_page); /* free the radix tree entry */ radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9); __free_page(page); } kvm->arch.vsie.page_count = 0; mutex_unlock(&kvm->arch.vsie.mutex); } void kvm_s390_vsie_kick(struct kvm_vcpu *vcpu) { struct kvm_s390_sie_block *scb = READ_ONCE(vcpu->arch.vsie_block); /* * Even if the VCPU lets go of the shadow sie block reference, it is * still valid in the cache. So we can safely kick it. */ if (scb) { atomic_or(PROG_BLOCK_SIE, &scb->prog20); if (scb->prog0c & PROG_IN_SIE) atomic_or(CPUSTAT_STOP_INT, &scb->cpuflags); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1