Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christopher SMITH | 1611 | 85.78% | 1 | 3.57% |
Paul Mundt | 192 | 10.22% | 10 | 35.71% |
Christoph Lameter | 26 | 1.38% | 1 | 3.57% |
Masami Hiramatsu | 16 | 0.85% | 3 | 10.71% |
Linus Torvalds (pre-git) | 13 | 0.69% | 6 | 21.43% |
Michael Karcher | 10 | 0.53% | 1 | 3.57% |
Geert Uytterhoeven | 5 | 0.27% | 2 | 7.14% |
Kuninori Morimoto | 2 | 0.11% | 1 | 3.57% |
Linus Torvalds | 2 | 0.11% | 2 | 7.14% |
Paul Gortmaker | 1 | 0.05% | 1 | 3.57% |
Total | 1878 | 28 |
// SPDX-License-Identifier: GPL-2.0 /* * Kernel probes (kprobes) for SuperH * * Copyright (C) 2007 Chris Smith <chris.smith@st.com> * Copyright (C) 2006 Lineo Solutions, Inc. */ #include <linux/kprobes.h> #include <linux/extable.h> #include <linux/ptrace.h> #include <linux/preempt.h> #include <linux/kdebug.h> #include <linux/slab.h> #include <asm/cacheflush.h> #include <linux/uaccess.h> DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); static DEFINE_PER_CPU(struct kprobe, saved_current_opcode); static DEFINE_PER_CPU(struct kprobe, saved_next_opcode); static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2); #define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b) #define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b) #define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000) #define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023) #define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000) #define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003) #define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00) #define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00) #define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00) #define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900) #define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b) #define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b) int __kprobes arch_prepare_kprobe(struct kprobe *p) { kprobe_opcode_t opcode = *p->addr; if (OPCODE_RTE(opcode)) return -EFAULT; /* Bad breakpoint */ memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); p->opcode = opcode; return 0; } void __kprobes arch_arm_kprobe(struct kprobe *p) { *p->addr = BREAKPOINT_INSTRUCTION; flush_icache_range((unsigned long)p->addr, (unsigned long)p->addr + sizeof(kprobe_opcode_t)); } void __kprobes arch_disarm_kprobe(struct kprobe *p) { *p->addr = p->opcode; flush_icache_range((unsigned long)p->addr, (unsigned long)p->addr + sizeof(kprobe_opcode_t)); } int __kprobes arch_trampoline_kprobe(struct kprobe *p) { if (*p->addr == BREAKPOINT_INSTRUCTION) return 1; return 0; } /** * If an illegal slot instruction exception occurs for an address * containing a kprobe, remove the probe. * * Returns 0 if the exception was handled successfully, 1 otherwise. */ int __kprobes kprobe_handle_illslot(unsigned long pc) { struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1); if (p != NULL) { printk("Warning: removing kprobe from delay slot: 0x%.8x\n", (unsigned int)pc + 2); unregister_kprobe(p); return 0; } return 1; } void __kprobes arch_remove_kprobe(struct kprobe *p) { struct kprobe *saved = this_cpu_ptr(&saved_next_opcode); if (saved->addr) { arch_disarm_kprobe(p); arch_disarm_kprobe(saved); saved->addr = NULL; saved->opcode = 0; saved = this_cpu_ptr(&saved_next_opcode2); if (saved->addr) { arch_disarm_kprobe(saved); saved->addr = NULL; saved->opcode = 0; } } } static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; } static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; } static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, p); } /* * Singlestep is implemented by disabling the current kprobe and setting one * on the next instruction, following branches. Two probes are set if the * branch is conditional. */ static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) { __this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc); if (p != NULL) { struct kprobe *op1, *op2; arch_disarm_kprobe(p); op1 = this_cpu_ptr(&saved_next_opcode); op2 = this_cpu_ptr(&saved_next_opcode2); if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) { unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr]; } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) { unsigned long disp = (p->opcode & 0x0FFF); op1->addr = (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) { unsigned int reg_nr = ((p->opcode >> 8) & 0x000F); op1->addr = (kprobe_opcode_t *) (regs->pc + 4 + regs->regs[reg_nr]); } else if (OPCODE_RTS(p->opcode)) { op1->addr = (kprobe_opcode_t *) regs->pr; } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) { unsigned long disp = (p->opcode & 0x00FF); /* case 1 */ op1->addr = p->addr + 1; /* case 2 */ op2->addr = (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); op2->opcode = *(op2->addr); arch_arm_kprobe(op2); } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) { unsigned long disp = (p->opcode & 0x00FF); /* case 1 */ op1->addr = p->addr + 2; /* case 2 */ op2->addr = (kprobe_opcode_t *) (regs->pc + 4 + disp * 2); op2->opcode = *(op2->addr); arch_arm_kprobe(op2); } else { op1->addr = p->addr + 1; } op1->opcode = *(op1->addr); arch_arm_kprobe(op1); } } /* Called with kretprobe_lock held */ void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *) regs->pr; ri->fp = NULL; /* Replace the return addr with trampoline addr */ regs->pr = (unsigned long)__kretprobe_trampoline; } static int __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p; int ret = 0; kprobe_opcode_t *addr = NULL; struct kprobe_ctlblk *kcb; /* * We don't want to be preempted for the entire * duration of kprobe processing */ preempt_disable(); kcb = get_kprobe_ctlblk(); addr = (kprobe_opcode_t *) (regs->pc); /* Check we're not actually recursing */ if (kprobe_running()) { p = get_kprobe(addr); if (p) { if (kcb->kprobe_status == KPROBE_HIT_SS && *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { goto no_kprobe; } /* We have reentered the kprobe_handler(), since * another probe was hit while within the handler. * We here save the original kprobes variables and * just single step on the instruction of the new probe * without calling any user handlers. */ save_previous_kprobe(kcb); set_current_kprobe(p, regs, kcb); kprobes_inc_nmissed_count(p); prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_REENTER; return 1; } goto no_kprobe; } p = get_kprobe(addr); if (!p) { /* Not one of ours: let kernel handle it */ if (*addr != BREAKPOINT_INSTRUCTION) { /* * The breakpoint instruction was removed right * after we hit it. Another cpu has removed * either a probepoint or a debugger breakpoint * at this address. In either case, no further * handling of this interrupt is appropriate. */ ret = 1; } goto no_kprobe; } set_current_kprobe(p, regs, kcb); kcb->kprobe_status = KPROBE_HIT_ACTIVE; if (p->pre_handler && p->pre_handler(p, regs)) { /* handler has already set things up, so skip ss setup */ reset_current_kprobe(); preempt_enable_no_resched(); return 1; } prepare_singlestep(p, regs); kcb->kprobe_status = KPROBE_HIT_SS; return 1; no_kprobe: preempt_enable_no_resched(); return ret; } /* * For function-return probes, init_kprobes() establishes a probepoint * here. When a retprobed function returns, this probe is hit and * trampoline_probe_handler() runs, calling the kretprobe's handler. */ static void __used kretprobe_trampoline_holder(void) { asm volatile (".globl __kretprobe_trampoline\n" "__kretprobe_trampoline:\n\t" "nop\n"); } /* * Called when we hit the probe point at __kretprobe_trampoline */ static int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) { regs->pc = __kretprobe_trampoline_handler(regs, NULL); return 1; } static int __kprobes post_kprobe_handler(struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); kprobe_opcode_t *addr = NULL; struct kprobe *p = NULL; if (!cur) return 0; if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } p = this_cpu_ptr(&saved_next_opcode); if (p->addr) { arch_disarm_kprobe(p); p->addr = NULL; p->opcode = 0; addr = __this_cpu_read(saved_current_opcode.addr); __this_cpu_write(saved_current_opcode.addr, NULL); p = get_kprobe(addr); arch_arm_kprobe(p); p = this_cpu_ptr(&saved_next_opcode2); if (p->addr) { arch_disarm_kprobe(p); p->addr = NULL; p->opcode = 0; } } /* Restore back the original saved kprobes variables and continue. */ if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); goto out; } reset_current_kprobe(); out: preempt_enable_no_resched(); return 1; } int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); const struct exception_table_entry *entry; switch (kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe, point the pc back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ regs->pc = (unsigned long)cur->addr; if (kcb->kprobe_status == KPROBE_REENTER) restore_previous_kprobe(kcb); else reset_current_kprobe(); preempt_enable_no_resched(); break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * In case the user-specified fault handler returned * zero, try to fix up. */ if ((entry = search_exception_tables(regs->pc)) != NULL) { regs->pc = entry->fixup; return 1; } /* * fixup_exception() could not handle it, * Let do_page_fault() fix it. */ break; default: break; } return 0; } /* * Wrapper routine to for handling exceptions. */ int __kprobes kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { struct kprobe *p = NULL; struct die_args *args = (struct die_args *)data; int ret = NOTIFY_DONE; kprobe_opcode_t *addr = NULL; struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); addr = (kprobe_opcode_t *) (args->regs->pc); if (val == DIE_TRAP && args->trapnr == (BREAKPOINT_INSTRUCTION & 0xff)) { if (!kprobe_running()) { if (kprobe_handler(args->regs)) { ret = NOTIFY_STOP; } else { /* Not a kprobe trap */ ret = NOTIFY_DONE; } } else { p = get_kprobe(addr); if ((kcb->kprobe_status == KPROBE_HIT_SS) || (kcb->kprobe_status == KPROBE_REENTER)) { if (post_kprobe_handler(args->regs)) ret = NOTIFY_STOP; } else { if (kprobe_handler(args->regs)) ret = NOTIFY_STOP; } } } return ret; } static struct kprobe trampoline_p = { .addr = (kprobe_opcode_t *)&__kretprobe_trampoline, .pre_handler = trampoline_probe_handler }; int __init arch_init_kprobes(void) { return register_kprobe(&trampoline_p); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1