Contributors: 28
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Linus Torvalds (pre-git) |
635 |
37.51% |
52 |
46.85% |
Sam Ravnborg |
349 |
20.61% |
9 |
8.11% |
David S. Miller |
300 |
17.72% |
15 |
13.51% |
Keith M. Wesolowski |
66 |
3.90% |
3 |
2.70% |
David Hildenbrand |
62 |
3.66% |
1 |
0.90% |
Will Deacon |
50 |
2.95% |
2 |
1.80% |
Pete Zaitcev |
42 |
2.48% |
3 |
2.70% |
Mike Rapoport |
41 |
2.42% |
3 |
2.70% |
Matthew Wilcox |
30 |
1.77% |
2 |
1.80% |
Randy Dunlap |
28 |
1.65% |
1 |
0.90% |
Andi Kleen |
18 |
1.06% |
1 |
0.90% |
Adrian Bunk |
18 |
1.06% |
1 |
0.90% |
Aneesh Kumar K.V |
9 |
0.53% |
1 |
0.90% |
Nicholas Piggin |
8 |
0.47% |
1 |
0.90% |
Linus Torvalds |
8 |
0.47% |
3 |
2.70% |
Martin Schwidefsky |
6 |
0.35% |
1 |
0.90% |
Palmer Dabbelt |
5 |
0.30% |
1 |
0.90% |
Orlando Arias |
4 |
0.24% |
1 |
0.90% |
Richard Weinberger |
3 |
0.18% |
1 |
0.90% |
Russell King |
2 |
0.12% |
1 |
0.90% |
Andrew Morton |
2 |
0.12% |
1 |
0.90% |
Greg Kroah-Hartman |
1 |
0.06% |
1 |
0.90% |
Rick Edgecombe |
1 |
0.06% |
1 |
0.90% |
Michal Hocko |
1 |
0.06% |
1 |
0.90% |
Al Viro |
1 |
0.06% |
1 |
0.90% |
Anshuman Khandual |
1 |
0.06% |
1 |
0.90% |
David Howells |
1 |
0.06% |
1 |
0.90% |
Kirill A. Shutemov |
1 |
0.06% |
1 |
0.90% |
Total |
1693 |
|
111 |
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _SPARC_PGTABLE_H
#define _SPARC_PGTABLE_H
/* asm/pgtable.h: Defines and functions used to work
* with Sparc page tables.
*
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/const.h>
#define PMD_SHIFT 18
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PMD_ALIGN(__addr) (((__addr) + ~PMD_MASK) & PMD_MASK)
#define PGDIR_SHIFT 24
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PGDIR_ALIGN(__addr) (((__addr) + ~PGDIR_MASK) & PGDIR_MASK)
#ifndef __ASSEMBLY__
#include <asm-generic/pgtable-nopud.h>
#include <linux/spinlock.h>
#include <linux/mm_types.h>
#include <asm/types.h>
#include <asm/pgtsrmmu.h>
#include <asm/vaddrs.h>
#include <asm/oplib.h>
#include <asm/cpu_type.h>
struct vm_area_struct;
struct page;
void load_mmu(void);
unsigned long calc_highpages(void);
unsigned long __init bootmem_init(unsigned long *pages_avail);
#define pte_ERROR(e) __builtin_trap()
#define pmd_ERROR(e) __builtin_trap()
#define pgd_ERROR(e) __builtin_trap()
#define PTRS_PER_PTE 64
#define PTRS_PER_PMD 64
#define PTRS_PER_PGD 256
#define USER_PTRS_PER_PGD PAGE_OFFSET / PGDIR_SIZE
#define PTE_SIZE (PTRS_PER_PTE*4)
#define PAGE_NONE SRMMU_PAGE_NONE
#define PAGE_SHARED SRMMU_PAGE_SHARED
#define PAGE_COPY SRMMU_PAGE_COPY
#define PAGE_READONLY SRMMU_PAGE_RDONLY
#define PAGE_KERNEL SRMMU_PAGE_KERNEL
/* Top-level page directory - dummy used by init-mm.
* srmmu.c will assign the real one (which is dynamically sized) */
#define swapper_pg_dir NULL
void paging_init(void);
extern unsigned long ptr_in_current_pgd;
/* First physical page can be anywhere, the following is needed so that
* va-->pa and vice versa conversions work properly without performance
* hit for all __pa()/__va() operations.
*/
extern unsigned long phys_base;
extern unsigned long pfn_base;
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
/*
* In general all page table modifications should use the V8 atomic
* swap instruction. This insures the mmu and the cpu are in sync
* with respect to ref/mod bits in the page tables.
*/
static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
{
__asm__ __volatile__("swap [%2], %0" :
"=&r" (value) : "0" (value), "r" (addr) : "memory");
return value;
}
/* Certain architectures need to do special things when pte's
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
static inline void set_pte(pte_t *ptep, pte_t pteval)
{
srmmu_swap((unsigned long *)ptep, pte_val(pteval));
}
static inline int srmmu_device_memory(unsigned long x)
{
return ((x & 0xF0000000) != 0);
}
static inline unsigned long pmd_pfn(pmd_t pmd)
{
return (pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4);
}
static inline struct page *pmd_page(pmd_t pmd)
{
if (srmmu_device_memory(pmd_val(pmd)))
BUG();
return pfn_to_page(pmd_pfn(pmd));
}
static inline unsigned long __pmd_page(pmd_t pmd)
{
unsigned long v;
if (srmmu_device_memory(pmd_val(pmd)))
BUG();
v = pmd_val(pmd) & SRMMU_PTD_PMASK;
return (unsigned long)__nocache_va(v << 4);
}
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
{
unsigned long v = pmd_val(pmd) & SRMMU_PTD_PMASK;
return (unsigned long)__nocache_va(v << 4);
}
static inline pmd_t *pud_pgtable(pud_t pud)
{
if (srmmu_device_memory(pud_val(pud))) {
return (pmd_t *)~0;
} else {
unsigned long v = pud_val(pud) & SRMMU_PTD_PMASK;
return (pmd_t *)__nocache_va(v << 4);
}
}
static inline int pte_present(pte_t pte)
{
return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE);
}
static inline int pte_none(pte_t pte)
{
return !pte_val(pte);
}
static inline void __pte_clear(pte_t *ptep)
{
set_pte(ptep, __pte(0));
}
static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
__pte_clear(ptep);
}
static inline int pmd_bad(pmd_t pmd)
{
return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD;
}
static inline int pmd_present(pmd_t pmd)
{
return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD);
}
static inline int pmd_none(pmd_t pmd)
{
return !pmd_val(pmd);
}
static inline void pmd_clear(pmd_t *pmdp)
{
set_pte((pte_t *)&pmd_val(*pmdp), __pte(0));
}
static inline int pud_none(pud_t pud)
{
return !(pud_val(pud) & 0xFFFFFFF);
}
static inline int pud_bad(pud_t pud)
{
return (pud_val(pud) & SRMMU_ET_MASK) != SRMMU_ET_PTD;
}
static inline int pud_present(pud_t pud)
{
return ((pud_val(pud) & SRMMU_ET_MASK) == SRMMU_ET_PTD);
}
static inline void pud_clear(pud_t *pudp)
{
set_pte((pte_t *)pudp, __pte(0));
}
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
static inline int pte_write(pte_t pte)
{
return pte_val(pte) & SRMMU_WRITE;
}
static inline int pte_dirty(pte_t pte)
{
return pte_val(pte) & SRMMU_DIRTY;
}
static inline int pte_young(pte_t pte)
{
return pte_val(pte) & SRMMU_REF;
}
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~SRMMU_WRITE);
}
static inline pte_t pte_mkclean(pte_t pte)
{
return __pte(pte_val(pte) & ~SRMMU_DIRTY);
}
static inline pte_t pte_mkold(pte_t pte)
{
return __pte(pte_val(pte) & ~SRMMU_REF);
}
static inline pte_t pte_mkwrite_novma(pte_t pte)
{
return __pte(pte_val(pte) | SRMMU_WRITE);
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | SRMMU_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | SRMMU_REF);
}
#define PFN_PTE_SHIFT (PAGE_SHIFT - 4)
#define pfn_pte(pfn, prot) mk_pte(pfn_to_page(pfn), prot)
static inline unsigned long pte_pfn(pte_t pte)
{
if (srmmu_device_memory(pte_val(pte))) {
/* Just return something that will cause
* pfn_valid() to return false. This makes
* copy_one_pte() to just directly copy to
* PTE over.
*/
return ~0UL;
}
return (pte_val(pte) & SRMMU_PTE_PMASK) >> PFN_PTE_SHIFT;
}
#define pte_page(pte) pfn_to_page(pte_pfn(pte))
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
{
return __pte((page_to_pfn(page) << (PAGE_SHIFT-4)) | pgprot_val(pgprot));
}
static inline pte_t mk_pte_phys(unsigned long page, pgprot_t pgprot)
{
return __pte(((page) >> 4) | pgprot_val(pgprot));
}
static inline pte_t mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
{
return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot));
}
#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t prot)
{
pgprot_val(prot) &= ~pgprot_val(__pgprot(SRMMU_CACHE));
return prot;
}
static pte_t pte_modify(pte_t pte, pgprot_t newprot) __attribute_const__;
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
return __pte((pte_val(pte) & SRMMU_CHG_MASK) |
pgprot_val(newprot));
}
/* only used by the huge vmap code, should never be called */
#define pud_page(pud) NULL
struct seq_file;
void mmu_info(struct seq_file *m);
/* Fault handler stuff... */
#define FAULT_CODE_PROT 0x1
#define FAULT_CODE_WRITE 0x2
#define FAULT_CODE_USER 0x4
#define update_mmu_cache(vma, address, ptep) do { } while (0)
#define update_mmu_cache_range(vmf, vma, address, ptep, nr) do { } while (0)
void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
unsigned long xva, unsigned int len);
void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len);
/*
* Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
* are !pte_none() && !pte_present().
*
* Format of swap PTEs:
*
* 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* <-------------- offset ---------------> < type -> E 0 0 0 0 0 0
*/
static inline unsigned long __swp_type(swp_entry_t entry)
{
return (entry.val >> SRMMU_SWP_TYPE_SHIFT) & SRMMU_SWP_TYPE_MASK;
}
static inline unsigned long __swp_offset(swp_entry_t entry)
{
return (entry.val >> SRMMU_SWP_OFF_SHIFT) & SRMMU_SWP_OFF_MASK;
}
static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
{
return (swp_entry_t) {
(type & SRMMU_SWP_TYPE_MASK) << SRMMU_SWP_TYPE_SHIFT
| (offset & SRMMU_SWP_OFF_MASK) << SRMMU_SWP_OFF_SHIFT };
}
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
static inline int pte_swp_exclusive(pte_t pte)
{
return pte_val(pte) & SRMMU_SWP_EXCLUSIVE;
}
static inline pte_t pte_swp_mkexclusive(pte_t pte)
{
return __pte(pte_val(pte) | SRMMU_SWP_EXCLUSIVE);
}
static inline pte_t pte_swp_clear_exclusive(pte_t pte)
{
return __pte(pte_val(pte) & ~SRMMU_SWP_EXCLUSIVE);
}
static inline unsigned long
__get_phys (unsigned long addr)
{
switch (sparc_cpu_model){
case sun4m:
case sun4d:
return ((srmmu_get_pte (addr) & 0xffffff00) << 4);
default:
return 0;
}
}
static inline int
__get_iospace (unsigned long addr)
{
switch (sparc_cpu_model){
case sun4m:
case sun4d:
return (srmmu_get_pte (addr) >> 28);
default:
return -1;
}
}
/*
* For sparc32&64, the pfn in io_remap_pfn_range() carries <iospace> in
* its high 4 bits. These macros/functions put it there or get it from there.
*/
#define MK_IOSPACE_PFN(space, pfn) (pfn | (space << (BITS_PER_LONG - 4)))
#define GET_IOSPACE(pfn) (pfn >> (BITS_PER_LONG - 4))
#define GET_PFN(pfn) (pfn & 0x0fffffffUL)
int remap_pfn_range(struct vm_area_struct *, unsigned long, unsigned long,
unsigned long, pgprot_t);
static inline int io_remap_pfn_range(struct vm_area_struct *vma,
unsigned long from, unsigned long pfn,
unsigned long size, pgprot_t prot)
{
unsigned long long offset, space, phys_base;
offset = ((unsigned long long) GET_PFN(pfn)) << PAGE_SHIFT;
space = GET_IOSPACE(pfn);
phys_base = offset | (space << 32ULL);
return remap_pfn_range(vma, from, phys_base >> PAGE_SHIFT, size, prot);
}
#define io_remap_pfn_range io_remap_pfn_range
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
({ \
int __changed = !pte_same(*(__ptep), __entry); \
if (__changed) { \
set_pte(__ptep, __entry); \
flush_tlb_page(__vma, __address); \
} \
__changed; \
})
#endif /* !(__ASSEMBLY__) */
#define VMALLOC_START _AC(0xfe600000,UL)
#define VMALLOC_END _AC(0xffc00000,UL)
#define MODULES_VADDR VMALLOC_START
#define MODULES_END VMALLOC_END
/* We provide our own get_unmapped_area to cope with VA holes for userland */
#define HAVE_ARCH_UNMAPPED_AREA
#define pmd_pgtable(pmd) ((pgtable_t)__pmd_page(pmd))
#endif /* !(_SPARC_PGTABLE_H) */