Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Khalid Aziz | 1368 | 90.48% | 2 | 5.88% |
David S. Miller | 54 | 3.57% | 9 | 26.47% |
Linus Torvalds (pre-git) | 53 | 3.51% | 8 | 23.53% |
Bob Liu | 6 | 0.40% | 1 | 2.94% |
Linus Torvalds | 5 | 0.33% | 2 | 5.88% |
Sam Ravnborg | 5 | 0.33% | 2 | 5.88% |
Andy Whitcroft | 4 | 0.26% | 1 | 2.94% |
Will Deacon | 3 | 0.20% | 1 | 2.94% |
Hugh Dickins | 3 | 0.20% | 1 | 2.94% |
Mike Kravetz | 2 | 0.13% | 1 | 2.94% |
zhong jiang | 2 | 0.13% | 1 | 2.94% |
Thomas Gleixner | 2 | 0.13% | 1 | 2.94% |
Kenneth W Chen | 2 | 0.13% | 1 | 2.94% |
Andrea Arcangeli | 1 | 0.07% | 1 | 2.94% |
Nitin Gupta | 1 | 0.07% | 1 | 2.94% |
Izik Eidus | 1 | 0.07% | 1 | 2.94% |
Total | 1512 | 34 |
// SPDX-License-Identifier: GPL-2.0-only /* adi_64.c: support for ADI (Application Data Integrity) feature on * sparc m7 and newer processors. This feature is also known as * SSM (Silicon Secured Memory). * * Copyright (C) 2016 Oracle and/or its affiliates. All rights reserved. * Author: Khalid Aziz (khalid.aziz@oracle.com) */ #include <linux/init.h> #include <linux/slab.h> #include <linux/mm_types.h> #include <asm/mdesc.h> #include <asm/adi_64.h> #include <asm/mmu_64.h> #include <asm/pgtable_64.h> /* Each page of storage for ADI tags can accommodate tags for 128 * pages. When ADI enabled pages are being swapped out, it would be * prudent to allocate at least enough tag storage space to accommodate * SWAPFILE_CLUSTER number of pages. Allocate enough tag storage to * store tags for four SWAPFILE_CLUSTER pages to reduce need for * further allocations for same vma. */ #define TAG_STORAGE_PAGES 8 struct adi_config adi_state; EXPORT_SYMBOL(adi_state); /* mdesc_adi_init() : Parse machine description provided by the * hypervisor to detect ADI capabilities * * Hypervisor reports ADI capabilities of platform in "hwcap-list" property * for "cpu" node. If the platform supports ADI, "hwcap-list" property * contains the keyword "adp". If the platform supports ADI, "platform" * node will contain "adp-blksz", "adp-nbits" and "ue-on-adp" properties * to describe the ADI capabilities. */ void __init mdesc_adi_init(void) { struct mdesc_handle *hp = mdesc_grab(); const char *prop; u64 pn, *val; int len; if (!hp) goto adi_not_found; pn = mdesc_node_by_name(hp, MDESC_NODE_NULL, "cpu"); if (pn == MDESC_NODE_NULL) goto adi_not_found; prop = mdesc_get_property(hp, pn, "hwcap-list", &len); if (!prop) goto adi_not_found; /* * Look for "adp" keyword in hwcap-list which would indicate * ADI support */ adi_state.enabled = false; while (len) { int plen; if (!strcmp(prop, "adp")) { adi_state.enabled = true; break; } plen = strlen(prop) + 1; prop += plen; len -= plen; } if (!adi_state.enabled) goto adi_not_found; /* Find the ADI properties in "platform" node. If all ADI * properties are not found, ADI support is incomplete and * do not enable ADI in the kernel. */ pn = mdesc_node_by_name(hp, MDESC_NODE_NULL, "platform"); if (pn == MDESC_NODE_NULL) goto adi_not_found; val = (u64 *) mdesc_get_property(hp, pn, "adp-blksz", &len); if (!val) goto adi_not_found; adi_state.caps.blksz = *val; val = (u64 *) mdesc_get_property(hp, pn, "adp-nbits", &len); if (!val) goto adi_not_found; adi_state.caps.nbits = *val; val = (u64 *) mdesc_get_property(hp, pn, "ue-on-adp", &len); if (!val) goto adi_not_found; adi_state.caps.ue_on_adi = *val; /* Some of the code to support swapping ADI tags is written * assumption that two ADI tags can fit inside one byte. If * this assumption is broken by a future architecture change, * that code will have to be revisited. If that were to happen, * disable ADI support so we do not get unpredictable results * with programs trying to use ADI and their pages getting * swapped out */ if (adi_state.caps.nbits > 4) { pr_warn("WARNING: ADI tag size >4 on this platform. Disabling AADI support\n"); adi_state.enabled = false; } mdesc_release(hp); return; adi_not_found: adi_state.enabled = false; adi_state.caps.blksz = 0; adi_state.caps.nbits = 0; if (hp) mdesc_release(hp); } static tag_storage_desc_t *find_tag_store(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr) { tag_storage_desc_t *tag_desc = NULL; unsigned long i, max_desc, flags; /* Check if this vma already has tag storage descriptor * allocated for it. */ max_desc = PAGE_SIZE/sizeof(tag_storage_desc_t); if (mm->context.tag_store) { tag_desc = mm->context.tag_store; spin_lock_irqsave(&mm->context.tag_lock, flags); for (i = 0; i < max_desc; i++) { if ((addr >= tag_desc->start) && ((addr + PAGE_SIZE - 1) <= tag_desc->end)) break; tag_desc++; } spin_unlock_irqrestore(&mm->context.tag_lock, flags); /* If no matching entries were found, this must be a * freshly allocated page */ if (i >= max_desc) tag_desc = NULL; } return tag_desc; } static tag_storage_desc_t *alloc_tag_store(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr) { unsigned char *tags; unsigned long i, size, max_desc, flags; tag_storage_desc_t *tag_desc, *open_desc; unsigned long end_addr, hole_start, hole_end; max_desc = PAGE_SIZE/sizeof(tag_storage_desc_t); open_desc = NULL; hole_start = 0; hole_end = ULONG_MAX; end_addr = addr + PAGE_SIZE - 1; /* Check if this vma already has tag storage descriptor * allocated for it. */ spin_lock_irqsave(&mm->context.tag_lock, flags); if (mm->context.tag_store) { tag_desc = mm->context.tag_store; /* Look for a matching entry for this address. While doing * that, look for the first open slot as well and find * the hole in already allocated range where this request * will fit in. */ for (i = 0; i < max_desc; i++) { if (tag_desc->tag_users == 0) { if (open_desc == NULL) open_desc = tag_desc; } else { if ((addr >= tag_desc->start) && (tag_desc->end >= (addr + PAGE_SIZE - 1))) { tag_desc->tag_users++; goto out; } } if ((tag_desc->start > end_addr) && (tag_desc->start < hole_end)) hole_end = tag_desc->start; if ((tag_desc->end < addr) && (tag_desc->end > hole_start)) hole_start = tag_desc->end; tag_desc++; } } else { size = sizeof(tag_storage_desc_t)*max_desc; mm->context.tag_store = kzalloc(size, GFP_NOWAIT|__GFP_NOWARN); if (mm->context.tag_store == NULL) { tag_desc = NULL; goto out; } tag_desc = mm->context.tag_store; for (i = 0; i < max_desc; i++, tag_desc++) tag_desc->tag_users = 0; open_desc = mm->context.tag_store; i = 0; } /* Check if we ran out of tag storage descriptors */ if (open_desc == NULL) { tag_desc = NULL; goto out; } /* Mark this tag descriptor slot in use and then initialize it */ tag_desc = open_desc; tag_desc->tag_users = 1; /* Tag storage has not been allocated for this vma and space * is available in tag storage descriptor. Since this page is * being swapped out, there is high probability subsequent pages * in the VMA will be swapped out as well. Allocate pages to * store tags for as many pages in this vma as possible but not * more than TAG_STORAGE_PAGES. Each byte in tag space holds * two ADI tags since each ADI tag is 4 bits. Each ADI tag * covers adi_blksize() worth of addresses. Check if the hole is * big enough to accommodate full address range for using * TAG_STORAGE_PAGES number of tag pages. */ size = TAG_STORAGE_PAGES * PAGE_SIZE; end_addr = addr + (size*2*adi_blksize()) - 1; /* Check for overflow. If overflow occurs, allocate only one page */ if (end_addr < addr) { size = PAGE_SIZE; end_addr = addr + (size*2*adi_blksize()) - 1; /* If overflow happens with the minimum tag storage * allocation as well, adjust ending address for this * tag storage. */ if (end_addr < addr) end_addr = ULONG_MAX; } if (hole_end < end_addr) { /* Available hole is too small on the upper end of * address. Can we expand the range towards the lower * address and maximize use of this slot? */ unsigned long tmp_addr; end_addr = hole_end - 1; tmp_addr = end_addr - (size*2*adi_blksize()) + 1; /* Check for underflow. If underflow occurs, allocate * only one page for storing ADI tags */ if (tmp_addr > addr) { size = PAGE_SIZE; tmp_addr = end_addr - (size*2*adi_blksize()) - 1; /* If underflow happens with the minimum tag storage * allocation as well, adjust starting address for * this tag storage. */ if (tmp_addr > addr) tmp_addr = 0; } if (tmp_addr < hole_start) { /* Available hole is restricted on lower address * end as well */ tmp_addr = hole_start + 1; } addr = tmp_addr; size = (end_addr + 1 - addr)/(2*adi_blksize()); size = (size + (PAGE_SIZE-adi_blksize()))/PAGE_SIZE; size = size * PAGE_SIZE; } tags = kzalloc(size, GFP_NOWAIT|__GFP_NOWARN); if (tags == NULL) { tag_desc->tag_users = 0; tag_desc = NULL; goto out; } tag_desc->start = addr; tag_desc->tags = tags; tag_desc->end = end_addr; out: spin_unlock_irqrestore(&mm->context.tag_lock, flags); return tag_desc; } static void del_tag_store(tag_storage_desc_t *tag_desc, struct mm_struct *mm) { unsigned long flags; unsigned char *tags = NULL; spin_lock_irqsave(&mm->context.tag_lock, flags); tag_desc->tag_users--; if (tag_desc->tag_users == 0) { tag_desc->start = tag_desc->end = 0; /* Do not free up the tag storage space allocated * by the first descriptor. This is persistent * emergency tag storage space for the task. */ if (tag_desc != mm->context.tag_store) { tags = tag_desc->tags; tag_desc->tags = NULL; } } spin_unlock_irqrestore(&mm->context.tag_lock, flags); kfree(tags); } #define tag_start(addr, tag_desc) \ ((tag_desc)->tags + ((addr - (tag_desc)->start)/(2*adi_blksize()))) /* Retrieve any saved ADI tags for the page being swapped back in and * restore these tags to the newly allocated physical page. */ void adi_restore_tags(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t pte) { unsigned char *tag; tag_storage_desc_t *tag_desc; unsigned long paddr, tmp, version1, version2; /* Check if the swapped out page has an ADI version * saved. If yes, restore version tag to the newly * allocated page. */ tag_desc = find_tag_store(mm, vma, addr); if (tag_desc == NULL) return; tag = tag_start(addr, tag_desc); paddr = pte_val(pte) & _PAGE_PADDR_4V; for (tmp = paddr; tmp < (paddr+PAGE_SIZE); tmp += adi_blksize()) { version1 = (*tag) >> 4; version2 = (*tag) & 0x0f; *tag++ = 0; asm volatile("stxa %0, [%1] %2\n\t" : : "r" (version1), "r" (tmp), "i" (ASI_MCD_REAL)); tmp += adi_blksize(); asm volatile("stxa %0, [%1] %2\n\t" : : "r" (version2), "r" (tmp), "i" (ASI_MCD_REAL)); } asm volatile("membar #Sync\n\t"); /* Check and mark this tag space for release later if * the swapped in page was the last user of tag space */ del_tag_store(tag_desc, mm); } /* A page is about to be swapped out. Save any ADI tags associated with * this physical page so they can be restored later when the page is swapped * back in. */ int adi_save_tags(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t oldpte) { unsigned char *tag; tag_storage_desc_t *tag_desc; unsigned long version1, version2, paddr, tmp; tag_desc = alloc_tag_store(mm, vma, addr); if (tag_desc == NULL) return -1; tag = tag_start(addr, tag_desc); paddr = pte_val(oldpte) & _PAGE_PADDR_4V; for (tmp = paddr; tmp < (paddr+PAGE_SIZE); tmp += adi_blksize()) { asm volatile("ldxa [%1] %2, %0\n\t" : "=r" (version1) : "r" (tmp), "i" (ASI_MCD_REAL)); tmp += adi_blksize(); asm volatile("ldxa [%1] %2, %0\n\t" : "=r" (version2) : "r" (tmp), "i" (ASI_MCD_REAL)); *tag = (version1 << 4) | version2; tag++; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1