Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David S. Miller | 2392 | 67.27% | 13 | 19.70% |
Linus Torvalds | 1022 | 28.74% | 3 | 4.55% |
Linus Torvalds (pre-git) | 102 | 2.87% | 38 | 57.58% |
Grant C. Likely | 27 | 0.76% | 4 | 6.06% |
Rob Herring | 5 | 0.14% | 2 | 3.03% |
Yan Burman | 2 | 0.06% | 1 | 1.52% |
Uwe Kleine-König | 2 | 0.06% | 1 | 1.52% |
Ahelenia Ziemiańska | 1 | 0.03% | 1 | 1.52% |
Thomas Gleixner | 1 | 0.03% | 1 | 1.52% |
Steven Cole | 1 | 0.03% | 1 | 1.52% |
Stephen Rothwell | 1 | 0.03% | 1 | 1.52% |
Total | 3556 | 66 |
// SPDX-License-Identifier: GPL-2.0-only /* chmc.c: Driver for UltraSPARC-III memory controller. * * Copyright (C) 2001, 2007, 2008 David S. Miller (davem@davemloft.net) */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/string.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <asm/spitfire.h> #include <asm/chmctrl.h> #include <asm/cpudata.h> #include <asm/oplib.h> #include <asm/prom.h> #include <asm/head.h> #include <asm/io.h> #include <asm/memctrl.h> #define DRV_MODULE_NAME "chmc" #define PFX DRV_MODULE_NAME ": " #define DRV_MODULE_VERSION "0.2" MODULE_AUTHOR("David S. Miller <davem@davemloft.net>"); MODULE_DESCRIPTION("UltraSPARC-III memory controller driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); static int mc_type; #define MC_TYPE_SAFARI 1 #define MC_TYPE_JBUS 2 static dimm_printer_t us3mc_dimm_printer; #define CHMCTRL_NDGRPS 2 #define CHMCTRL_NDIMMS 4 #define CHMC_DIMMS_PER_MC (CHMCTRL_NDGRPS * CHMCTRL_NDIMMS) /* OBP memory-layout property format. */ struct chmc_obp_map { unsigned char dimm_map[144]; unsigned char pin_map[576]; }; #define DIMM_LABEL_SZ 8 struct chmc_obp_mem_layout { /* One max 8-byte string label per DIMM. Usually * this matches the label on the motherboard where * that DIMM resides. */ char dimm_labels[CHMC_DIMMS_PER_MC][DIMM_LABEL_SZ]; /* If symmetric use map[0], else it is * asymmetric and map[1] should be used. */ char symmetric; struct chmc_obp_map map[2]; }; #define CHMCTRL_NBANKS 4 struct chmc_bank_info { struct chmc *p; int bank_id; u64 raw_reg; int valid; int uk; int um; int lk; int lm; int interleave; unsigned long base; unsigned long size; }; struct chmc { struct list_head list; int portid; struct chmc_obp_mem_layout layout_prop; int layout_size; void __iomem *regs; u64 timing_control1; u64 timing_control2; u64 timing_control3; u64 timing_control4; u64 memaddr_control; struct chmc_bank_info logical_banks[CHMCTRL_NBANKS]; }; #define JBUSMC_REGS_SIZE 8 #define JB_MC_REG1_DIMM2_BANK3 0x8000000000000000UL #define JB_MC_REG1_DIMM1_BANK1 0x4000000000000000UL #define JB_MC_REG1_DIMM2_BANK2 0x2000000000000000UL #define JB_MC_REG1_DIMM1_BANK0 0x1000000000000000UL #define JB_MC_REG1_XOR 0x0000010000000000UL #define JB_MC_REG1_ADDR_GEN_2 0x000000e000000000UL #define JB_MC_REG1_ADDR_GEN_2_SHIFT 37 #define JB_MC_REG1_ADDR_GEN_1 0x0000001c00000000UL #define JB_MC_REG1_ADDR_GEN_1_SHIFT 34 #define JB_MC_REG1_INTERLEAVE 0x0000000001800000UL #define JB_MC_REG1_INTERLEAVE_SHIFT 23 #define JB_MC_REG1_DIMM2_PTYPE 0x0000000000200000UL #define JB_MC_REG1_DIMM2_PTYPE_SHIFT 21 #define JB_MC_REG1_DIMM1_PTYPE 0x0000000000100000UL #define JB_MC_REG1_DIMM1_PTYPE_SHIFT 20 #define PART_TYPE_X8 0 #define PART_TYPE_X4 1 #define INTERLEAVE_NONE 0 #define INTERLEAVE_SAME 1 #define INTERLEAVE_INTERNAL 2 #define INTERLEAVE_BOTH 3 #define ADDR_GEN_128MB 0 #define ADDR_GEN_256MB 1 #define ADDR_GEN_512MB 2 #define ADDR_GEN_1GB 3 #define JB_NUM_DIMM_GROUPS 2 #define JB_NUM_DIMMS_PER_GROUP 2 #define JB_NUM_DIMMS (JB_NUM_DIMM_GROUPS * JB_NUM_DIMMS_PER_GROUP) struct jbusmc_obp_map { unsigned char dimm_map[18]; unsigned char pin_map[144]; }; struct jbusmc_obp_mem_layout { /* One max 8-byte string label per DIMM. Usually * this matches the label on the motherboard where * that DIMM resides. */ char dimm_labels[JB_NUM_DIMMS][DIMM_LABEL_SZ]; /* If symmetric use map[0], else it is * asymmetric and map[1] should be used. */ char symmetric; struct jbusmc_obp_map map; char _pad; }; struct jbusmc_dimm_group { struct jbusmc *controller; int index; u64 base_addr; u64 size; }; struct jbusmc { void __iomem *regs; u64 mc_reg_1; u32 portid; struct jbusmc_obp_mem_layout layout; int layout_len; int num_dimm_groups; struct jbusmc_dimm_group dimm_groups[JB_NUM_DIMM_GROUPS]; struct list_head list; }; static DEFINE_SPINLOCK(mctrl_list_lock); static LIST_HEAD(mctrl_list); static void mc_list_add(struct list_head *list) { spin_lock(&mctrl_list_lock); list_add(list, &mctrl_list); spin_unlock(&mctrl_list_lock); } static void mc_list_del(struct list_head *list) { spin_lock(&mctrl_list_lock); list_del_init(list); spin_unlock(&mctrl_list_lock); } #define SYNDROME_MIN -1 #define SYNDROME_MAX 144 /* Covert syndrome code into the way the bits are positioned * on the bus. */ static int syndrome_to_qword_code(int syndrome_code) { if (syndrome_code < 128) syndrome_code += 16; else if (syndrome_code < 128 + 9) syndrome_code -= (128 - 7); else if (syndrome_code < (128 + 9 + 3)) syndrome_code -= (128 + 9 - 4); else syndrome_code -= (128 + 9 + 3); return syndrome_code; } /* All this magic has to do with how a cache line comes over the wire * on Safari and JBUS. A 64-bit line comes over in 1 or more quadword * cycles, each of which transmit ECC/MTAG info as well as the actual * data. */ #define L2_LINE_SIZE 64 #define L2_LINE_ADDR_MSK (L2_LINE_SIZE - 1) #define QW_PER_LINE 4 #define QW_BYTES (L2_LINE_SIZE / QW_PER_LINE) #define QW_BITS 144 #define SAFARI_LAST_BIT (576 - 1) #define JBUS_LAST_BIT (144 - 1) static void get_pin_and_dimm_str(int syndrome_code, unsigned long paddr, int *pin_p, char **dimm_str_p, void *_prop, int base_dimm_offset) { int qword_code = syndrome_to_qword_code(syndrome_code); int cache_line_offset; int offset_inverse; int dimm_map_index; int map_val; if (mc_type == MC_TYPE_JBUS) { struct jbusmc_obp_mem_layout *p = _prop; /* JBUS */ cache_line_offset = qword_code; offset_inverse = (JBUS_LAST_BIT - cache_line_offset); dimm_map_index = offset_inverse / 8; map_val = p->map.dimm_map[dimm_map_index]; map_val = ((map_val >> ((7 - (offset_inverse & 7)))) & 1); *dimm_str_p = p->dimm_labels[base_dimm_offset + map_val]; *pin_p = p->map.pin_map[cache_line_offset]; } else { struct chmc_obp_mem_layout *p = _prop; struct chmc_obp_map *mp; int qword; /* Safari */ if (p->symmetric) mp = &p->map[0]; else mp = &p->map[1]; qword = (paddr & L2_LINE_ADDR_MSK) / QW_BYTES; cache_line_offset = ((3 - qword) * QW_BITS) + qword_code; offset_inverse = (SAFARI_LAST_BIT - cache_line_offset); dimm_map_index = offset_inverse >> 2; map_val = mp->dimm_map[dimm_map_index]; map_val = ((map_val >> ((3 - (offset_inverse & 3)) << 1)) & 0x3); *dimm_str_p = p->dimm_labels[base_dimm_offset + map_val]; *pin_p = mp->pin_map[cache_line_offset]; } } static struct jbusmc_dimm_group *jbusmc_find_dimm_group(unsigned long phys_addr) { struct jbusmc *p; list_for_each_entry(p, &mctrl_list, list) { int i; for (i = 0; i < p->num_dimm_groups; i++) { struct jbusmc_dimm_group *dp = &p->dimm_groups[i]; if (phys_addr < dp->base_addr || (dp->base_addr + dp->size) <= phys_addr) continue; return dp; } } return NULL; } static int jbusmc_print_dimm(int syndrome_code, unsigned long phys_addr, char *buf, int buflen) { struct jbusmc_obp_mem_layout *prop; struct jbusmc_dimm_group *dp; struct jbusmc *p; int first_dimm; dp = jbusmc_find_dimm_group(phys_addr); if (dp == NULL || syndrome_code < SYNDROME_MIN || syndrome_code > SYNDROME_MAX) { buf[0] = '?'; buf[1] = '?'; buf[2] = '?'; buf[3] = '\0'; return 0; } p = dp->controller; prop = &p->layout; first_dimm = dp->index * JB_NUM_DIMMS_PER_GROUP; if (syndrome_code != SYNDROME_MIN) { char *dimm_str; int pin; get_pin_and_dimm_str(syndrome_code, phys_addr, &pin, &dimm_str, prop, first_dimm); sprintf(buf, "%s, pin %3d", dimm_str, pin); } else { int dimm; /* Multi-bit error, we just dump out all the * dimm labels associated with this dimm group. */ for (dimm = 0; dimm < JB_NUM_DIMMS_PER_GROUP; dimm++) { sprintf(buf, "%s ", prop->dimm_labels[first_dimm + dimm]); buf += strlen(buf); } } return 0; } static u64 jbusmc_dimm_group_size(u64 base, const struct linux_prom64_registers *mem_regs, int num_mem_regs) { u64 max = base + (8UL * 1024 * 1024 * 1024); u64 max_seen = base; int i; for (i = 0; i < num_mem_regs; i++) { const struct linux_prom64_registers *ent; u64 this_base; u64 this_end; ent = &mem_regs[i]; this_base = ent->phys_addr; this_end = this_base + ent->reg_size; if (base < this_base || base >= this_end) continue; if (this_end > max) this_end = max; if (this_end > max_seen) max_seen = this_end; } return max_seen - base; } static void jbusmc_construct_one_dimm_group(struct jbusmc *p, unsigned long index, const struct linux_prom64_registers *mem_regs, int num_mem_regs) { struct jbusmc_dimm_group *dp = &p->dimm_groups[index]; dp->controller = p; dp->index = index; dp->base_addr = (p->portid * (64UL * 1024 * 1024 * 1024)); dp->base_addr += (index * (8UL * 1024 * 1024 * 1024)); dp->size = jbusmc_dimm_group_size(dp->base_addr, mem_regs, num_mem_regs); } static void jbusmc_construct_dimm_groups(struct jbusmc *p, const struct linux_prom64_registers *mem_regs, int num_mem_regs) { if (p->mc_reg_1 & JB_MC_REG1_DIMM1_BANK0) { jbusmc_construct_one_dimm_group(p, 0, mem_regs, num_mem_regs); p->num_dimm_groups++; } if (p->mc_reg_1 & JB_MC_REG1_DIMM2_BANK2) { jbusmc_construct_one_dimm_group(p, 1, mem_regs, num_mem_regs); p->num_dimm_groups++; } } static int jbusmc_probe(struct platform_device *op) { const struct linux_prom64_registers *mem_regs; struct device_node *mem_node; int err, len, num_mem_regs; struct jbusmc *p; const u32 *prop; const void *ml; err = -ENODEV; mem_node = of_find_node_by_path("/memory"); if (!mem_node) { printk(KERN_ERR PFX "Cannot find /memory node.\n"); goto out; } mem_regs = of_get_property(mem_node, "reg", &len); if (!mem_regs) { printk(KERN_ERR PFX "Cannot get reg property of /memory node.\n"); goto out; } num_mem_regs = len / sizeof(*mem_regs); err = -ENOMEM; p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) { printk(KERN_ERR PFX "Cannot allocate struct jbusmc.\n"); goto out; } INIT_LIST_HEAD(&p->list); err = -ENODEV; prop = of_get_property(op->dev.of_node, "portid", &len); if (!prop || len != 4) { printk(KERN_ERR PFX "Cannot find portid.\n"); goto out_free; } p->portid = *prop; prop = of_get_property(op->dev.of_node, "memory-control-register-1", &len); if (!prop || len != 8) { printk(KERN_ERR PFX "Cannot get memory control register 1.\n"); goto out_free; } p->mc_reg_1 = ((u64)prop[0] << 32) | (u64) prop[1]; err = -ENOMEM; p->regs = of_ioremap(&op->resource[0], 0, JBUSMC_REGS_SIZE, "jbusmc"); if (!p->regs) { printk(KERN_ERR PFX "Cannot map jbusmc regs.\n"); goto out_free; } err = -ENODEV; ml = of_get_property(op->dev.of_node, "memory-layout", &p->layout_len); if (!ml) { printk(KERN_ERR PFX "Cannot get memory layout property.\n"); goto out_iounmap; } if (p->layout_len > sizeof(p->layout)) { printk(KERN_ERR PFX "Unexpected memory-layout size %d\n", p->layout_len); goto out_iounmap; } memcpy(&p->layout, ml, p->layout_len); jbusmc_construct_dimm_groups(p, mem_regs, num_mem_regs); mc_list_add(&p->list); printk(KERN_INFO PFX "UltraSPARC-IIIi memory controller at %pOF\n", op->dev.of_node); dev_set_drvdata(&op->dev, p); err = 0; out: return err; out_iounmap: of_iounmap(&op->resource[0], p->regs, JBUSMC_REGS_SIZE); out_free: kfree(p); goto out; } /* Does BANK decode PHYS_ADDR? */ static int chmc_bank_match(struct chmc_bank_info *bp, unsigned long phys_addr) { unsigned long upper_bits = (phys_addr & PA_UPPER_BITS) >> PA_UPPER_BITS_SHIFT; unsigned long lower_bits = (phys_addr & PA_LOWER_BITS) >> PA_LOWER_BITS_SHIFT; /* Bank must be enabled to match. */ if (bp->valid == 0) return 0; /* Would BANK match upper bits? */ upper_bits ^= bp->um; /* What bits are different? */ upper_bits = ~upper_bits; /* Invert. */ upper_bits |= bp->uk; /* What bits don't matter for matching? */ upper_bits = ~upper_bits; /* Invert. */ if (upper_bits) return 0; /* Would BANK match lower bits? */ lower_bits ^= bp->lm; /* What bits are different? */ lower_bits = ~lower_bits; /* Invert. */ lower_bits |= bp->lk; /* What bits don't matter for matching? */ lower_bits = ~lower_bits; /* Invert. */ if (lower_bits) return 0; /* I always knew you'd be the one. */ return 1; } /* Given PHYS_ADDR, search memory controller banks for a match. */ static struct chmc_bank_info *chmc_find_bank(unsigned long phys_addr) { struct chmc *p; list_for_each_entry(p, &mctrl_list, list) { int bank_no; for (bank_no = 0; bank_no < CHMCTRL_NBANKS; bank_no++) { struct chmc_bank_info *bp; bp = &p->logical_banks[bank_no]; if (chmc_bank_match(bp, phys_addr)) return bp; } } return NULL; } /* This is the main purpose of this driver. */ static int chmc_print_dimm(int syndrome_code, unsigned long phys_addr, char *buf, int buflen) { struct chmc_bank_info *bp; struct chmc_obp_mem_layout *prop; int bank_in_controller, first_dimm; bp = chmc_find_bank(phys_addr); if (bp == NULL || syndrome_code < SYNDROME_MIN || syndrome_code > SYNDROME_MAX) { buf[0] = '?'; buf[1] = '?'; buf[2] = '?'; buf[3] = '\0'; return 0; } prop = &bp->p->layout_prop; bank_in_controller = bp->bank_id & (CHMCTRL_NBANKS - 1); first_dimm = (bank_in_controller & (CHMCTRL_NDGRPS - 1)); first_dimm *= CHMCTRL_NDIMMS; if (syndrome_code != SYNDROME_MIN) { char *dimm_str; int pin; get_pin_and_dimm_str(syndrome_code, phys_addr, &pin, &dimm_str, prop, first_dimm); sprintf(buf, "%s, pin %3d", dimm_str, pin); } else { int dimm; /* Multi-bit error, we just dump out all the * dimm labels associated with this bank. */ for (dimm = 0; dimm < CHMCTRL_NDIMMS; dimm++) { sprintf(buf, "%s ", prop->dimm_labels[first_dimm + dimm]); buf += strlen(buf); } } return 0; } /* Accessing the registers is slightly complicated. If you want * to get at the memory controller which is on the same processor * the code is executing, you must use special ASI load/store else * you go through the global mapping. */ static u64 chmc_read_mcreg(struct chmc *p, unsigned long offset) { unsigned long ret, this_cpu; preempt_disable(); this_cpu = real_hard_smp_processor_id(); if (p->portid == this_cpu) { __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (ret) : "r" (offset), "i" (ASI_MCU_CTRL_REG)); } else { __asm__ __volatile__("ldxa [%1] %2, %0" : "=r" (ret) : "r" (p->regs + offset), "i" (ASI_PHYS_BYPASS_EC_E)); } preempt_enable(); return ret; } #if 0 /* currently unused */ static void chmc_write_mcreg(struct chmc *p, unsigned long offset, u64 val) { if (p->portid == smp_processor_id()) { __asm__ __volatile__("stxa %0, [%1] %2" : : "r" (val), "r" (offset), "i" (ASI_MCU_CTRL_REG)); } else { __asm__ __volatile__("ldxa %0, [%1] %2" : : "r" (val), "r" (p->regs + offset), "i" (ASI_PHYS_BYPASS_EC_E)); } } #endif static void chmc_interpret_one_decode_reg(struct chmc *p, int which_bank, u64 val) { struct chmc_bank_info *bp = &p->logical_banks[which_bank]; bp->p = p; bp->bank_id = (CHMCTRL_NBANKS * p->portid) + which_bank; bp->raw_reg = val; bp->valid = (val & MEM_DECODE_VALID) >> MEM_DECODE_VALID_SHIFT; bp->uk = (val & MEM_DECODE_UK) >> MEM_DECODE_UK_SHIFT; bp->um = (val & MEM_DECODE_UM) >> MEM_DECODE_UM_SHIFT; bp->lk = (val & MEM_DECODE_LK) >> MEM_DECODE_LK_SHIFT; bp->lm = (val & MEM_DECODE_LM) >> MEM_DECODE_LM_SHIFT; bp->base = (bp->um); bp->base &= ~(bp->uk); bp->base <<= PA_UPPER_BITS_SHIFT; switch(bp->lk) { case 0xf: default: bp->interleave = 1; break; case 0xe: bp->interleave = 2; break; case 0xc: bp->interleave = 4; break; case 0x8: bp->interleave = 8; break; case 0x0: bp->interleave = 16; break; } /* UK[10] is reserved, and UK[11] is not set for the SDRAM * bank size definition. */ bp->size = (((unsigned long)bp->uk & ((1UL << 10UL) - 1UL)) + 1UL) << PA_UPPER_BITS_SHIFT; bp->size /= bp->interleave; } static void chmc_fetch_decode_regs(struct chmc *p) { if (p->layout_size == 0) return; chmc_interpret_one_decode_reg(p, 0, chmc_read_mcreg(p, CHMCTRL_DECODE1)); chmc_interpret_one_decode_reg(p, 1, chmc_read_mcreg(p, CHMCTRL_DECODE2)); chmc_interpret_one_decode_reg(p, 2, chmc_read_mcreg(p, CHMCTRL_DECODE3)); chmc_interpret_one_decode_reg(p, 3, chmc_read_mcreg(p, CHMCTRL_DECODE4)); } static int chmc_probe(struct platform_device *op) { struct device_node *dp = op->dev.of_node; unsigned long ver; const void *pval; int len, portid; struct chmc *p; int err; err = -ENODEV; __asm__ ("rdpr %%ver, %0" : "=r" (ver)); if ((ver >> 32UL) == __JALAPENO_ID || (ver >> 32UL) == __SERRANO_ID) goto out; portid = of_getintprop_default(dp, "portid", -1); if (portid == -1) goto out; pval = of_get_property(dp, "memory-layout", &len); if (pval && len > sizeof(p->layout_prop)) { printk(KERN_ERR PFX "Unexpected memory-layout property " "size %d.\n", len); goto out; } err = -ENOMEM; p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) { printk(KERN_ERR PFX "Could not allocate struct chmc.\n"); goto out; } p->portid = portid; p->layout_size = len; if (!pval) p->layout_size = 0; else memcpy(&p->layout_prop, pval, len); p->regs = of_ioremap(&op->resource[0], 0, 0x48, "chmc"); if (!p->regs) { printk(KERN_ERR PFX "Could not map registers.\n"); goto out_free; } if (p->layout_size != 0UL) { p->timing_control1 = chmc_read_mcreg(p, CHMCTRL_TCTRL1); p->timing_control2 = chmc_read_mcreg(p, CHMCTRL_TCTRL2); p->timing_control3 = chmc_read_mcreg(p, CHMCTRL_TCTRL3); p->timing_control4 = chmc_read_mcreg(p, CHMCTRL_TCTRL4); p->memaddr_control = chmc_read_mcreg(p, CHMCTRL_MACTRL); } chmc_fetch_decode_regs(p); mc_list_add(&p->list); printk(KERN_INFO PFX "UltraSPARC-III memory controller at %pOF [%s]\n", dp, (p->layout_size ? "ACTIVE" : "INACTIVE")); dev_set_drvdata(&op->dev, p); err = 0; out: return err; out_free: kfree(p); goto out; } static int us3mc_probe(struct platform_device *op) { if (mc_type == MC_TYPE_SAFARI) return chmc_probe(op); else if (mc_type == MC_TYPE_JBUS) return jbusmc_probe(op); return -ENODEV; } static void chmc_destroy(struct platform_device *op, struct chmc *p) { list_del(&p->list); of_iounmap(&op->resource[0], p->regs, 0x48); kfree(p); } static void jbusmc_destroy(struct platform_device *op, struct jbusmc *p) { mc_list_del(&p->list); of_iounmap(&op->resource[0], p->regs, JBUSMC_REGS_SIZE); kfree(p); } static void us3mc_remove(struct platform_device *op) { void *p = dev_get_drvdata(&op->dev); if (p) { if (mc_type == MC_TYPE_SAFARI) chmc_destroy(op, p); else if (mc_type == MC_TYPE_JBUS) jbusmc_destroy(op, p); } } static const struct of_device_id us3mc_match[] = { { .name = "memory-controller", }, {}, }; MODULE_DEVICE_TABLE(of, us3mc_match); static struct platform_driver us3mc_driver = { .driver = { .name = "us3mc", .of_match_table = us3mc_match, }, .probe = us3mc_probe, .remove_new = us3mc_remove, }; static inline bool us3mc_platform(void) { if (tlb_type == cheetah || tlb_type == cheetah_plus) return true; return false; } static int __init us3mc_init(void) { unsigned long ver; int ret; if (!us3mc_platform()) return -ENODEV; __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver)); if ((ver >> 32UL) == __JALAPENO_ID || (ver >> 32UL) == __SERRANO_ID) { mc_type = MC_TYPE_JBUS; us3mc_dimm_printer = jbusmc_print_dimm; } else { mc_type = MC_TYPE_SAFARI; us3mc_dimm_printer = chmc_print_dimm; } ret = register_dimm_printer(us3mc_dimm_printer); if (!ret) { ret = platform_driver_register(&us3mc_driver); if (ret) unregister_dimm_printer(us3mc_dimm_printer); } return ret; } static void __exit us3mc_cleanup(void) { if (us3mc_platform()) { unregister_dimm_printer(us3mc_dimm_printer); platform_driver_unregister(&us3mc_driver); } } module_init(us3mc_init); module_exit(us3mc_cleanup);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1