Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David S. Miller | 5519 | 97.99% | 25 | 51.02% |
Chen Gang S | 33 | 0.59% | 1 | 2.04% |
Linus Torvalds (pre-git) | 21 | 0.37% | 5 | 10.20% |
Sam Ravnborg | 16 | 0.28% | 1 | 2.04% |
Motohiro Kosaki | 12 | 0.21% | 1 | 2.04% |
Gustavo A. R. Silva | 4 | 0.07% | 1 | 2.04% |
Kees Cook | 4 | 0.07% | 1 | 2.04% |
Thomas Gleixner | 3 | 0.05% | 2 | 4.08% |
Ingo Molnar | 3 | 0.05% | 1 | 2.04% |
Linus Torvalds | 3 | 0.05% | 1 | 2.04% |
Thomas Meyer | 3 | 0.05% | 1 | 2.04% |
Sowmini Varadhan | 2 | 0.04% | 1 | 2.04% |
Qais Yousef | 2 | 0.04% | 1 | 2.04% |
Adrian Bunk | 1 | 0.02% | 1 | 2.04% |
Rusty Russell | 1 | 0.02% | 1 | 2.04% |
Benjamin Herrenschmidt | 1 | 0.02% | 1 | 2.04% |
Zhao Hongjiang | 1 | 0.02% | 1 | 2.04% |
Ahelenia Ziemiańska | 1 | 0.02% | 1 | 2.04% |
Robert P. J. Day | 1 | 0.02% | 1 | 2.04% |
Sakari Ailus | 1 | 0.02% | 1 | 2.04% |
Total | 5632 | 49 |
// SPDX-License-Identifier: GPL-2.0-only /* ds.c: Domain Services driver for Logical Domains * * Copyright (C) 2007, 2008 David S. Miller <davem@davemloft.net> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/string.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/sched/clock.h> #include <linux/delay.h> #include <linux/mutex.h> #include <linux/kthread.h> #include <linux/reboot.h> #include <linux/cpu.h> #include <asm/hypervisor.h> #include <asm/ldc.h> #include <asm/vio.h> #include <asm/mdesc.h> #include <asm/head.h> #include <asm/irq.h> #include "kernel.h" #define DRV_MODULE_NAME "ds" #define PFX DRV_MODULE_NAME ": " #define DRV_MODULE_VERSION "1.0" #define DRV_MODULE_RELDATE "Jul 11, 2007" static char version[] = DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; MODULE_AUTHOR("David S. Miller <davem@davemloft.net>"); MODULE_DESCRIPTION("Sun LDOM domain services driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); struct ds_msg_tag { __u32 type; #define DS_INIT_REQ 0x00 #define DS_INIT_ACK 0x01 #define DS_INIT_NACK 0x02 #define DS_REG_REQ 0x03 #define DS_REG_ACK 0x04 #define DS_REG_NACK 0x05 #define DS_UNREG_REQ 0x06 #define DS_UNREG_ACK 0x07 #define DS_UNREG_NACK 0x08 #define DS_DATA 0x09 #define DS_NACK 0x0a __u32 len; }; /* Result codes */ #define DS_OK 0x00 #define DS_REG_VER_NACK 0x01 #define DS_REG_DUP 0x02 #define DS_INV_HDL 0x03 #define DS_TYPE_UNKNOWN 0x04 struct ds_version { __u16 major; __u16 minor; }; struct ds_ver_req { struct ds_msg_tag tag; struct ds_version ver; }; struct ds_ver_ack { struct ds_msg_tag tag; __u16 minor; }; struct ds_ver_nack { struct ds_msg_tag tag; __u16 major; }; struct ds_reg_req { struct ds_msg_tag tag; __u64 handle; __u16 major; __u16 minor; char svc_id[]; }; struct ds_reg_ack { struct ds_msg_tag tag; __u64 handle; __u16 minor; }; struct ds_reg_nack { struct ds_msg_tag tag; __u64 handle; __u16 major; }; struct ds_unreg_req { struct ds_msg_tag tag; __u64 handle; }; struct ds_unreg_ack { struct ds_msg_tag tag; __u64 handle; }; struct ds_unreg_nack { struct ds_msg_tag tag; __u64 handle; }; struct ds_data { struct ds_msg_tag tag; __u64 handle; }; struct ds_data_nack { struct ds_msg_tag tag; __u64 handle; __u64 result; }; struct ds_info; struct ds_cap_state { __u64 handle; void (*data)(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len); const char *service_id; u8 state; #define CAP_STATE_UNKNOWN 0x00 #define CAP_STATE_REG_SENT 0x01 #define CAP_STATE_REGISTERED 0x02 }; static void md_update_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len); static void domain_shutdown_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len); static void domain_panic_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len); #ifdef CONFIG_HOTPLUG_CPU static void dr_cpu_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len); #endif static void ds_pri_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len); static void ds_var_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len); static struct ds_cap_state ds_states_template[] = { { .service_id = "md-update", .data = md_update_data, }, { .service_id = "domain-shutdown", .data = domain_shutdown_data, }, { .service_id = "domain-panic", .data = domain_panic_data, }, #ifdef CONFIG_HOTPLUG_CPU { .service_id = "dr-cpu", .data = dr_cpu_data, }, #endif { .service_id = "pri", .data = ds_pri_data, }, { .service_id = "var-config", .data = ds_var_data, }, { .service_id = "var-config-backup", .data = ds_var_data, }, }; static DEFINE_SPINLOCK(ds_lock); struct ds_info { struct ldc_channel *lp; u8 hs_state; #define DS_HS_START 0x01 #define DS_HS_DONE 0x02 u64 id; void *rcv_buf; int rcv_buf_len; struct ds_cap_state *ds_states; int num_ds_states; struct ds_info *next; }; static struct ds_info *ds_info_list; static struct ds_cap_state *find_cap(struct ds_info *dp, u64 handle) { unsigned int index = handle >> 32; if (index >= dp->num_ds_states) return NULL; return &dp->ds_states[index]; } static struct ds_cap_state *find_cap_by_string(struct ds_info *dp, const char *name) { int i; for (i = 0; i < dp->num_ds_states; i++) { if (strcmp(dp->ds_states[i].service_id, name)) continue; return &dp->ds_states[i]; } return NULL; } static int __ds_send(struct ldc_channel *lp, void *data, int len) { int err, limit = 1000; err = -EINVAL; while (limit-- > 0) { err = ldc_write(lp, data, len); if (!err || (err != -EAGAIN)) break; udelay(1); } return err; } static int ds_send(struct ldc_channel *lp, void *data, int len) { unsigned long flags; int err; spin_lock_irqsave(&ds_lock, flags); err = __ds_send(lp, data, len); spin_unlock_irqrestore(&ds_lock, flags); return err; } struct ds_md_update_req { __u64 req_num; }; struct ds_md_update_res { __u64 req_num; __u32 result; }; static void md_update_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len) { struct ldc_channel *lp = dp->lp; struct ds_data *dpkt = buf; struct ds_md_update_req *rp; struct { struct ds_data data; struct ds_md_update_res res; } pkt; rp = (struct ds_md_update_req *) (dpkt + 1); printk(KERN_INFO "ds-%llu: Machine description update.\n", dp->id); mdesc_update(); memset(&pkt, 0, sizeof(pkt)); pkt.data.tag.type = DS_DATA; pkt.data.tag.len = sizeof(pkt) - sizeof(struct ds_msg_tag); pkt.data.handle = cp->handle; pkt.res.req_num = rp->req_num; pkt.res.result = DS_OK; ds_send(lp, &pkt, sizeof(pkt)); } struct ds_shutdown_req { __u64 req_num; __u32 ms_delay; }; struct ds_shutdown_res { __u64 req_num; __u32 result; char reason[1]; }; static void domain_shutdown_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len) { struct ldc_channel *lp = dp->lp; struct ds_data *dpkt = buf; struct ds_shutdown_req *rp; struct { struct ds_data data; struct ds_shutdown_res res; } pkt; rp = (struct ds_shutdown_req *) (dpkt + 1); printk(KERN_ALERT "ds-%llu: Shutdown request from " "LDOM manager received.\n", dp->id); memset(&pkt, 0, sizeof(pkt)); pkt.data.tag.type = DS_DATA; pkt.data.tag.len = sizeof(pkt) - sizeof(struct ds_msg_tag); pkt.data.handle = cp->handle; pkt.res.req_num = rp->req_num; pkt.res.result = DS_OK; pkt.res.reason[0] = 0; ds_send(lp, &pkt, sizeof(pkt)); orderly_poweroff(true); } struct ds_panic_req { __u64 req_num; }; struct ds_panic_res { __u64 req_num; __u32 result; char reason[1]; }; static void domain_panic_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len) { struct ldc_channel *lp = dp->lp; struct ds_data *dpkt = buf; struct ds_panic_req *rp; struct { struct ds_data data; struct ds_panic_res res; } pkt; rp = (struct ds_panic_req *) (dpkt + 1); printk(KERN_ALERT "ds-%llu: Panic request from " "LDOM manager received.\n", dp->id); memset(&pkt, 0, sizeof(pkt)); pkt.data.tag.type = DS_DATA; pkt.data.tag.len = sizeof(pkt) - sizeof(struct ds_msg_tag); pkt.data.handle = cp->handle; pkt.res.req_num = rp->req_num; pkt.res.result = DS_OK; pkt.res.reason[0] = 0; ds_send(lp, &pkt, sizeof(pkt)); panic("PANIC requested by LDOM manager."); } #ifdef CONFIG_HOTPLUG_CPU struct dr_cpu_tag { __u64 req_num; __u32 type; #define DR_CPU_CONFIGURE 0x43 #define DR_CPU_UNCONFIGURE 0x55 #define DR_CPU_FORCE_UNCONFIGURE 0x46 #define DR_CPU_STATUS 0x53 /* Responses */ #define DR_CPU_OK 0x6f #define DR_CPU_ERROR 0x65 __u32 num_records; }; struct dr_cpu_resp_entry { __u32 cpu; __u32 result; #define DR_CPU_RES_OK 0x00 #define DR_CPU_RES_FAILURE 0x01 #define DR_CPU_RES_BLOCKED 0x02 #define DR_CPU_RES_CPU_NOT_RESPONDING 0x03 #define DR_CPU_RES_NOT_IN_MD 0x04 __u32 stat; #define DR_CPU_STAT_NOT_PRESENT 0x00 #define DR_CPU_STAT_UNCONFIGURED 0x01 #define DR_CPU_STAT_CONFIGURED 0x02 __u32 str_off; }; static void __dr_cpu_send_error(struct ds_info *dp, struct ds_cap_state *cp, struct ds_data *data) { struct dr_cpu_tag *tag = (struct dr_cpu_tag *) (data + 1); struct { struct ds_data data; struct dr_cpu_tag tag; } pkt; int msg_len; memset(&pkt, 0, sizeof(pkt)); pkt.data.tag.type = DS_DATA; pkt.data.handle = cp->handle; pkt.tag.req_num = tag->req_num; pkt.tag.type = DR_CPU_ERROR; pkt.tag.num_records = 0; msg_len = (sizeof(struct ds_data) + sizeof(struct dr_cpu_tag)); pkt.data.tag.len = msg_len - sizeof(struct ds_msg_tag); __ds_send(dp->lp, &pkt, msg_len); } static void dr_cpu_send_error(struct ds_info *dp, struct ds_cap_state *cp, struct ds_data *data) { unsigned long flags; spin_lock_irqsave(&ds_lock, flags); __dr_cpu_send_error(dp, cp, data); spin_unlock_irqrestore(&ds_lock, flags); } #define CPU_SENTINEL 0xffffffff static void purge_dups(u32 *list, u32 num_ents) { unsigned int i; for (i = 0; i < num_ents; i++) { u32 cpu = list[i]; unsigned int j; if (cpu == CPU_SENTINEL) continue; for (j = i + 1; j < num_ents; j++) { if (list[j] == cpu) list[j] = CPU_SENTINEL; } } } static int dr_cpu_size_response(int ncpus) { return (sizeof(struct ds_data) + sizeof(struct dr_cpu_tag) + (sizeof(struct dr_cpu_resp_entry) * ncpus)); } static void dr_cpu_init_response(struct ds_data *resp, u64 req_num, u64 handle, int resp_len, int ncpus, cpumask_t *mask, u32 default_stat) { struct dr_cpu_resp_entry *ent; struct dr_cpu_tag *tag; int i, cpu; tag = (struct dr_cpu_tag *) (resp + 1); ent = (struct dr_cpu_resp_entry *) (tag + 1); resp->tag.type = DS_DATA; resp->tag.len = resp_len - sizeof(struct ds_msg_tag); resp->handle = handle; tag->req_num = req_num; tag->type = DR_CPU_OK; tag->num_records = ncpus; i = 0; for_each_cpu(cpu, mask) { ent[i].cpu = cpu; ent[i].result = DR_CPU_RES_OK; ent[i].stat = default_stat; i++; } BUG_ON(i != ncpus); } static void dr_cpu_mark(struct ds_data *resp, int cpu, int ncpus, u32 res, u32 stat) { struct dr_cpu_resp_entry *ent; struct dr_cpu_tag *tag; int i; tag = (struct dr_cpu_tag *) (resp + 1); ent = (struct dr_cpu_resp_entry *) (tag + 1); for (i = 0; i < ncpus; i++) { if (ent[i].cpu != cpu) continue; ent[i].result = res; ent[i].stat = stat; break; } } static int dr_cpu_configure(struct ds_info *dp, struct ds_cap_state *cp, u64 req_num, cpumask_t *mask) { struct ds_data *resp; int resp_len, ncpus, cpu; unsigned long flags; ncpus = cpumask_weight(mask); resp_len = dr_cpu_size_response(ncpus); resp = kzalloc(resp_len, GFP_KERNEL); if (!resp) return -ENOMEM; dr_cpu_init_response(resp, req_num, cp->handle, resp_len, ncpus, mask, DR_CPU_STAT_CONFIGURED); mdesc_populate_present_mask(mask); mdesc_fill_in_cpu_data(mask); for_each_cpu(cpu, mask) { int err; printk(KERN_INFO "ds-%llu: Starting cpu %d...\n", dp->id, cpu); err = add_cpu(cpu); if (err) { __u32 res = DR_CPU_RES_FAILURE; __u32 stat = DR_CPU_STAT_UNCONFIGURED; if (!cpu_present(cpu)) { /* CPU not present in MD */ res = DR_CPU_RES_NOT_IN_MD; stat = DR_CPU_STAT_NOT_PRESENT; } else if (err == -ENODEV) { /* CPU did not call in successfully */ res = DR_CPU_RES_CPU_NOT_RESPONDING; } printk(KERN_INFO "ds-%llu: CPU startup failed err=%d\n", dp->id, err); dr_cpu_mark(resp, cpu, ncpus, res, stat); } } spin_lock_irqsave(&ds_lock, flags); __ds_send(dp->lp, resp, resp_len); spin_unlock_irqrestore(&ds_lock, flags); kfree(resp); /* Redistribute IRQs, taking into account the new cpus. */ fixup_irqs(); return 0; } static int dr_cpu_unconfigure(struct ds_info *dp, struct ds_cap_state *cp, u64 req_num, cpumask_t *mask) { struct ds_data *resp; int resp_len, ncpus, cpu; unsigned long flags; ncpus = cpumask_weight(mask); resp_len = dr_cpu_size_response(ncpus); resp = kzalloc(resp_len, GFP_KERNEL); if (!resp) return -ENOMEM; dr_cpu_init_response(resp, req_num, cp->handle, resp_len, ncpus, mask, DR_CPU_STAT_UNCONFIGURED); for_each_cpu(cpu, mask) { int err; printk(KERN_INFO "ds-%llu: Shutting down cpu %d...\n", dp->id, cpu); err = remove_cpu(cpu); if (err) dr_cpu_mark(resp, cpu, ncpus, DR_CPU_RES_FAILURE, DR_CPU_STAT_CONFIGURED); } spin_lock_irqsave(&ds_lock, flags); __ds_send(dp->lp, resp, resp_len); spin_unlock_irqrestore(&ds_lock, flags); kfree(resp); return 0; } static void dr_cpu_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len) { struct ds_data *data = buf; struct dr_cpu_tag *tag = (struct dr_cpu_tag *) (data + 1); u32 *cpu_list = (u32 *) (tag + 1); u64 req_num = tag->req_num; cpumask_t mask; unsigned int i; int err; switch (tag->type) { case DR_CPU_CONFIGURE: case DR_CPU_UNCONFIGURE: case DR_CPU_FORCE_UNCONFIGURE: break; default: dr_cpu_send_error(dp, cp, data); return; } purge_dups(cpu_list, tag->num_records); cpumask_clear(&mask); for (i = 0; i < tag->num_records; i++) { if (cpu_list[i] == CPU_SENTINEL) continue; if (cpu_list[i] < nr_cpu_ids) cpumask_set_cpu(cpu_list[i], &mask); } if (tag->type == DR_CPU_CONFIGURE) err = dr_cpu_configure(dp, cp, req_num, &mask); else err = dr_cpu_unconfigure(dp, cp, req_num, &mask); if (err) dr_cpu_send_error(dp, cp, data); } #endif /* CONFIG_HOTPLUG_CPU */ struct ds_pri_msg { __u64 req_num; __u64 type; #define DS_PRI_REQUEST 0x00 #define DS_PRI_DATA 0x01 #define DS_PRI_UPDATE 0x02 }; static void ds_pri_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len) { struct ds_data *dpkt = buf; struct ds_pri_msg *rp; rp = (struct ds_pri_msg *) (dpkt + 1); printk(KERN_INFO "ds-%llu: PRI REQ [%llx:%llx], len=%d\n", dp->id, rp->req_num, rp->type, len); } struct ds_var_hdr { __u32 type; #define DS_VAR_SET_REQ 0x00 #define DS_VAR_DELETE_REQ 0x01 #define DS_VAR_SET_RESP 0x02 #define DS_VAR_DELETE_RESP 0x03 }; struct ds_var_set_msg { struct ds_var_hdr hdr; char name_and_value[]; }; struct ds_var_delete_msg { struct ds_var_hdr hdr; char name[]; }; struct ds_var_resp { struct ds_var_hdr hdr; __u32 result; #define DS_VAR_SUCCESS 0x00 #define DS_VAR_NO_SPACE 0x01 #define DS_VAR_INVALID_VAR 0x02 #define DS_VAR_INVALID_VAL 0x03 #define DS_VAR_NOT_PRESENT 0x04 }; static DEFINE_MUTEX(ds_var_mutex); static int ds_var_doorbell; static int ds_var_response; static void ds_var_data(struct ds_info *dp, struct ds_cap_state *cp, void *buf, int len) { struct ds_data *dpkt = buf; struct ds_var_resp *rp; rp = (struct ds_var_resp *) (dpkt + 1); if (rp->hdr.type != DS_VAR_SET_RESP && rp->hdr.type != DS_VAR_DELETE_RESP) return; ds_var_response = rp->result; wmb(); ds_var_doorbell = 1; } void ldom_set_var(const char *var, const char *value) { struct ds_cap_state *cp; struct ds_info *dp; unsigned long flags; spin_lock_irqsave(&ds_lock, flags); cp = NULL; for (dp = ds_info_list; dp; dp = dp->next) { struct ds_cap_state *tmp; tmp = find_cap_by_string(dp, "var-config"); if (tmp && tmp->state == CAP_STATE_REGISTERED) { cp = tmp; break; } } if (!cp) { for (dp = ds_info_list; dp; dp = dp->next) { struct ds_cap_state *tmp; tmp = find_cap_by_string(dp, "var-config-backup"); if (tmp && tmp->state == CAP_STATE_REGISTERED) { cp = tmp; break; } } } spin_unlock_irqrestore(&ds_lock, flags); if (cp) { union { struct { struct ds_data data; struct ds_var_set_msg msg; } header; char all[512]; } pkt; char *base, *p; int msg_len, loops; if (strlen(var) + strlen(value) + 2 > sizeof(pkt) - sizeof(pkt.header)) { printk(KERN_ERR PFX "contents length: %zu, which more than max: %lu," "so could not set (%s) variable to (%s).\n", strlen(var) + strlen(value) + 2, sizeof(pkt) - sizeof(pkt.header), var, value); return; } memset(&pkt, 0, sizeof(pkt)); pkt.header.data.tag.type = DS_DATA; pkt.header.data.handle = cp->handle; pkt.header.msg.hdr.type = DS_VAR_SET_REQ; base = p = &pkt.header.msg.name_and_value[0]; strcpy(p, var); p += strlen(var) + 1; strcpy(p, value); p += strlen(value) + 1; msg_len = (sizeof(struct ds_data) + sizeof(struct ds_var_set_msg) + (p - base)); msg_len = (msg_len + 3) & ~3; pkt.header.data.tag.len = msg_len - sizeof(struct ds_msg_tag); mutex_lock(&ds_var_mutex); spin_lock_irqsave(&ds_lock, flags); ds_var_doorbell = 0; ds_var_response = -1; __ds_send(dp->lp, &pkt, msg_len); spin_unlock_irqrestore(&ds_lock, flags); loops = 1000; while (ds_var_doorbell == 0) { if (loops-- < 0) break; barrier(); udelay(100); } mutex_unlock(&ds_var_mutex); if (ds_var_doorbell == 0 || ds_var_response != DS_VAR_SUCCESS) printk(KERN_ERR "ds-%llu: var-config [%s:%s] " "failed, response(%d).\n", dp->id, var, value, ds_var_response); } else { printk(KERN_ERR PFX "var-config not registered so " "could not set (%s) variable to (%s).\n", var, value); } } static char full_boot_str[256] __attribute__((aligned(32))); static int reboot_data_supported; void ldom_reboot(const char *boot_command) { /* Don't bother with any of this if the boot_command * is empty. */ if (boot_command && strlen(boot_command)) { unsigned long len; snprintf(full_boot_str, sizeof(full_boot_str), "boot %s", boot_command); len = strlen(full_boot_str); if (reboot_data_supported) { unsigned long ra = kimage_addr_to_ra(full_boot_str); unsigned long hv_ret; hv_ret = sun4v_reboot_data_set(ra, len); if (hv_ret != HV_EOK) pr_err("SUN4V: Unable to set reboot data " "hv_ret=%lu\n", hv_ret); } else { ldom_set_var("reboot-command", full_boot_str); } } sun4v_mach_sir(); } void ldom_power_off(void) { sun4v_mach_exit(0); } static void ds_conn_reset(struct ds_info *dp) { printk(KERN_ERR "ds-%llu: ds_conn_reset() from %ps\n", dp->id, __builtin_return_address(0)); } static int register_services(struct ds_info *dp) { struct ldc_channel *lp = dp->lp; int i; for (i = 0; i < dp->num_ds_states; i++) { struct { struct ds_reg_req req; u8 id_buf[256]; } pbuf; struct ds_cap_state *cp = &dp->ds_states[i]; int err, msg_len; u64 new_count; if (cp->state == CAP_STATE_REGISTERED) continue; new_count = sched_clock() & 0xffffffff; cp->handle = ((u64) i << 32) | new_count; msg_len = (sizeof(struct ds_reg_req) + strlen(cp->service_id)); memset(&pbuf, 0, sizeof(pbuf)); pbuf.req.tag.type = DS_REG_REQ; pbuf.req.tag.len = (msg_len - sizeof(struct ds_msg_tag)); pbuf.req.handle = cp->handle; pbuf.req.major = 1; pbuf.req.minor = 0; strcpy(pbuf.id_buf, cp->service_id); err = __ds_send(lp, &pbuf, msg_len); if (err > 0) cp->state = CAP_STATE_REG_SENT; } return 0; } static int ds_handshake(struct ds_info *dp, struct ds_msg_tag *pkt) { if (dp->hs_state == DS_HS_START) { if (pkt->type != DS_INIT_ACK) goto conn_reset; dp->hs_state = DS_HS_DONE; return register_services(dp); } if (dp->hs_state != DS_HS_DONE) goto conn_reset; if (pkt->type == DS_REG_ACK) { struct ds_reg_ack *ap = (struct ds_reg_ack *) pkt; struct ds_cap_state *cp = find_cap(dp, ap->handle); if (!cp) { printk(KERN_ERR "ds-%llu: REG ACK for unknown " "handle %llx\n", dp->id, ap->handle); return 0; } printk(KERN_INFO "ds-%llu: Registered %s service.\n", dp->id, cp->service_id); cp->state = CAP_STATE_REGISTERED; } else if (pkt->type == DS_REG_NACK) { struct ds_reg_nack *np = (struct ds_reg_nack *) pkt; struct ds_cap_state *cp = find_cap(dp, np->handle); if (!cp) { printk(KERN_ERR "ds-%llu: REG NACK for " "unknown handle %llx\n", dp->id, np->handle); return 0; } cp->state = CAP_STATE_UNKNOWN; } return 0; conn_reset: ds_conn_reset(dp); return -ECONNRESET; } static void __send_ds_nack(struct ds_info *dp, u64 handle) { struct ds_data_nack nack = { .tag = { .type = DS_NACK, .len = (sizeof(struct ds_data_nack) - sizeof(struct ds_msg_tag)), }, .handle = handle, .result = DS_INV_HDL, }; __ds_send(dp->lp, &nack, sizeof(nack)); } static LIST_HEAD(ds_work_list); static DECLARE_WAIT_QUEUE_HEAD(ds_wait); struct ds_queue_entry { struct list_head list; struct ds_info *dp; int req_len; int __pad; u64 req[]; }; static void process_ds_work(void) { struct ds_queue_entry *qp, *tmp; unsigned long flags; LIST_HEAD(todo); spin_lock_irqsave(&ds_lock, flags); list_splice_init(&ds_work_list, &todo); spin_unlock_irqrestore(&ds_lock, flags); list_for_each_entry_safe(qp, tmp, &todo, list) { struct ds_data *dpkt = (struct ds_data *) qp->req; struct ds_info *dp = qp->dp; struct ds_cap_state *cp = find_cap(dp, dpkt->handle); int req_len = qp->req_len; if (!cp) { printk(KERN_ERR "ds-%llu: Data for unknown " "handle %llu\n", dp->id, dpkt->handle); spin_lock_irqsave(&ds_lock, flags); __send_ds_nack(dp, dpkt->handle); spin_unlock_irqrestore(&ds_lock, flags); } else { cp->data(dp, cp, dpkt, req_len); } list_del(&qp->list); kfree(qp); } } static int ds_thread(void *__unused) { DEFINE_WAIT(wait); while (1) { prepare_to_wait(&ds_wait, &wait, TASK_INTERRUPTIBLE); if (list_empty(&ds_work_list)) schedule(); finish_wait(&ds_wait, &wait); if (kthread_should_stop()) break; process_ds_work(); } return 0; } static int ds_data(struct ds_info *dp, struct ds_msg_tag *pkt, int len) { struct ds_data *dpkt = (struct ds_data *) pkt; struct ds_queue_entry *qp; qp = kmalloc(sizeof(struct ds_queue_entry) + len, GFP_ATOMIC); if (!qp) { __send_ds_nack(dp, dpkt->handle); } else { qp->dp = dp; memcpy(&qp->req, pkt, len); list_add_tail(&qp->list, &ds_work_list); wake_up(&ds_wait); } return 0; } static void ds_up(struct ds_info *dp) { struct ldc_channel *lp = dp->lp; struct ds_ver_req req; int err; req.tag.type = DS_INIT_REQ; req.tag.len = sizeof(req) - sizeof(struct ds_msg_tag); req.ver.major = 1; req.ver.minor = 0; err = __ds_send(lp, &req, sizeof(req)); if (err > 0) dp->hs_state = DS_HS_START; } static void ds_reset(struct ds_info *dp) { int i; dp->hs_state = 0; for (i = 0; i < dp->num_ds_states; i++) { struct ds_cap_state *cp = &dp->ds_states[i]; cp->state = CAP_STATE_UNKNOWN; } } static void ds_event(void *arg, int event) { struct ds_info *dp = arg; struct ldc_channel *lp = dp->lp; unsigned long flags; int err; spin_lock_irqsave(&ds_lock, flags); if (event == LDC_EVENT_UP) { ds_up(dp); spin_unlock_irqrestore(&ds_lock, flags); return; } if (event == LDC_EVENT_RESET) { ds_reset(dp); spin_unlock_irqrestore(&ds_lock, flags); return; } if (event != LDC_EVENT_DATA_READY) { printk(KERN_WARNING "ds-%llu: Unexpected LDC event %d\n", dp->id, event); spin_unlock_irqrestore(&ds_lock, flags); return; } err = 0; while (1) { struct ds_msg_tag *tag; err = ldc_read(lp, dp->rcv_buf, sizeof(*tag)); if (unlikely(err < 0)) { if (err == -ECONNRESET) ds_conn_reset(dp); break; } if (err == 0) break; tag = dp->rcv_buf; err = ldc_read(lp, tag + 1, tag->len); if (unlikely(err < 0)) { if (err == -ECONNRESET) ds_conn_reset(dp); break; } if (err < tag->len) break; if (tag->type < DS_DATA) err = ds_handshake(dp, dp->rcv_buf); else err = ds_data(dp, dp->rcv_buf, sizeof(*tag) + err); if (err == -ECONNRESET) break; } spin_unlock_irqrestore(&ds_lock, flags); } static int ds_probe(struct vio_dev *vdev, const struct vio_device_id *id) { static int ds_version_printed; struct ldc_channel_config ds_cfg = { .event = ds_event, .mtu = 4096, .mode = LDC_MODE_STREAM, }; struct mdesc_handle *hp; struct ldc_channel *lp; struct ds_info *dp; const u64 *val; int err, i; if (ds_version_printed++ == 0) printk(KERN_INFO "%s", version); dp = kzalloc(sizeof(*dp), GFP_KERNEL); err = -ENOMEM; if (!dp) goto out_err; hp = mdesc_grab(); val = mdesc_get_property(hp, vdev->mp, "id", NULL); if (val) dp->id = *val; mdesc_release(hp); dp->rcv_buf = kzalloc(4096, GFP_KERNEL); if (!dp->rcv_buf) goto out_free_dp; dp->rcv_buf_len = 4096; dp->ds_states = kmemdup(ds_states_template, sizeof(ds_states_template), GFP_KERNEL); if (!dp->ds_states) goto out_free_rcv_buf; dp->num_ds_states = ARRAY_SIZE(ds_states_template); for (i = 0; i < dp->num_ds_states; i++) dp->ds_states[i].handle = ((u64)i << 32); ds_cfg.tx_irq = vdev->tx_irq; ds_cfg.rx_irq = vdev->rx_irq; lp = ldc_alloc(vdev->channel_id, &ds_cfg, dp, "DS"); if (IS_ERR(lp)) { err = PTR_ERR(lp); goto out_free_ds_states; } dp->lp = lp; err = ldc_bind(lp); if (err) goto out_free_ldc; spin_lock_irq(&ds_lock); dp->next = ds_info_list; ds_info_list = dp; spin_unlock_irq(&ds_lock); return err; out_free_ldc: ldc_free(dp->lp); out_free_ds_states: kfree(dp->ds_states); out_free_rcv_buf: kfree(dp->rcv_buf); out_free_dp: kfree(dp); out_err: return err; } static const struct vio_device_id ds_match[] = { { .type = "domain-services-port", }, {}, }; static struct vio_driver ds_driver = { .id_table = ds_match, .probe = ds_probe, .name = "ds", }; static int __init ds_init(void) { unsigned long hv_ret, major, minor; if (tlb_type == hypervisor) { hv_ret = sun4v_get_version(HV_GRP_REBOOT_DATA, &major, &minor); if (hv_ret == HV_EOK) { pr_info("SUN4V: Reboot data supported (maj=%lu,min=%lu).\n", major, minor); reboot_data_supported = 1; } } kthread_run(ds_thread, NULL, "kldomd"); return vio_register_driver(&ds_driver); } fs_initcall(ds_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1