Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ard Biesheuvel | 1920 | 25.37% | 11 | 14.29% |
Eric Biggers | 1228 | 16.22% | 15 | 19.48% |
Huang Ying | 1110 | 14.67% | 3 | 3.90% |
Nathan Huckleberry | 561 | 7.41% | 1 | 1.30% |
Herbert Xu | 559 | 7.39% | 5 | 6.49% |
Dave Watson | 538 | 7.11% | 6 | 7.79% |
Sabrina Dubroca | 521 | 6.88% | 3 | 3.90% |
Tadeusz Struk | 340 | 4.49% | 4 | 5.19% |
Jussi Kivilinna | 226 | 2.99% | 5 | 6.49% |
Tim Chen | 201 | 2.66% | 1 | 1.30% |
Mathias Krause | 99 | 1.31% | 3 | 3.90% |
Chang S. Bae | 89 | 1.18% | 6 | 7.79% |
Chandramouli Narayanan | 81 | 1.07% | 1 | 1.30% |
Tony Luck | 48 | 0.63% | 1 | 1.30% |
Andi Kleen | 17 | 0.22% | 1 | 1.30% |
Kees Cook | 6 | 0.08% | 2 | 2.60% |
Thomas Gleixner | 5 | 0.07% | 2 | 2.60% |
Corentin Labbe | 5 | 0.07% | 1 | 1.30% |
Ilya Lesokhin | 4 | 0.05% | 1 | 1.30% |
Paul Gortmaker | 3 | 0.04% | 1 | 1.30% |
Andy Shevchenko | 3 | 0.04% | 1 | 1.30% |
Stephan Mueller | 2 | 0.03% | 1 | 1.30% |
Jakub Kiciński | 2 | 0.03% | 1 | 1.30% |
Jason A. Donenfeld | 1 | 0.01% | 1 | 1.30% |
Total | 7569 | 77 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Support for Intel AES-NI instructions. This file contains glue * code, the real AES implementation is in intel-aes_asm.S. * * Copyright (C) 2008, Intel Corp. * Author: Huang Ying <ying.huang@intel.com> * * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD * interface for 64-bit kernels. * Authors: Adrian Hoban <adrian.hoban@intel.com> * Gabriele Paoloni <gabriele.paoloni@intel.com> * Tadeusz Struk (tadeusz.struk@intel.com) * Aidan O'Mahony (aidan.o.mahony@intel.com) * Copyright (c) 2010, Intel Corporation. */ #include <linux/hardirq.h> #include <linux/types.h> #include <linux/module.h> #include <linux/err.h> #include <crypto/algapi.h> #include <crypto/aes.h> #include <crypto/ctr.h> #include <crypto/b128ops.h> #include <crypto/gcm.h> #include <crypto/xts.h> #include <asm/cpu_device_id.h> #include <asm/simd.h> #include <crypto/scatterwalk.h> #include <crypto/internal/aead.h> #include <crypto/internal/simd.h> #include <crypto/internal/skcipher.h> #include <linux/jump_label.h> #include <linux/workqueue.h> #include <linux/spinlock.h> #include <linux/static_call.h> #define AESNI_ALIGN 16 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN))) #define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1)) #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1)) #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA) #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA) /* This data is stored at the end of the crypto_tfm struct. * It's a type of per "session" data storage location. * This needs to be 16 byte aligned. */ struct aesni_rfc4106_gcm_ctx { u8 hash_subkey[16] AESNI_ALIGN_ATTR; struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR; u8 nonce[4]; }; struct generic_gcmaes_ctx { u8 hash_subkey[16] AESNI_ALIGN_ATTR; struct crypto_aes_ctx aes_key_expanded AESNI_ALIGN_ATTR; }; struct aesni_xts_ctx { struct crypto_aes_ctx tweak_ctx AESNI_ALIGN_ATTR; struct crypto_aes_ctx crypt_ctx AESNI_ALIGN_ATTR; }; #define GCM_BLOCK_LEN 16 struct gcm_context_data { /* init, update and finalize context data */ u8 aad_hash[GCM_BLOCK_LEN]; u64 aad_length; u64 in_length; u8 partial_block_enc_key[GCM_BLOCK_LEN]; u8 orig_IV[GCM_BLOCK_LEN]; u8 current_counter[GCM_BLOCK_LEN]; u64 partial_block_len; u64 unused; u8 hash_keys[GCM_BLOCK_LEN * 16]; }; static inline void *aes_align_addr(void *addr) { if (crypto_tfm_ctx_alignment() >= AESNI_ALIGN) return addr; return PTR_ALIGN(addr, AESNI_ALIGN); } asmlinkage void aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key, unsigned int key_len); asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in); asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in); asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len); asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len); asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv); asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv); asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv); asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv); #define AVX_GEN2_OPTSIZE 640 #define AVX_GEN4_OPTSIZE 4096 asmlinkage void aesni_xts_enc(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv); asmlinkage void aesni_xts_dec(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv); #ifdef CONFIG_X86_64 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv); DEFINE_STATIC_CALL(aesni_ctr_enc_tfm, aesni_ctr_enc); /* Scatter / Gather routines, with args similar to above */ asmlinkage void aesni_gcm_init(void *ctx, struct gcm_context_data *gdata, u8 *iv, u8 *hash_subkey, const u8 *aad, unsigned long aad_len); asmlinkage void aesni_gcm_enc_update(void *ctx, struct gcm_context_data *gdata, u8 *out, const u8 *in, unsigned long plaintext_len); asmlinkage void aesni_gcm_dec_update(void *ctx, struct gcm_context_data *gdata, u8 *out, const u8 *in, unsigned long ciphertext_len); asmlinkage void aesni_gcm_finalize(void *ctx, struct gcm_context_data *gdata, u8 *auth_tag, unsigned long auth_tag_len); asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv, void *keys, u8 *out, unsigned int num_bytes); asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv, void *keys, u8 *out, unsigned int num_bytes); asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv, void *keys, u8 *out, unsigned int num_bytes); asmlinkage void aes_xctr_enc_128_avx_by8(const u8 *in, const u8 *iv, const void *keys, u8 *out, unsigned int num_bytes, unsigned int byte_ctr); asmlinkage void aes_xctr_enc_192_avx_by8(const u8 *in, const u8 *iv, const void *keys, u8 *out, unsigned int num_bytes, unsigned int byte_ctr); asmlinkage void aes_xctr_enc_256_avx_by8(const u8 *in, const u8 *iv, const void *keys, u8 *out, unsigned int num_bytes, unsigned int byte_ctr); /* * asmlinkage void aesni_gcm_init_avx_gen2() * gcm_data *my_ctx_data, context data * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. */ asmlinkage void aesni_gcm_init_avx_gen2(void *my_ctx_data, struct gcm_context_data *gdata, u8 *iv, u8 *hash_subkey, const u8 *aad, unsigned long aad_len); asmlinkage void aesni_gcm_enc_update_avx_gen2(void *ctx, struct gcm_context_data *gdata, u8 *out, const u8 *in, unsigned long plaintext_len); asmlinkage void aesni_gcm_dec_update_avx_gen2(void *ctx, struct gcm_context_data *gdata, u8 *out, const u8 *in, unsigned long ciphertext_len); asmlinkage void aesni_gcm_finalize_avx_gen2(void *ctx, struct gcm_context_data *gdata, u8 *auth_tag, unsigned long auth_tag_len); /* * asmlinkage void aesni_gcm_init_avx_gen4() * gcm_data *my_ctx_data, context data * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary. */ asmlinkage void aesni_gcm_init_avx_gen4(void *my_ctx_data, struct gcm_context_data *gdata, u8 *iv, u8 *hash_subkey, const u8 *aad, unsigned long aad_len); asmlinkage void aesni_gcm_enc_update_avx_gen4(void *ctx, struct gcm_context_data *gdata, u8 *out, const u8 *in, unsigned long plaintext_len); asmlinkage void aesni_gcm_dec_update_avx_gen4(void *ctx, struct gcm_context_data *gdata, u8 *out, const u8 *in, unsigned long ciphertext_len); asmlinkage void aesni_gcm_finalize_avx_gen4(void *ctx, struct gcm_context_data *gdata, u8 *auth_tag, unsigned long auth_tag_len); static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx); static __ro_after_init DEFINE_STATIC_KEY_FALSE(gcm_use_avx2); static inline struct aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm) { return aes_align_addr(crypto_aead_ctx(tfm)); } static inline struct generic_gcmaes_ctx *generic_gcmaes_ctx_get(struct crypto_aead *tfm) { return aes_align_addr(crypto_aead_ctx(tfm)); } #endif static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx) { return aes_align_addr(raw_ctx); } static inline struct aesni_xts_ctx *aes_xts_ctx(struct crypto_skcipher *tfm) { return aes_align_addr(crypto_skcipher_ctx(tfm)); } static int aes_set_key_common(struct crypto_aes_ctx *ctx, const u8 *in_key, unsigned int key_len) { int err; if (!crypto_simd_usable()) return aes_expandkey(ctx, in_key, key_len); err = aes_check_keylen(key_len); if (err) return err; kernel_fpu_begin(); aesni_set_key(ctx, in_key, key_len); kernel_fpu_end(); return 0; } static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, unsigned int key_len) { return aes_set_key_common(aes_ctx(crypto_tfm_ctx(tfm)), in_key, key_len); } static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); if (!crypto_simd_usable()) { aes_encrypt(ctx, dst, src); } else { kernel_fpu_begin(); aesni_enc(ctx, dst, src); kernel_fpu_end(); } } static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm)); if (!crypto_simd_usable()) { aes_decrypt(ctx, dst, src); } else { kernel_fpu_begin(); aesni_dec(ctx, dst, src); kernel_fpu_end(); } } static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int len) { return aes_set_key_common(aes_ctx(crypto_skcipher_ctx(tfm)), key, len); } static int ecb_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes)) { kernel_fpu_begin(); aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK); kernel_fpu_end(); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } return err; } static int ecb_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes)) { kernel_fpu_begin(); aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK); kernel_fpu_end(); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } return err; } static int cbc_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes)) { kernel_fpu_begin(); aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK, walk.iv); kernel_fpu_end(); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } return err; } static int cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes)) { kernel_fpu_begin(); aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK, walk.iv); kernel_fpu_end(); nbytes &= AES_BLOCK_SIZE - 1; err = skcipher_walk_done(&walk, nbytes); } return err; } static int cts_cbc_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2; struct scatterlist *src = req->src, *dst = req->dst; struct scatterlist sg_src[2], sg_dst[2]; struct skcipher_request subreq; struct skcipher_walk walk; int err; skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); if (req->cryptlen <= AES_BLOCK_SIZE) { if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; cbc_blocks = 1; } if (cbc_blocks > 0) { skcipher_request_set_crypt(&subreq, req->src, req->dst, cbc_blocks * AES_BLOCK_SIZE, req->iv); err = cbc_encrypt(&subreq); if (err) return err; if (req->cryptlen == AES_BLOCK_SIZE) return 0; dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen); if (req->dst != req->src) dst = scatterwalk_ffwd(sg_dst, req->dst, subreq.cryptlen); } /* handle ciphertext stealing */ skcipher_request_set_crypt(&subreq, src, dst, req->cryptlen - cbc_blocks * AES_BLOCK_SIZE, req->iv); err = skcipher_walk_virt(&walk, &subreq, false); if (err) return err; kernel_fpu_begin(); aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr, walk.nbytes, walk.iv); kernel_fpu_end(); return skcipher_walk_done(&walk, 0); } static int cts_cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2; struct scatterlist *src = req->src, *dst = req->dst; struct scatterlist sg_src[2], sg_dst[2]; struct skcipher_request subreq; struct skcipher_walk walk; int err; skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); if (req->cryptlen <= AES_BLOCK_SIZE) { if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; cbc_blocks = 1; } if (cbc_blocks > 0) { skcipher_request_set_crypt(&subreq, req->src, req->dst, cbc_blocks * AES_BLOCK_SIZE, req->iv); err = cbc_decrypt(&subreq); if (err) return err; if (req->cryptlen == AES_BLOCK_SIZE) return 0; dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen); if (req->dst != req->src) dst = scatterwalk_ffwd(sg_dst, req->dst, subreq.cryptlen); } /* handle ciphertext stealing */ skcipher_request_set_crypt(&subreq, src, dst, req->cryptlen - cbc_blocks * AES_BLOCK_SIZE, req->iv); err = skcipher_walk_virt(&walk, &subreq, false); if (err) return err; kernel_fpu_begin(); aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr, walk.nbytes, walk.iv); kernel_fpu_end(); return skcipher_walk_done(&walk, 0); } #ifdef CONFIG_X86_64 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv) { /* * based on key length, override with the by8 version * of ctr mode encryption/decryption for improved performance * aes_set_key_common() ensures that key length is one of * {128,192,256} */ if (ctx->key_length == AES_KEYSIZE_128) aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len); else if (ctx->key_length == AES_KEYSIZE_192) aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len); else aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len); } static int ctr_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); u8 keystream[AES_BLOCK_SIZE]; struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) > 0) { kernel_fpu_begin(); if (nbytes & AES_BLOCK_MASK) static_call(aesni_ctr_enc_tfm)(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK, walk.iv); nbytes &= ~AES_BLOCK_MASK; if (walk.nbytes == walk.total && nbytes > 0) { aesni_enc(ctx, keystream, walk.iv); crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes, walk.src.virt.addr + walk.nbytes - nbytes, keystream, nbytes); crypto_inc(walk.iv, AES_BLOCK_SIZE); nbytes = 0; } kernel_fpu_end(); err = skcipher_walk_done(&walk, nbytes); } return err; } static void aesni_xctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out, const u8 *in, unsigned int len, u8 *iv, unsigned int byte_ctr) { if (ctx->key_length == AES_KEYSIZE_128) aes_xctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len, byte_ctr); else if (ctx->key_length == AES_KEYSIZE_192) aes_xctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len, byte_ctr); else aes_xctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len, byte_ctr); } static int xctr_crypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm)); u8 keystream[AES_BLOCK_SIZE]; struct skcipher_walk walk; unsigned int nbytes; unsigned int byte_ctr = 0; int err; __le32 block[AES_BLOCK_SIZE / sizeof(__le32)]; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) > 0) { kernel_fpu_begin(); if (nbytes & AES_BLOCK_MASK) aesni_xctr_enc_avx_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes & AES_BLOCK_MASK, walk.iv, byte_ctr); nbytes &= ~AES_BLOCK_MASK; byte_ctr += walk.nbytes - nbytes; if (walk.nbytes == walk.total && nbytes > 0) { memcpy(block, walk.iv, AES_BLOCK_SIZE); block[0] ^= cpu_to_le32(1 + byte_ctr / AES_BLOCK_SIZE); aesni_enc(ctx, keystream, (u8 *)block); crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes, walk.src.virt.addr + walk.nbytes - nbytes, keystream, nbytes); byte_ctr += nbytes; nbytes = 0; } kernel_fpu_end(); err = skcipher_walk_done(&walk, nbytes); } return err; } static int aes_gcm_derive_hash_subkey(const struct crypto_aes_ctx *aes_key, u8 hash_subkey[AES_BLOCK_SIZE]) { static const u8 zeroes[AES_BLOCK_SIZE]; aes_encrypt(aes_key, hash_subkey, zeroes); return 0; } static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key, unsigned int key_len) { struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead); if (key_len < 4) return -EINVAL; /*Account for 4 byte nonce at the end.*/ key_len -= 4; memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce)); return aes_set_key_common(&ctx->aes_key_expanded, key, key_len) ?: aes_gcm_derive_hash_subkey(&ctx->aes_key_expanded, ctx->hash_subkey); } /* This is the Integrity Check Value (aka the authentication tag) length and can * be 8, 12 or 16 bytes long. */ static int common_rfc4106_set_authsize(struct crypto_aead *aead, unsigned int authsize) { switch (authsize) { case 8: case 12: case 16: break; default: return -EINVAL; } return 0; } static int generic_gcmaes_set_authsize(struct crypto_aead *tfm, unsigned int authsize) { switch (authsize) { case 4: case 8: case 12: case 13: case 14: case 15: case 16: break; default: return -EINVAL; } return 0; } static int gcmaes_crypt_by_sg(bool enc, struct aead_request *req, unsigned int assoclen, u8 *hash_subkey, u8 *iv, void *aes_ctx, u8 *auth_tag, unsigned long auth_tag_len) { u8 databuf[sizeof(struct gcm_context_data) + (AESNI_ALIGN - 8)] __aligned(8); struct gcm_context_data *data = PTR_ALIGN((void *)databuf, AESNI_ALIGN); unsigned long left = req->cryptlen; struct scatter_walk assoc_sg_walk; struct skcipher_walk walk; bool do_avx, do_avx2; u8 *assocmem = NULL; u8 *assoc; int err; if (!enc) left -= auth_tag_len; do_avx = (left >= AVX_GEN2_OPTSIZE); do_avx2 = (left >= AVX_GEN4_OPTSIZE); /* Linearize assoc, if not already linear */ if (req->src->length >= assoclen && req->src->length) { scatterwalk_start(&assoc_sg_walk, req->src); assoc = scatterwalk_map(&assoc_sg_walk); } else { gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; /* assoc can be any length, so must be on heap */ assocmem = kmalloc(assoclen, flags); if (unlikely(!assocmem)) return -ENOMEM; assoc = assocmem; scatterwalk_map_and_copy(assoc, req->src, 0, assoclen, 0); } kernel_fpu_begin(); if (static_branch_likely(&gcm_use_avx2) && do_avx2) aesni_gcm_init_avx_gen4(aes_ctx, data, iv, hash_subkey, assoc, assoclen); else if (static_branch_likely(&gcm_use_avx) && do_avx) aesni_gcm_init_avx_gen2(aes_ctx, data, iv, hash_subkey, assoc, assoclen); else aesni_gcm_init(aes_ctx, data, iv, hash_subkey, assoc, assoclen); kernel_fpu_end(); if (!assocmem) scatterwalk_unmap(assoc); else kfree(assocmem); err = enc ? skcipher_walk_aead_encrypt(&walk, req, false) : skcipher_walk_aead_decrypt(&walk, req, false); while (walk.nbytes > 0) { kernel_fpu_begin(); if (static_branch_likely(&gcm_use_avx2) && do_avx2) { if (enc) aesni_gcm_enc_update_avx_gen4(aes_ctx, data, walk.dst.virt.addr, walk.src.virt.addr, walk.nbytes); else aesni_gcm_dec_update_avx_gen4(aes_ctx, data, walk.dst.virt.addr, walk.src.virt.addr, walk.nbytes); } else if (static_branch_likely(&gcm_use_avx) && do_avx) { if (enc) aesni_gcm_enc_update_avx_gen2(aes_ctx, data, walk.dst.virt.addr, walk.src.virt.addr, walk.nbytes); else aesni_gcm_dec_update_avx_gen2(aes_ctx, data, walk.dst.virt.addr, walk.src.virt.addr, walk.nbytes); } else if (enc) { aesni_gcm_enc_update(aes_ctx, data, walk.dst.virt.addr, walk.src.virt.addr, walk.nbytes); } else { aesni_gcm_dec_update(aes_ctx, data, walk.dst.virt.addr, walk.src.virt.addr, walk.nbytes); } kernel_fpu_end(); err = skcipher_walk_done(&walk, 0); } if (err) return err; kernel_fpu_begin(); if (static_branch_likely(&gcm_use_avx2) && do_avx2) aesni_gcm_finalize_avx_gen4(aes_ctx, data, auth_tag, auth_tag_len); else if (static_branch_likely(&gcm_use_avx) && do_avx) aesni_gcm_finalize_avx_gen2(aes_ctx, data, auth_tag, auth_tag_len); else aesni_gcm_finalize(aes_ctx, data, auth_tag, auth_tag_len); kernel_fpu_end(); return 0; } static int gcmaes_encrypt(struct aead_request *req, unsigned int assoclen, u8 *hash_subkey, u8 *iv, void *aes_ctx) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); unsigned long auth_tag_len = crypto_aead_authsize(tfm); u8 auth_tag[16]; int err; err = gcmaes_crypt_by_sg(true, req, assoclen, hash_subkey, iv, aes_ctx, auth_tag, auth_tag_len); if (err) return err; scatterwalk_map_and_copy(auth_tag, req->dst, req->assoclen + req->cryptlen, auth_tag_len, 1); return 0; } static int gcmaes_decrypt(struct aead_request *req, unsigned int assoclen, u8 *hash_subkey, u8 *iv, void *aes_ctx) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); unsigned long auth_tag_len = crypto_aead_authsize(tfm); u8 auth_tag_msg[16]; u8 auth_tag[16]; int err; err = gcmaes_crypt_by_sg(false, req, assoclen, hash_subkey, iv, aes_ctx, auth_tag, auth_tag_len); if (err) return err; /* Copy out original auth_tag */ scatterwalk_map_and_copy(auth_tag_msg, req->src, req->assoclen + req->cryptlen - auth_tag_len, auth_tag_len, 0); /* Compare generated tag with passed in tag. */ if (crypto_memneq(auth_tag_msg, auth_tag, auth_tag_len)) { memzero_explicit(auth_tag, sizeof(auth_tag)); return -EBADMSG; } return 0; } static int helper_rfc4106_encrypt(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm); void *aes_ctx = &(ctx->aes_key_expanded); u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8); u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN); unsigned int i; __be32 counter = cpu_to_be32(1); /* Assuming we are supporting rfc4106 64-bit extended */ /* sequence numbers We need to have the AAD length equal */ /* to 16 or 20 bytes */ if (unlikely(req->assoclen != 16 && req->assoclen != 20)) return -EINVAL; /* IV below built */ for (i = 0; i < 4; i++) *(iv+i) = ctx->nonce[i]; for (i = 0; i < 8; i++) *(iv+4+i) = req->iv[i]; *((__be32 *)(iv+12)) = counter; return gcmaes_encrypt(req, req->assoclen - 8, ctx->hash_subkey, iv, aes_ctx); } static int helper_rfc4106_decrypt(struct aead_request *req) { __be32 counter = cpu_to_be32(1); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm); void *aes_ctx = &(ctx->aes_key_expanded); u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8); u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN); unsigned int i; if (unlikely(req->assoclen != 16 && req->assoclen != 20)) return -EINVAL; /* Assuming we are supporting rfc4106 64-bit extended */ /* sequence numbers We need to have the AAD length */ /* equal to 16 or 20 bytes */ /* IV below built */ for (i = 0; i < 4; i++) *(iv+i) = ctx->nonce[i]; for (i = 0; i < 8; i++) *(iv+4+i) = req->iv[i]; *((__be32 *)(iv+12)) = counter; return gcmaes_decrypt(req, req->assoclen - 8, ctx->hash_subkey, iv, aes_ctx); } #endif static int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm); int err; err = xts_verify_key(tfm, key, keylen); if (err) return err; keylen /= 2; /* first half of xts-key is for crypt */ err = aes_set_key_common(&ctx->crypt_ctx, key, keylen); if (err) return err; /* second half of xts-key is for tweak */ return aes_set_key_common(&ctx->tweak_ctx, key + keylen, keylen); } typedef void (*xts_encrypt_iv_func)(const struct crypto_aes_ctx *tweak_key, u8 iv[AES_BLOCK_SIZE]); typedef void (*xts_crypt_func)(const struct crypto_aes_ctx *key, const u8 *src, u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]); /* This handles cases where the source and/or destination span pages. */ static noinline int xts_crypt_slowpath(struct skcipher_request *req, xts_crypt_func crypt_func) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm); int tail = req->cryptlen % AES_BLOCK_SIZE; struct scatterlist sg_src[2], sg_dst[2]; struct skcipher_request subreq; struct skcipher_walk walk; struct scatterlist *src, *dst; int err; /* * If the message length isn't divisible by the AES block size, then * separate off the last full block and the partial block. This ensures * that they are processed in the same call to the assembly function, * which is required for ciphertext stealing. */ if (tail) { skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); skcipher_request_set_crypt(&subreq, req->src, req->dst, req->cryptlen - tail - AES_BLOCK_SIZE, req->iv); req = &subreq; } err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes) { kernel_fpu_begin(); (*crypt_func)(&ctx->crypt_ctx, walk.src.virt.addr, walk.dst.virt.addr, walk.nbytes & ~(AES_BLOCK_SIZE - 1), req->iv); kernel_fpu_end(); err = skcipher_walk_done(&walk, walk.nbytes & (AES_BLOCK_SIZE - 1)); } if (err || !tail) return err; /* Do ciphertext stealing with the last full block and partial block. */ dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen); if (req->dst != req->src) dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen); skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail, req->iv); err = skcipher_walk_virt(&walk, req, false); if (err) return err; kernel_fpu_begin(); (*crypt_func)(&ctx->crypt_ctx, walk.src.virt.addr, walk.dst.virt.addr, walk.nbytes, req->iv); kernel_fpu_end(); return skcipher_walk_done(&walk, 0); } /* __always_inline to avoid indirect call in fastpath */ static __always_inline int xts_crypt(struct skcipher_request *req, xts_encrypt_iv_func encrypt_iv, xts_crypt_func crypt_func) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm); const unsigned int cryptlen = req->cryptlen; struct scatterlist *src = req->src; struct scatterlist *dst = req->dst; if (unlikely(cryptlen < AES_BLOCK_SIZE)) return -EINVAL; kernel_fpu_begin(); (*encrypt_iv)(&ctx->tweak_ctx, req->iv); /* * In practice, virtually all XTS plaintexts and ciphertexts are either * 512 or 4096 bytes, aligned such that they don't span page boundaries. * To optimize the performance of these cases, and also any other case * where no page boundary is spanned, the below fast-path handles * single-page sources and destinations as efficiently as possible. */ if (likely(src->length >= cryptlen && dst->length >= cryptlen && src->offset + cryptlen <= PAGE_SIZE && dst->offset + cryptlen <= PAGE_SIZE)) { struct page *src_page = sg_page(src); struct page *dst_page = sg_page(dst); void *src_virt = kmap_local_page(src_page) + src->offset; void *dst_virt = kmap_local_page(dst_page) + dst->offset; (*crypt_func)(&ctx->crypt_ctx, src_virt, dst_virt, cryptlen, req->iv); kunmap_local(dst_virt); kunmap_local(src_virt); kernel_fpu_end(); return 0; } kernel_fpu_end(); return xts_crypt_slowpath(req, crypt_func); } static void aesni_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key, u8 iv[AES_BLOCK_SIZE]) { aesni_enc(tweak_key, iv, iv); } static void aesni_xts_encrypt(const struct crypto_aes_ctx *key, const u8 *src, u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]) { aesni_xts_enc(key, dst, src, len, tweak); } static void aesni_xts_decrypt(const struct crypto_aes_ctx *key, const u8 *src, u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]) { aesni_xts_dec(key, dst, src, len, tweak); } static int xts_encrypt_aesni(struct skcipher_request *req) { return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_encrypt); } static int xts_decrypt_aesni(struct skcipher_request *req) { return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_decrypt); } static struct crypto_alg aesni_cipher_alg = { .cra_name = "aes", .cra_driver_name = "aes-aesni", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = CRYPTO_AES_CTX_SIZE, .cra_module = THIS_MODULE, .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, .cia_setkey = aes_set_key, .cia_encrypt = aesni_encrypt, .cia_decrypt = aesni_decrypt } } }; static struct skcipher_alg aesni_skciphers[] = { { .base = { .cra_name = "__ecb(aes)", .cra_driver_name = "__ecb-aes-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = CRYPTO_AES_CTX_SIZE, .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = aesni_skcipher_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, { .base = { .cra_name = "__cbc(aes)", .cra_driver_name = "__cbc-aes-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = CRYPTO_AES_CTX_SIZE, .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesni_skcipher_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, { .base = { .cra_name = "__cts(cbc(aes))", .cra_driver_name = "__cts-cbc-aes-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = CRYPTO_AES_CTX_SIZE, .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .walksize = 2 * AES_BLOCK_SIZE, .setkey = aesni_skcipher_setkey, .encrypt = cts_cbc_encrypt, .decrypt = cts_cbc_decrypt, #ifdef CONFIG_X86_64 }, { .base = { .cra_name = "__ctr(aes)", .cra_driver_name = "__ctr-aes-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = 1, .cra_ctxsize = CRYPTO_AES_CTX_SIZE, .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .chunksize = AES_BLOCK_SIZE, .setkey = aesni_skcipher_setkey, .encrypt = ctr_crypt, .decrypt = ctr_crypt, #endif }, { .base = { .cra_name = "__xts(aes)", .cra_driver_name = "__xts-aes-aesni", .cra_priority = 401, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = XTS_AES_CTX_SIZE, .cra_module = THIS_MODULE, }, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .walksize = 2 * AES_BLOCK_SIZE, .setkey = xts_setkey_aesni, .encrypt = xts_encrypt_aesni, .decrypt = xts_decrypt_aesni, } }; static struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)]; #ifdef CONFIG_X86_64 /* * XCTR does not have a non-AVX implementation, so it must be enabled * conditionally. */ static struct skcipher_alg aesni_xctr = { .base = { .cra_name = "__xctr(aes)", .cra_driver_name = "__xctr-aes-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = 1, .cra_ctxsize = CRYPTO_AES_CTX_SIZE, .cra_module = THIS_MODULE, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .chunksize = AES_BLOCK_SIZE, .setkey = aesni_skcipher_setkey, .encrypt = xctr_crypt, .decrypt = xctr_crypt, }; static struct simd_skcipher_alg *aesni_simd_xctr; asmlinkage void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key, u8 iv[AES_BLOCK_SIZE]); #define DEFINE_XTS_ALG(suffix, driver_name, priority) \ \ asmlinkage void \ aes_xts_encrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src, \ u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]); \ asmlinkage void \ aes_xts_decrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src, \ u8 *dst, unsigned int len, u8 tweak[AES_BLOCK_SIZE]); \ \ static int xts_encrypt_##suffix(struct skcipher_request *req) \ { \ return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_encrypt_##suffix); \ } \ \ static int xts_decrypt_##suffix(struct skcipher_request *req) \ { \ return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_decrypt_##suffix); \ } \ \ static struct skcipher_alg aes_xts_alg_##suffix = { \ .base = { \ .cra_name = "__xts(aes)", \ .cra_driver_name = "__" driver_name, \ .cra_priority = priority, \ .cra_flags = CRYPTO_ALG_INTERNAL, \ .cra_blocksize = AES_BLOCK_SIZE, \ .cra_ctxsize = XTS_AES_CTX_SIZE, \ .cra_module = THIS_MODULE, \ }, \ .min_keysize = 2 * AES_MIN_KEY_SIZE, \ .max_keysize = 2 * AES_MAX_KEY_SIZE, \ .ivsize = AES_BLOCK_SIZE, \ .walksize = 2 * AES_BLOCK_SIZE, \ .setkey = xts_setkey_aesni, \ .encrypt = xts_encrypt_##suffix, \ .decrypt = xts_decrypt_##suffix, \ }; \ \ static struct simd_skcipher_alg *aes_xts_simdalg_##suffix DEFINE_XTS_ALG(aesni_avx, "xts-aes-aesni-avx", 500); #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ) DEFINE_XTS_ALG(vaes_avx2, "xts-aes-vaes-avx2", 600); DEFINE_XTS_ALG(vaes_avx10_256, "xts-aes-vaes-avx10_256", 700); DEFINE_XTS_ALG(vaes_avx10_512, "xts-aes-vaes-avx10_512", 800); #endif /* * This is a list of CPU models that are known to suffer from downclocking when * zmm registers (512-bit vectors) are used. On these CPUs, the AES-XTS * implementation with zmm registers won't be used by default. An * implementation with ymm registers (256-bit vectors) will be used instead. */ static const struct x86_cpu_id zmm_exclusion_list[] = { X86_MATCH_VFM(INTEL_SKYLAKE_X, 0), X86_MATCH_VFM(INTEL_ICELAKE_X, 0), X86_MATCH_VFM(INTEL_ICELAKE_D, 0), X86_MATCH_VFM(INTEL_ICELAKE, 0), X86_MATCH_VFM(INTEL_ICELAKE_L, 0), X86_MATCH_VFM(INTEL_ICELAKE_NNPI, 0), X86_MATCH_VFM(INTEL_TIGERLAKE_L, 0), X86_MATCH_VFM(INTEL_TIGERLAKE, 0), /* Allow Rocket Lake and later, and Sapphire Rapids and later. */ /* Also allow AMD CPUs (starting with Zen 4, the first with AVX-512). */ {}, }; static int __init register_xts_algs(void) { int err; if (!boot_cpu_has(X86_FEATURE_AVX)) return 0; err = simd_register_skciphers_compat(&aes_xts_alg_aesni_avx, 1, &aes_xts_simdalg_aesni_avx); if (err) return err; #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ) if (!boot_cpu_has(X86_FEATURE_AVX2) || !boot_cpu_has(X86_FEATURE_VAES) || !boot_cpu_has(X86_FEATURE_VPCLMULQDQ) || !boot_cpu_has(X86_FEATURE_PCLMULQDQ) || !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) return 0; err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx2, 1, &aes_xts_simdalg_vaes_avx2); if (err) return err; if (!boot_cpu_has(X86_FEATURE_AVX512BW) || !boot_cpu_has(X86_FEATURE_AVX512VL) || !boot_cpu_has(X86_FEATURE_BMI2) || !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM | XFEATURE_MASK_AVX512, NULL)) return 0; err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_256, 1, &aes_xts_simdalg_vaes_avx10_256); if (err) return err; if (x86_match_cpu(zmm_exclusion_list)) aes_xts_alg_vaes_avx10_512.base.cra_priority = 1; err = simd_register_skciphers_compat(&aes_xts_alg_vaes_avx10_512, 1, &aes_xts_simdalg_vaes_avx10_512); if (err) return err; #endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */ return 0; } static void unregister_xts_algs(void) { if (aes_xts_simdalg_aesni_avx) simd_unregister_skciphers(&aes_xts_alg_aesni_avx, 1, &aes_xts_simdalg_aesni_avx); #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ) if (aes_xts_simdalg_vaes_avx2) simd_unregister_skciphers(&aes_xts_alg_vaes_avx2, 1, &aes_xts_simdalg_vaes_avx2); if (aes_xts_simdalg_vaes_avx10_256) simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_256, 1, &aes_xts_simdalg_vaes_avx10_256); if (aes_xts_simdalg_vaes_avx10_512) simd_unregister_skciphers(&aes_xts_alg_vaes_avx10_512, 1, &aes_xts_simdalg_vaes_avx10_512); #endif } #else /* CONFIG_X86_64 */ static int __init register_xts_algs(void) { return 0; } static void unregister_xts_algs(void) { } #endif /* !CONFIG_X86_64 */ #ifdef CONFIG_X86_64 static int generic_gcmaes_set_key(struct crypto_aead *aead, const u8 *key, unsigned int key_len) { struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(aead); return aes_set_key_common(&ctx->aes_key_expanded, key, key_len) ?: aes_gcm_derive_hash_subkey(&ctx->aes_key_expanded, ctx->hash_subkey); } static int generic_gcmaes_encrypt(struct aead_request *req) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm); void *aes_ctx = &(ctx->aes_key_expanded); u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8); u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN); __be32 counter = cpu_to_be32(1); memcpy(iv, req->iv, 12); *((__be32 *)(iv+12)) = counter; return gcmaes_encrypt(req, req->assoclen, ctx->hash_subkey, iv, aes_ctx); } static int generic_gcmaes_decrypt(struct aead_request *req) { __be32 counter = cpu_to_be32(1); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct generic_gcmaes_ctx *ctx = generic_gcmaes_ctx_get(tfm); void *aes_ctx = &(ctx->aes_key_expanded); u8 ivbuf[16 + (AESNI_ALIGN - 8)] __aligned(8); u8 *iv = PTR_ALIGN(&ivbuf[0], AESNI_ALIGN); memcpy(iv, req->iv, 12); *((__be32 *)(iv+12)) = counter; return gcmaes_decrypt(req, req->assoclen, ctx->hash_subkey, iv, aes_ctx); } static struct aead_alg aesni_aeads[] = { { .setkey = common_rfc4106_set_key, .setauthsize = common_rfc4106_set_authsize, .encrypt = helper_rfc4106_encrypt, .decrypt = helper_rfc4106_decrypt, .ivsize = GCM_RFC4106_IV_SIZE, .maxauthsize = 16, .base = { .cra_name = "__rfc4106(gcm(aes))", .cra_driver_name = "__rfc4106-gcm-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, }, { .setkey = generic_gcmaes_set_key, .setauthsize = generic_gcmaes_set_authsize, .encrypt = generic_gcmaes_encrypt, .decrypt = generic_gcmaes_decrypt, .ivsize = GCM_AES_IV_SIZE, .maxauthsize = 16, .base = { .cra_name = "__gcm(aes)", .cra_driver_name = "__generic-gcm-aesni", .cra_priority = 400, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct generic_gcmaes_ctx), .cra_alignmask = 0, .cra_module = THIS_MODULE, }, } }; #else static struct aead_alg aesni_aeads[0]; #endif static struct simd_aead_alg *aesni_simd_aeads[ARRAY_SIZE(aesni_aeads)]; static const struct x86_cpu_id aesni_cpu_id[] = { X86_MATCH_FEATURE(X86_FEATURE_AES, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id); static int __init aesni_init(void) { int err; if (!x86_match_cpu(aesni_cpu_id)) return -ENODEV; #ifdef CONFIG_X86_64 if (boot_cpu_has(X86_FEATURE_AVX2)) { pr_info("AVX2 version of gcm_enc/dec engaged.\n"); static_branch_enable(&gcm_use_avx); static_branch_enable(&gcm_use_avx2); } else if (boot_cpu_has(X86_FEATURE_AVX)) { pr_info("AVX version of gcm_enc/dec engaged.\n"); static_branch_enable(&gcm_use_avx); } else { pr_info("SSE version of gcm_enc/dec engaged.\n"); } if (boot_cpu_has(X86_FEATURE_AVX)) { /* optimize performance of ctr mode encryption transform */ static_call_update(aesni_ctr_enc_tfm, aesni_ctr_enc_avx_tfm); pr_info("AES CTR mode by8 optimization enabled\n"); } #endif /* CONFIG_X86_64 */ err = crypto_register_alg(&aesni_cipher_alg); if (err) return err; err = simd_register_skciphers_compat(aesni_skciphers, ARRAY_SIZE(aesni_skciphers), aesni_simd_skciphers); if (err) goto unregister_cipher; err = simd_register_aeads_compat(aesni_aeads, ARRAY_SIZE(aesni_aeads), aesni_simd_aeads); if (err) goto unregister_skciphers; #ifdef CONFIG_X86_64 if (boot_cpu_has(X86_FEATURE_AVX)) err = simd_register_skciphers_compat(&aesni_xctr, 1, &aesni_simd_xctr); if (err) goto unregister_aeads; #endif /* CONFIG_X86_64 */ err = register_xts_algs(); if (err) goto unregister_xts; return 0; unregister_xts: unregister_xts_algs(); #ifdef CONFIG_X86_64 if (aesni_simd_xctr) simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr); unregister_aeads: #endif /* CONFIG_X86_64 */ simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads), aesni_simd_aeads); unregister_skciphers: simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers), aesni_simd_skciphers); unregister_cipher: crypto_unregister_alg(&aesni_cipher_alg); return err; } static void __exit aesni_exit(void) { simd_unregister_aeads(aesni_aeads, ARRAY_SIZE(aesni_aeads), aesni_simd_aeads); simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers), aesni_simd_skciphers); crypto_unregister_alg(&aesni_cipher_alg); #ifdef CONFIG_X86_64 if (boot_cpu_has(X86_FEATURE_AVX)) simd_unregister_skciphers(&aesni_xctr, 1, &aesni_simd_xctr); #endif /* CONFIG_X86_64 */ unregister_xts_algs(); } late_initcall(aesni_init); module_exit(aesni_exit); MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized"); MODULE_LICENSE("GPL"); MODULE_ALIAS_CRYPTO("aes");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1