Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Robert Richter | 3123 | 53.21% | 30 | 36.14% |
Ravi Bangoria | 1778 | 30.29% | 12 | 14.46% |
Namhyung Kim | 422 | 7.19% | 5 | 6.02% |
Kim Phillips | 328 | 5.59% | 8 | 9.64% |
Peter Zijlstra | 58 | 0.99% | 6 | 7.23% |
Thomas Gleixner | 51 | 0.87% | 3 | 3.61% |
Aravind Gopalakrishnan | 45 | 0.77% | 2 | 2.41% |
Daniel Borkmann | 13 | 0.22% | 1 | 1.20% |
Andrew Murray | 10 | 0.17% | 1 | 1.20% |
Barry Kasindorf | 9 | 0.15% | 1 | 1.20% |
Chen Yucong | 5 | 0.09% | 1 | 1.20% |
Masami Hiramatsu | 5 | 0.09% | 1 | 1.20% |
Jeremy Fitzhardinge | 3 | 0.05% | 1 | 1.20% |
Andrew Lutomirski | 3 | 0.05% | 1 | 1.20% |
Uros Bizjak | 3 | 0.05% | 1 | 1.20% |
Ingo Molnar | 3 | 0.05% | 1 | 1.20% |
Srivatsa S. Bhat | 2 | 0.03% | 1 | 1.20% |
John Levon | 2 | 0.03% | 1 | 1.20% |
Reinette Chatre | 1 | 0.02% | 1 | 1.20% |
Jorrit Schippers | 1 | 0.02% | 1 | 1.20% |
Borislav Petkov | 1 | 0.02% | 1 | 1.20% |
Paul Gortmaker | 1 | 0.02% | 1 | 1.20% |
Joe Perches | 1 | 0.02% | 1 | 1.20% |
Sedat Dilek | 1 | 0.02% | 1 | 1.20% |
Total | 5869 | 83 |
/* * Performance events - AMD IBS * * Copyright (C) 2011 Advanced Micro Devices, Inc., Robert Richter * * For licencing details see kernel-base/COPYING */ #include <linux/perf_event.h> #include <linux/init.h> #include <linux/export.h> #include <linux/pci.h> #include <linux/ptrace.h> #include <linux/syscore_ops.h> #include <linux/sched/clock.h> #include <asm/apic.h> #include "../perf_event.h" static u32 ibs_caps; #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_AMD) #include <linux/kprobes.h> #include <linux/hardirq.h> #include <asm/nmi.h> #include <asm/amd-ibs.h> #define IBS_FETCH_CONFIG_MASK (IBS_FETCH_RAND_EN | IBS_FETCH_MAX_CNT) #define IBS_OP_CONFIG_MASK IBS_OP_MAX_CNT /* * IBS states: * * ENABLED; tracks the pmu::add(), pmu::del() state, when set the counter is taken * and any further add()s must fail. * * STARTED/STOPPING/STOPPED; deal with pmu::start(), pmu::stop() state but are * complicated by the fact that the IBS hardware can send late NMIs (ie. after * we've cleared the EN bit). * * In order to consume these late NMIs we have the STOPPED state, any NMI that * happens after we've cleared the EN state will clear this bit and report the * NMI handled (this is fundamentally racy in the face or multiple NMI sources, * someone else can consume our BIT and our NMI will go unhandled). * * And since we cannot set/clear this separate bit together with the EN bit, * there are races; if we cleared STARTED early, an NMI could land in * between clearing STARTED and clearing the EN bit (in fact multiple NMIs * could happen if the period is small enough), and consume our STOPPED bit * and trigger streams of unhandled NMIs. * * If, however, we clear STARTED late, an NMI can hit between clearing the * EN bit and clearing STARTED, still see STARTED set and process the event. * If this event will have the VALID bit clear, we bail properly, but this * is not a given. With VALID set we can end up calling pmu::stop() again * (the throttle logic) and trigger the WARNs in there. * * So what we do is set STOPPING before clearing EN to avoid the pmu::stop() * nesting, and clear STARTED late, so that we have a well defined state over * the clearing of the EN bit. * * XXX: we could probably be using !atomic bitops for all this. */ enum ibs_states { IBS_ENABLED = 0, IBS_STARTED = 1, IBS_STOPPING = 2, IBS_STOPPED = 3, IBS_MAX_STATES, }; struct cpu_perf_ibs { struct perf_event *event; unsigned long state[BITS_TO_LONGS(IBS_MAX_STATES)]; }; struct perf_ibs { struct pmu pmu; unsigned int msr; u64 config_mask; u64 cnt_mask; u64 enable_mask; u64 valid_mask; u64 max_period; unsigned long offset_mask[1]; int offset_max; unsigned int fetch_count_reset_broken : 1; unsigned int fetch_ignore_if_zero_rip : 1; struct cpu_perf_ibs __percpu *pcpu; u64 (*get_count)(u64 config); }; static int perf_event_set_period(struct hw_perf_event *hwc, u64 min, u64 max, u64 *hw_period) { s64 left = local64_read(&hwc->period_left); s64 period = hwc->sample_period; int overflow = 0; /* * If we are way outside a reasonable range then just skip forward: */ if (unlikely(left <= -period)) { left = period; local64_set(&hwc->period_left, left); hwc->last_period = period; overflow = 1; } if (unlikely(left < (s64)min)) { left += period; local64_set(&hwc->period_left, left); hwc->last_period = period; overflow = 1; } /* * If the hw period that triggers the sw overflow is too short * we might hit the irq handler. This biases the results. * Thus we shorten the next-to-last period and set the last * period to the max period. */ if (left > max) { left -= max; if (left > max) left = max; else if (left < min) left = min; } *hw_period = (u64)left; return overflow; } static int perf_event_try_update(struct perf_event *event, u64 new_raw_count, int width) { struct hw_perf_event *hwc = &event->hw; int shift = 64 - width; u64 prev_raw_count; u64 delta; /* * Careful: an NMI might modify the previous event value. * * Our tactic to handle this is to first atomically read and * exchange a new raw count - then add that new-prev delta * count to the generic event atomically: */ prev_raw_count = local64_read(&hwc->prev_count); if (!local64_try_cmpxchg(&hwc->prev_count, &prev_raw_count, new_raw_count)) return 0; /* * Now we have the new raw value and have updated the prev * timestamp already. We can now calculate the elapsed delta * (event-)time and add that to the generic event. * * Careful, not all hw sign-extends above the physical width * of the count. */ delta = (new_raw_count << shift) - (prev_raw_count << shift); delta >>= shift; local64_add(delta, &event->count); local64_sub(delta, &hwc->period_left); return 1; } static struct perf_ibs perf_ibs_fetch; static struct perf_ibs perf_ibs_op; static struct perf_ibs *get_ibs_pmu(int type) { if (perf_ibs_fetch.pmu.type == type) return &perf_ibs_fetch; if (perf_ibs_op.pmu.type == type) return &perf_ibs_op; return NULL; } /* * core pmu config -> IBS config * * perf record -a -e cpu-cycles:p ... # use ibs op counting cycle count * perf record -a -e r076:p ... # same as -e cpu-cycles:p * perf record -a -e r0C1:p ... # use ibs op counting micro-ops * * IbsOpCntCtl (bit 19) of IBS Execution Control Register (IbsOpCtl, * MSRC001_1033) is used to select either cycle or micro-ops counting * mode. */ static int core_pmu_ibs_config(struct perf_event *event, u64 *config) { switch (event->attr.type) { case PERF_TYPE_HARDWARE: switch (event->attr.config) { case PERF_COUNT_HW_CPU_CYCLES: *config = 0; return 0; } break; case PERF_TYPE_RAW: switch (event->attr.config) { case 0x0076: *config = 0; return 0; case 0x00C1: *config = IBS_OP_CNT_CTL; return 0; } break; default: return -ENOENT; } return -EOPNOTSUPP; } /* * The rip of IBS samples has skid 0. Thus, IBS supports precise * levels 1 and 2 and the PERF_EFLAGS_EXACT is set. In rare cases the * rip is invalid when IBS was not able to record the rip correctly. * We clear PERF_EFLAGS_EXACT and take the rip from pt_regs then. */ int forward_event_to_ibs(struct perf_event *event) { u64 config = 0; if (!event->attr.precise_ip || event->attr.precise_ip > 2) return -EOPNOTSUPP; if (!core_pmu_ibs_config(event, &config)) { event->attr.type = perf_ibs_op.pmu.type; event->attr.config = config; } return -ENOENT; } /* * Grouping of IBS events is not possible since IBS can have only * one event active at any point in time. */ static int validate_group(struct perf_event *event) { struct perf_event *sibling; if (event->group_leader == event) return 0; if (event->group_leader->pmu == event->pmu) return -EINVAL; for_each_sibling_event(sibling, event->group_leader) { if (sibling->pmu == event->pmu) return -EINVAL; } return 0; } static int perf_ibs_init(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; struct perf_ibs *perf_ibs; u64 max_cnt, config; int ret; perf_ibs = get_ibs_pmu(event->attr.type); if (!perf_ibs) return -ENOENT; config = event->attr.config; if (event->pmu != &perf_ibs->pmu) return -ENOENT; if (config & ~perf_ibs->config_mask) return -EINVAL; if (has_branch_stack(event)) return -EOPNOTSUPP; ret = validate_group(event); if (ret) return ret; if (hwc->sample_period) { if (config & perf_ibs->cnt_mask) /* raw max_cnt may not be set */ return -EINVAL; if (!event->attr.sample_freq && hwc->sample_period & 0x0f) /* * lower 4 bits can not be set in ibs max cnt, * but allowing it in case we adjust the * sample period to set a frequency. */ return -EINVAL; hwc->sample_period &= ~0x0FULL; if (!hwc->sample_period) hwc->sample_period = 0x10; } else { max_cnt = config & perf_ibs->cnt_mask; config &= ~perf_ibs->cnt_mask; event->attr.sample_period = max_cnt << 4; hwc->sample_period = event->attr.sample_period; } if (!hwc->sample_period) return -EINVAL; /* * If we modify hwc->sample_period, we also need to update * hwc->last_period and hwc->period_left. */ hwc->last_period = hwc->sample_period; local64_set(&hwc->period_left, hwc->sample_period); hwc->config_base = perf_ibs->msr; hwc->config = config; return 0; } static int perf_ibs_set_period(struct perf_ibs *perf_ibs, struct hw_perf_event *hwc, u64 *period) { int overflow; /* ignore lower 4 bits in min count: */ overflow = perf_event_set_period(hwc, 1<<4, perf_ibs->max_period, period); local64_set(&hwc->prev_count, 0); return overflow; } static u64 get_ibs_fetch_count(u64 config) { union ibs_fetch_ctl fetch_ctl = (union ibs_fetch_ctl)config; return fetch_ctl.fetch_cnt << 4; } static u64 get_ibs_op_count(u64 config) { union ibs_op_ctl op_ctl = (union ibs_op_ctl)config; u64 count = 0; /* * If the internal 27-bit counter rolled over, the count is MaxCnt * and the lower 7 bits of CurCnt are randomized. * Otherwise CurCnt has the full 27-bit current counter value. */ if (op_ctl.op_val) { count = op_ctl.opmaxcnt << 4; if (ibs_caps & IBS_CAPS_OPCNTEXT) count += op_ctl.opmaxcnt_ext << 20; } else if (ibs_caps & IBS_CAPS_RDWROPCNT) { count = op_ctl.opcurcnt; } return count; } static void perf_ibs_event_update(struct perf_ibs *perf_ibs, struct perf_event *event, u64 *config) { u64 count = perf_ibs->get_count(*config); /* * Set width to 64 since we do not overflow on max width but * instead on max count. In perf_ibs_set_period() we clear * prev count manually on overflow. */ while (!perf_event_try_update(event, count, 64)) { rdmsrl(event->hw.config_base, *config); count = perf_ibs->get_count(*config); } } static inline void perf_ibs_enable_event(struct perf_ibs *perf_ibs, struct hw_perf_event *hwc, u64 config) { u64 tmp = hwc->config | config; if (perf_ibs->fetch_count_reset_broken) wrmsrl(hwc->config_base, tmp & ~perf_ibs->enable_mask); wrmsrl(hwc->config_base, tmp | perf_ibs->enable_mask); } /* * Erratum #420 Instruction-Based Sampling Engine May Generate * Interrupt that Cannot Be Cleared: * * Must clear counter mask first, then clear the enable bit. See * Revision Guide for AMD Family 10h Processors, Publication #41322. */ static inline void perf_ibs_disable_event(struct perf_ibs *perf_ibs, struct hw_perf_event *hwc, u64 config) { config &= ~perf_ibs->cnt_mask; if (boot_cpu_data.x86 == 0x10) wrmsrl(hwc->config_base, config); config &= ~perf_ibs->enable_mask; wrmsrl(hwc->config_base, config); } /* * We cannot restore the ibs pmu state, so we always needs to update * the event while stopping it and then reset the state when starting * again. Thus, ignoring PERF_EF_RELOAD and PERF_EF_UPDATE flags in * perf_ibs_start()/perf_ibs_stop() and instead always do it. */ static void perf_ibs_start(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu); struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu); u64 period, config = 0; if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED))) return; WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); hwc->state = 0; perf_ibs_set_period(perf_ibs, hwc, &period); if (perf_ibs == &perf_ibs_op && (ibs_caps & IBS_CAPS_OPCNTEXT)) { config |= period & IBS_OP_MAX_CNT_EXT_MASK; period &= ~IBS_OP_MAX_CNT_EXT_MASK; } config |= period >> 4; /* * Set STARTED before enabling the hardware, such that a subsequent NMI * must observe it. */ set_bit(IBS_STARTED, pcpu->state); clear_bit(IBS_STOPPING, pcpu->state); perf_ibs_enable_event(perf_ibs, hwc, config); perf_event_update_userpage(event); } static void perf_ibs_stop(struct perf_event *event, int flags) { struct hw_perf_event *hwc = &event->hw; struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu); struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu); u64 config; int stopping; if (test_and_set_bit(IBS_STOPPING, pcpu->state)) return; stopping = test_bit(IBS_STARTED, pcpu->state); if (!stopping && (hwc->state & PERF_HES_UPTODATE)) return; rdmsrl(hwc->config_base, config); if (stopping) { /* * Set STOPPED before disabling the hardware, such that it * must be visible to NMIs the moment we clear the EN bit, * at which point we can generate an !VALID sample which * we need to consume. */ set_bit(IBS_STOPPED, pcpu->state); perf_ibs_disable_event(perf_ibs, hwc, config); /* * Clear STARTED after disabling the hardware; if it were * cleared before an NMI hitting after the clear but before * clearing the EN bit might think it a spurious NMI and not * handle it. * * Clearing it after, however, creates the problem of the NMI * handler seeing STARTED but not having a valid sample. */ clear_bit(IBS_STARTED, pcpu->state); WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); hwc->state |= PERF_HES_STOPPED; } if (hwc->state & PERF_HES_UPTODATE) return; /* * Clear valid bit to not count rollovers on update, rollovers * are only updated in the irq handler. */ config &= ~perf_ibs->valid_mask; perf_ibs_event_update(perf_ibs, event, &config); hwc->state |= PERF_HES_UPTODATE; } static int perf_ibs_add(struct perf_event *event, int flags) { struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu); struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu); if (test_and_set_bit(IBS_ENABLED, pcpu->state)) return -ENOSPC; event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; pcpu->event = event; if (flags & PERF_EF_START) perf_ibs_start(event, PERF_EF_RELOAD); return 0; } static void perf_ibs_del(struct perf_event *event, int flags) { struct perf_ibs *perf_ibs = container_of(event->pmu, struct perf_ibs, pmu); struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu); if (!test_and_clear_bit(IBS_ENABLED, pcpu->state)) return; perf_ibs_stop(event, PERF_EF_UPDATE); pcpu->event = NULL; perf_event_update_userpage(event); } static void perf_ibs_read(struct perf_event *event) { } /* * We need to initialize with empty group if all attributes in the * group are dynamic. */ static struct attribute *attrs_empty[] = { NULL, }; static struct attribute_group empty_format_group = { .name = "format", .attrs = attrs_empty, }; static struct attribute_group empty_caps_group = { .name = "caps", .attrs = attrs_empty, }; static const struct attribute_group *empty_attr_groups[] = { &empty_format_group, &empty_caps_group, NULL, }; PMU_FORMAT_ATTR(rand_en, "config:57"); PMU_FORMAT_ATTR(cnt_ctl, "config:19"); PMU_EVENT_ATTR_STRING(l3missonly, fetch_l3missonly, "config:59"); PMU_EVENT_ATTR_STRING(l3missonly, op_l3missonly, "config:16"); PMU_EVENT_ATTR_STRING(zen4_ibs_extensions, zen4_ibs_extensions, "1"); static umode_t zen4_ibs_extensions_is_visible(struct kobject *kobj, struct attribute *attr, int i) { return ibs_caps & IBS_CAPS_ZEN4 ? attr->mode : 0; } static struct attribute *rand_en_attrs[] = { &format_attr_rand_en.attr, NULL, }; static struct attribute *fetch_l3missonly_attrs[] = { &fetch_l3missonly.attr.attr, NULL, }; static struct attribute *zen4_ibs_extensions_attrs[] = { &zen4_ibs_extensions.attr.attr, NULL, }; static struct attribute_group group_rand_en = { .name = "format", .attrs = rand_en_attrs, }; static struct attribute_group group_fetch_l3missonly = { .name = "format", .attrs = fetch_l3missonly_attrs, .is_visible = zen4_ibs_extensions_is_visible, }; static struct attribute_group group_zen4_ibs_extensions = { .name = "caps", .attrs = zen4_ibs_extensions_attrs, .is_visible = zen4_ibs_extensions_is_visible, }; static const struct attribute_group *fetch_attr_groups[] = { &group_rand_en, &empty_caps_group, NULL, }; static const struct attribute_group *fetch_attr_update[] = { &group_fetch_l3missonly, &group_zen4_ibs_extensions, NULL, }; static umode_t cnt_ctl_is_visible(struct kobject *kobj, struct attribute *attr, int i) { return ibs_caps & IBS_CAPS_OPCNT ? attr->mode : 0; } static struct attribute *cnt_ctl_attrs[] = { &format_attr_cnt_ctl.attr, NULL, }; static struct attribute *op_l3missonly_attrs[] = { &op_l3missonly.attr.attr, NULL, }; static struct attribute_group group_cnt_ctl = { .name = "format", .attrs = cnt_ctl_attrs, .is_visible = cnt_ctl_is_visible, }; static struct attribute_group group_op_l3missonly = { .name = "format", .attrs = op_l3missonly_attrs, .is_visible = zen4_ibs_extensions_is_visible, }; static const struct attribute_group *op_attr_update[] = { &group_cnt_ctl, &group_op_l3missonly, &group_zen4_ibs_extensions, NULL, }; static struct perf_ibs perf_ibs_fetch = { .pmu = { .task_ctx_nr = perf_hw_context, .event_init = perf_ibs_init, .add = perf_ibs_add, .del = perf_ibs_del, .start = perf_ibs_start, .stop = perf_ibs_stop, .read = perf_ibs_read, .capabilities = PERF_PMU_CAP_NO_EXCLUDE, }, .msr = MSR_AMD64_IBSFETCHCTL, .config_mask = IBS_FETCH_CONFIG_MASK, .cnt_mask = IBS_FETCH_MAX_CNT, .enable_mask = IBS_FETCH_ENABLE, .valid_mask = IBS_FETCH_VAL, .max_period = IBS_FETCH_MAX_CNT << 4, .offset_mask = { MSR_AMD64_IBSFETCH_REG_MASK }, .offset_max = MSR_AMD64_IBSFETCH_REG_COUNT, .get_count = get_ibs_fetch_count, }; static struct perf_ibs perf_ibs_op = { .pmu = { .task_ctx_nr = perf_hw_context, .event_init = perf_ibs_init, .add = perf_ibs_add, .del = perf_ibs_del, .start = perf_ibs_start, .stop = perf_ibs_stop, .read = perf_ibs_read, .capabilities = PERF_PMU_CAP_NO_EXCLUDE, }, .msr = MSR_AMD64_IBSOPCTL, .config_mask = IBS_OP_CONFIG_MASK, .cnt_mask = IBS_OP_MAX_CNT | IBS_OP_CUR_CNT | IBS_OP_CUR_CNT_RAND, .enable_mask = IBS_OP_ENABLE, .valid_mask = IBS_OP_VAL, .max_period = IBS_OP_MAX_CNT << 4, .offset_mask = { MSR_AMD64_IBSOP_REG_MASK }, .offset_max = MSR_AMD64_IBSOP_REG_COUNT, .get_count = get_ibs_op_count, }; static void perf_ibs_get_mem_op(union ibs_op_data3 *op_data3, struct perf_sample_data *data) { union perf_mem_data_src *data_src = &data->data_src; data_src->mem_op = PERF_MEM_OP_NA; if (op_data3->ld_op) data_src->mem_op = PERF_MEM_OP_LOAD; else if (op_data3->st_op) data_src->mem_op = PERF_MEM_OP_STORE; } /* * Processors having CPUID_Fn8000001B_EAX[11] aka IBS_CAPS_ZEN4 has * more fine granular DataSrc encodings. Others have coarse. */ static u8 perf_ibs_data_src(union ibs_op_data2 *op_data2) { if (ibs_caps & IBS_CAPS_ZEN4) return (op_data2->data_src_hi << 3) | op_data2->data_src_lo; return op_data2->data_src_lo; } #define L(x) (PERF_MEM_S(LVL, x) | PERF_MEM_S(LVL, HIT)) #define LN(x) PERF_MEM_S(LVLNUM, x) #define REM PERF_MEM_S(REMOTE, REMOTE) #define HOPS(x) PERF_MEM_S(HOPS, x) static u64 g_data_src[8] = { [IBS_DATA_SRC_LOC_CACHE] = L(L3) | L(REM_CCE1) | LN(ANY_CACHE) | HOPS(0), [IBS_DATA_SRC_DRAM] = L(LOC_RAM) | LN(RAM), [IBS_DATA_SRC_REM_CACHE] = L(REM_CCE2) | LN(ANY_CACHE) | REM | HOPS(1), [IBS_DATA_SRC_IO] = L(IO) | LN(IO), }; #define RMT_NODE_BITS (1 << IBS_DATA_SRC_DRAM) #define RMT_NODE_APPLICABLE(x) (RMT_NODE_BITS & (1 << x)) static u64 g_zen4_data_src[32] = { [IBS_DATA_SRC_EXT_LOC_CACHE] = L(L3) | LN(L3), [IBS_DATA_SRC_EXT_NEAR_CCX_CACHE] = L(REM_CCE1) | LN(ANY_CACHE) | REM | HOPS(0), [IBS_DATA_SRC_EXT_DRAM] = L(LOC_RAM) | LN(RAM), [IBS_DATA_SRC_EXT_FAR_CCX_CACHE] = L(REM_CCE2) | LN(ANY_CACHE) | REM | HOPS(1), [IBS_DATA_SRC_EXT_PMEM] = LN(PMEM), [IBS_DATA_SRC_EXT_IO] = L(IO) | LN(IO), [IBS_DATA_SRC_EXT_EXT_MEM] = LN(CXL), }; #define ZEN4_RMT_NODE_BITS ((1 << IBS_DATA_SRC_EXT_DRAM) | \ (1 << IBS_DATA_SRC_EXT_PMEM) | \ (1 << IBS_DATA_SRC_EXT_EXT_MEM)) #define ZEN4_RMT_NODE_APPLICABLE(x) (ZEN4_RMT_NODE_BITS & (1 << x)) static __u64 perf_ibs_get_mem_lvl(union ibs_op_data2 *op_data2, union ibs_op_data3 *op_data3, struct perf_sample_data *data) { union perf_mem_data_src *data_src = &data->data_src; u8 ibs_data_src = perf_ibs_data_src(op_data2); data_src->mem_lvl = 0; data_src->mem_lvl_num = 0; /* * DcMiss, L2Miss, DataSrc, DcMissLat etc. are all invalid for Uncached * memory accesses. So, check DcUcMemAcc bit early. */ if (op_data3->dc_uc_mem_acc && ibs_data_src != IBS_DATA_SRC_EXT_IO) return L(UNC) | LN(UNC); /* L1 Hit */ if (op_data3->dc_miss == 0) return L(L1) | LN(L1); /* L2 Hit */ if (op_data3->l2_miss == 0) { /* Erratum #1293 */ if (boot_cpu_data.x86 != 0x19 || boot_cpu_data.x86_model > 0xF || !(op_data3->sw_pf || op_data3->dc_miss_no_mab_alloc)) return L(L2) | LN(L2); } /* * OP_DATA2 is valid only for load ops. Skip all checks which * uses OP_DATA2[DataSrc]. */ if (data_src->mem_op != PERF_MEM_OP_LOAD) goto check_mab; if (ibs_caps & IBS_CAPS_ZEN4) { u64 val = g_zen4_data_src[ibs_data_src]; if (!val) goto check_mab; /* HOPS_1 because IBS doesn't provide remote socket detail */ if (op_data2->rmt_node && ZEN4_RMT_NODE_APPLICABLE(ibs_data_src)) { if (ibs_data_src == IBS_DATA_SRC_EXT_DRAM) val = L(REM_RAM1) | LN(RAM) | REM | HOPS(1); else val |= REM | HOPS(1); } return val; } else { u64 val = g_data_src[ibs_data_src]; if (!val) goto check_mab; /* HOPS_1 because IBS doesn't provide remote socket detail */ if (op_data2->rmt_node && RMT_NODE_APPLICABLE(ibs_data_src)) { if (ibs_data_src == IBS_DATA_SRC_DRAM) val = L(REM_RAM1) | LN(RAM) | REM | HOPS(1); else val |= REM | HOPS(1); } return val; } check_mab: /* * MAB (Miss Address Buffer) Hit. MAB keeps track of outstanding * DC misses. However, such data may come from any level in mem * hierarchy. IBS provides detail about both MAB as well as actual * DataSrc simultaneously. Prioritize DataSrc over MAB, i.e. set * MAB only when IBS fails to provide DataSrc. */ if (op_data3->dc_miss_no_mab_alloc) return L(LFB) | LN(LFB); /* Don't set HIT with NA */ return PERF_MEM_S(LVL, NA) | LN(NA); } static bool perf_ibs_cache_hit_st_valid(void) { /* 0: Uninitialized, 1: Valid, -1: Invalid */ static int cache_hit_st_valid; if (unlikely(!cache_hit_st_valid)) { if (boot_cpu_data.x86 == 0x19 && (boot_cpu_data.x86_model <= 0xF || (boot_cpu_data.x86_model >= 0x20 && boot_cpu_data.x86_model <= 0x5F))) { cache_hit_st_valid = -1; } else { cache_hit_st_valid = 1; } } return cache_hit_st_valid == 1; } static void perf_ibs_get_mem_snoop(union ibs_op_data2 *op_data2, struct perf_sample_data *data) { union perf_mem_data_src *data_src = &data->data_src; u8 ibs_data_src; data_src->mem_snoop = PERF_MEM_SNOOP_NA; if (!perf_ibs_cache_hit_st_valid() || data_src->mem_op != PERF_MEM_OP_LOAD || data_src->mem_lvl & PERF_MEM_LVL_L1 || data_src->mem_lvl & PERF_MEM_LVL_L2 || op_data2->cache_hit_st) return; ibs_data_src = perf_ibs_data_src(op_data2); if (ibs_caps & IBS_CAPS_ZEN4) { if (ibs_data_src == IBS_DATA_SRC_EXT_LOC_CACHE || ibs_data_src == IBS_DATA_SRC_EXT_NEAR_CCX_CACHE || ibs_data_src == IBS_DATA_SRC_EXT_FAR_CCX_CACHE) data_src->mem_snoop = PERF_MEM_SNOOP_HITM; } else if (ibs_data_src == IBS_DATA_SRC_LOC_CACHE) { data_src->mem_snoop = PERF_MEM_SNOOP_HITM; } } static void perf_ibs_get_tlb_lvl(union ibs_op_data3 *op_data3, struct perf_sample_data *data) { union perf_mem_data_src *data_src = &data->data_src; data_src->mem_dtlb = PERF_MEM_TLB_NA; if (!op_data3->dc_lin_addr_valid) return; if (!op_data3->dc_l1tlb_miss) { data_src->mem_dtlb = PERF_MEM_TLB_L1 | PERF_MEM_TLB_HIT; return; } if (!op_data3->dc_l2tlb_miss) { data_src->mem_dtlb = PERF_MEM_TLB_L2 | PERF_MEM_TLB_HIT; return; } data_src->mem_dtlb = PERF_MEM_TLB_L2 | PERF_MEM_TLB_MISS; } static void perf_ibs_get_mem_lock(union ibs_op_data3 *op_data3, struct perf_sample_data *data) { union perf_mem_data_src *data_src = &data->data_src; data_src->mem_lock = PERF_MEM_LOCK_NA; if (op_data3->dc_locked_op) data_src->mem_lock = PERF_MEM_LOCK_LOCKED; } #define ibs_op_msr_idx(msr) (msr - MSR_AMD64_IBSOPCTL) static void perf_ibs_get_data_src(struct perf_ibs_data *ibs_data, struct perf_sample_data *data, union ibs_op_data2 *op_data2, union ibs_op_data3 *op_data3) { union perf_mem_data_src *data_src = &data->data_src; data_src->val |= perf_ibs_get_mem_lvl(op_data2, op_data3, data); perf_ibs_get_mem_snoop(op_data2, data); perf_ibs_get_tlb_lvl(op_data3, data); perf_ibs_get_mem_lock(op_data3, data); } static __u64 perf_ibs_get_op_data2(struct perf_ibs_data *ibs_data, union ibs_op_data3 *op_data3) { __u64 val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA2)]; /* Erratum #1293 */ if (boot_cpu_data.x86 == 0x19 && boot_cpu_data.x86_model <= 0xF && (op_data3->sw_pf || op_data3->dc_miss_no_mab_alloc)) { /* * OP_DATA2 has only two fields on Zen3: DataSrc and RmtNode. * DataSrc=0 is 'No valid status' and RmtNode is invalid when * DataSrc=0. */ val = 0; } return val; } static void perf_ibs_parse_ld_st_data(__u64 sample_type, struct perf_ibs_data *ibs_data, struct perf_sample_data *data) { union ibs_op_data3 op_data3; union ibs_op_data2 op_data2; union ibs_op_data op_data; data->data_src.val = PERF_MEM_NA; op_data3.val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA3)]; perf_ibs_get_mem_op(&op_data3, data); if (data->data_src.mem_op != PERF_MEM_OP_LOAD && data->data_src.mem_op != PERF_MEM_OP_STORE) return; op_data2.val = perf_ibs_get_op_data2(ibs_data, &op_data3); if (sample_type & PERF_SAMPLE_DATA_SRC) { perf_ibs_get_data_src(ibs_data, data, &op_data2, &op_data3); data->sample_flags |= PERF_SAMPLE_DATA_SRC; } if (sample_type & PERF_SAMPLE_WEIGHT_TYPE && op_data3.dc_miss && data->data_src.mem_op == PERF_MEM_OP_LOAD) { op_data.val = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSOPDATA)]; if (sample_type & PERF_SAMPLE_WEIGHT_STRUCT) { data->weight.var1_dw = op_data3.dc_miss_lat; data->weight.var2_w = op_data.tag_to_ret_ctr; } else if (sample_type & PERF_SAMPLE_WEIGHT) { data->weight.full = op_data3.dc_miss_lat; } data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE; } if (sample_type & PERF_SAMPLE_ADDR && op_data3.dc_lin_addr_valid) { data->addr = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSDCLINAD)]; data->sample_flags |= PERF_SAMPLE_ADDR; } if (sample_type & PERF_SAMPLE_PHYS_ADDR && op_data3.dc_phy_addr_valid) { data->phys_addr = ibs_data->regs[ibs_op_msr_idx(MSR_AMD64_IBSDCPHYSAD)]; data->sample_flags |= PERF_SAMPLE_PHYS_ADDR; } } static int perf_ibs_get_offset_max(struct perf_ibs *perf_ibs, u64 sample_type, int check_rip) { if (sample_type & PERF_SAMPLE_RAW || (perf_ibs == &perf_ibs_op && (sample_type & PERF_SAMPLE_DATA_SRC || sample_type & PERF_SAMPLE_WEIGHT_TYPE || sample_type & PERF_SAMPLE_ADDR || sample_type & PERF_SAMPLE_PHYS_ADDR))) return perf_ibs->offset_max; else if (check_rip) return 3; return 1; } static int perf_ibs_handle_irq(struct perf_ibs *perf_ibs, struct pt_regs *iregs) { struct cpu_perf_ibs *pcpu = this_cpu_ptr(perf_ibs->pcpu); struct perf_event *event = pcpu->event; struct hw_perf_event *hwc; struct perf_sample_data data; struct perf_raw_record raw; struct pt_regs regs; struct perf_ibs_data ibs_data; int offset, size, check_rip, offset_max, throttle = 0; unsigned int msr; u64 *buf, *config, period, new_config = 0; if (!test_bit(IBS_STARTED, pcpu->state)) { fail: /* * Catch spurious interrupts after stopping IBS: After * disabling IBS there could be still incoming NMIs * with samples that even have the valid bit cleared. * Mark all this NMIs as handled. */ if (test_and_clear_bit(IBS_STOPPED, pcpu->state)) return 1; return 0; } if (WARN_ON_ONCE(!event)) goto fail; hwc = &event->hw; msr = hwc->config_base; buf = ibs_data.regs; rdmsrl(msr, *buf); if (!(*buf++ & perf_ibs->valid_mask)) goto fail; config = &ibs_data.regs[0]; perf_ibs_event_update(perf_ibs, event, config); perf_sample_data_init(&data, 0, hwc->last_period); if (!perf_ibs_set_period(perf_ibs, hwc, &period)) goto out; /* no sw counter overflow */ ibs_data.caps = ibs_caps; size = 1; offset = 1; check_rip = (perf_ibs == &perf_ibs_op && (ibs_caps & IBS_CAPS_RIPINVALIDCHK)); offset_max = perf_ibs_get_offset_max(perf_ibs, event->attr.sample_type, check_rip); do { rdmsrl(msr + offset, *buf++); size++; offset = find_next_bit(perf_ibs->offset_mask, perf_ibs->offset_max, offset + 1); } while (offset < offset_max); /* * Read IbsBrTarget, IbsOpData4, and IbsExtdCtl separately * depending on their availability. * Can't add to offset_max as they are staggered */ if (event->attr.sample_type & PERF_SAMPLE_RAW) { if (perf_ibs == &perf_ibs_op) { if (ibs_caps & IBS_CAPS_BRNTRGT) { rdmsrl(MSR_AMD64_IBSBRTARGET, *buf++); size++; } if (ibs_caps & IBS_CAPS_OPDATA4) { rdmsrl(MSR_AMD64_IBSOPDATA4, *buf++); size++; } } if (perf_ibs == &perf_ibs_fetch && (ibs_caps & IBS_CAPS_FETCHCTLEXTD)) { rdmsrl(MSR_AMD64_ICIBSEXTDCTL, *buf++); size++; } } ibs_data.size = sizeof(u64) * size; regs = *iregs; if (check_rip && (ibs_data.regs[2] & IBS_RIP_INVALID)) { regs.flags &= ~PERF_EFLAGS_EXACT; } else { /* Workaround for erratum #1197 */ if (perf_ibs->fetch_ignore_if_zero_rip && !(ibs_data.regs[1])) goto out; set_linear_ip(®s, ibs_data.regs[1]); regs.flags |= PERF_EFLAGS_EXACT; } if (event->attr.sample_type & PERF_SAMPLE_RAW) { raw = (struct perf_raw_record){ .frag = { .size = sizeof(u32) + ibs_data.size, .data = ibs_data.data, }, }; perf_sample_save_raw_data(&data, &raw); } if (perf_ibs == &perf_ibs_op) perf_ibs_parse_ld_st_data(event->attr.sample_type, &ibs_data, &data); /* * rip recorded by IbsOpRip will not be consistent with rsp and rbp * recorded as part of interrupt regs. Thus we need to use rip from * interrupt regs while unwinding call stack. */ if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) perf_sample_save_callchain(&data, event, iregs); throttle = perf_event_overflow(event, &data, ®s); out: if (throttle) { perf_ibs_stop(event, 0); } else { if (perf_ibs == &perf_ibs_op) { if (ibs_caps & IBS_CAPS_OPCNTEXT) { new_config = period & IBS_OP_MAX_CNT_EXT_MASK; period &= ~IBS_OP_MAX_CNT_EXT_MASK; } if ((ibs_caps & IBS_CAPS_RDWROPCNT) && (*config & IBS_OP_CNT_CTL)) new_config |= *config & IBS_OP_CUR_CNT_RAND; } new_config |= period >> 4; perf_ibs_enable_event(perf_ibs, hwc, new_config); } perf_event_update_userpage(event); return 1; } static int perf_ibs_nmi_handler(unsigned int cmd, struct pt_regs *regs) { u64 stamp = sched_clock(); int handled = 0; handled += perf_ibs_handle_irq(&perf_ibs_fetch, regs); handled += perf_ibs_handle_irq(&perf_ibs_op, regs); if (handled) inc_irq_stat(apic_perf_irqs); perf_sample_event_took(sched_clock() - stamp); return handled; } NOKPROBE_SYMBOL(perf_ibs_nmi_handler); static __init int perf_ibs_pmu_init(struct perf_ibs *perf_ibs, char *name) { struct cpu_perf_ibs __percpu *pcpu; int ret; pcpu = alloc_percpu(struct cpu_perf_ibs); if (!pcpu) return -ENOMEM; perf_ibs->pcpu = pcpu; ret = perf_pmu_register(&perf_ibs->pmu, name, -1); if (ret) { perf_ibs->pcpu = NULL; free_percpu(pcpu); } return ret; } static __init int perf_ibs_fetch_init(void) { /* * Some chips fail to reset the fetch count when it is written; instead * they need a 0-1 transition of IbsFetchEn. */ if (boot_cpu_data.x86 >= 0x16 && boot_cpu_data.x86 <= 0x18) perf_ibs_fetch.fetch_count_reset_broken = 1; if (boot_cpu_data.x86 == 0x19 && boot_cpu_data.x86_model < 0x10) perf_ibs_fetch.fetch_ignore_if_zero_rip = 1; if (ibs_caps & IBS_CAPS_ZEN4) perf_ibs_fetch.config_mask |= IBS_FETCH_L3MISSONLY; perf_ibs_fetch.pmu.attr_groups = fetch_attr_groups; perf_ibs_fetch.pmu.attr_update = fetch_attr_update; return perf_ibs_pmu_init(&perf_ibs_fetch, "ibs_fetch"); } static __init int perf_ibs_op_init(void) { if (ibs_caps & IBS_CAPS_OPCNT) perf_ibs_op.config_mask |= IBS_OP_CNT_CTL; if (ibs_caps & IBS_CAPS_OPCNTEXT) { perf_ibs_op.max_period |= IBS_OP_MAX_CNT_EXT_MASK; perf_ibs_op.config_mask |= IBS_OP_MAX_CNT_EXT_MASK; perf_ibs_op.cnt_mask |= IBS_OP_MAX_CNT_EXT_MASK; } if (ibs_caps & IBS_CAPS_ZEN4) perf_ibs_op.config_mask |= IBS_OP_L3MISSONLY; perf_ibs_op.pmu.attr_groups = empty_attr_groups; perf_ibs_op.pmu.attr_update = op_attr_update; return perf_ibs_pmu_init(&perf_ibs_op, "ibs_op"); } static __init int perf_event_ibs_init(void) { int ret; ret = perf_ibs_fetch_init(); if (ret) return ret; ret = perf_ibs_op_init(); if (ret) goto err_op; ret = register_nmi_handler(NMI_LOCAL, perf_ibs_nmi_handler, 0, "perf_ibs"); if (ret) goto err_nmi; pr_info("perf: AMD IBS detected (0x%08x)\n", ibs_caps); return 0; err_nmi: perf_pmu_unregister(&perf_ibs_op.pmu); free_percpu(perf_ibs_op.pcpu); perf_ibs_op.pcpu = NULL; err_op: perf_pmu_unregister(&perf_ibs_fetch.pmu); free_percpu(perf_ibs_fetch.pcpu); perf_ibs_fetch.pcpu = NULL; return ret; } #else /* defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_AMD) */ static __init int perf_event_ibs_init(void) { return 0; } #endif /* IBS - apic initialization, for perf and oprofile */ static __init u32 __get_ibs_caps(void) { u32 caps; unsigned int max_level; if (!boot_cpu_has(X86_FEATURE_IBS)) return 0; /* check IBS cpuid feature flags */ max_level = cpuid_eax(0x80000000); if (max_level < IBS_CPUID_FEATURES) return IBS_CAPS_DEFAULT; caps = cpuid_eax(IBS_CPUID_FEATURES); if (!(caps & IBS_CAPS_AVAIL)) /* cpuid flags not valid */ return IBS_CAPS_DEFAULT; return caps; } u32 get_ibs_caps(void) { return ibs_caps; } EXPORT_SYMBOL(get_ibs_caps); static inline int get_eilvt(int offset) { return !setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_NMI, 1); } static inline int put_eilvt(int offset) { return !setup_APIC_eilvt(offset, 0, 0, 1); } /* * Check and reserve APIC extended interrupt LVT offset for IBS if available. */ static inline int ibs_eilvt_valid(void) { int offset; u64 val; int valid = 0; preempt_disable(); rdmsrl(MSR_AMD64_IBSCTL, val); offset = val & IBSCTL_LVT_OFFSET_MASK; if (!(val & IBSCTL_LVT_OFFSET_VALID)) { pr_err(FW_BUG "cpu %d, invalid IBS interrupt offset %d (MSR%08X=0x%016llx)\n", smp_processor_id(), offset, MSR_AMD64_IBSCTL, val); goto out; } if (!get_eilvt(offset)) { pr_err(FW_BUG "cpu %d, IBS interrupt offset %d not available (MSR%08X=0x%016llx)\n", smp_processor_id(), offset, MSR_AMD64_IBSCTL, val); goto out; } valid = 1; out: preempt_enable(); return valid; } static int setup_ibs_ctl(int ibs_eilvt_off) { struct pci_dev *cpu_cfg; int nodes; u32 value = 0; nodes = 0; cpu_cfg = NULL; do { cpu_cfg = pci_get_device(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_10H_NB_MISC, cpu_cfg); if (!cpu_cfg) break; ++nodes; pci_write_config_dword(cpu_cfg, IBSCTL, ibs_eilvt_off | IBSCTL_LVT_OFFSET_VALID); pci_read_config_dword(cpu_cfg, IBSCTL, &value); if (value != (ibs_eilvt_off | IBSCTL_LVT_OFFSET_VALID)) { pci_dev_put(cpu_cfg); pr_debug("Failed to setup IBS LVT offset, IBSCTL = 0x%08x\n", value); return -EINVAL; } } while (1); if (!nodes) { pr_debug("No CPU node configured for IBS\n"); return -ENODEV; } return 0; } /* * This runs only on the current cpu. We try to find an LVT offset and * setup the local APIC. For this we must disable preemption. On * success we initialize all nodes with this offset. This updates then * the offset in the IBS_CTL per-node msr. The per-core APIC setup of * the IBS interrupt vector is handled by perf_ibs_cpu_notifier that * is using the new offset. */ static void force_ibs_eilvt_setup(void) { int offset; int ret; preempt_disable(); /* find the next free available EILVT entry, skip offset 0 */ for (offset = 1; offset < APIC_EILVT_NR_MAX; offset++) { if (get_eilvt(offset)) break; } preempt_enable(); if (offset == APIC_EILVT_NR_MAX) { pr_debug("No EILVT entry available\n"); return; } ret = setup_ibs_ctl(offset); if (ret) goto out; if (!ibs_eilvt_valid()) goto out; pr_info("LVT offset %d assigned\n", offset); return; out: preempt_disable(); put_eilvt(offset); preempt_enable(); return; } static void ibs_eilvt_setup(void) { /* * Force LVT offset assignment for family 10h: The offsets are * not assigned by the BIOS for this family, so the OS is * responsible for doing it. If the OS assignment fails, fall * back to BIOS settings and try to setup this. */ if (boot_cpu_data.x86 == 0x10) force_ibs_eilvt_setup(); } static inline int get_ibs_lvt_offset(void) { u64 val; rdmsrl(MSR_AMD64_IBSCTL, val); if (!(val & IBSCTL_LVT_OFFSET_VALID)) return -EINVAL; return val & IBSCTL_LVT_OFFSET_MASK; } static void setup_APIC_ibs(void) { int offset; offset = get_ibs_lvt_offset(); if (offset < 0) goto failed; if (!setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_NMI, 0)) return; failed: pr_warn("perf: IBS APIC setup failed on cpu #%d\n", smp_processor_id()); } static void clear_APIC_ibs(void) { int offset; offset = get_ibs_lvt_offset(); if (offset >= 0) setup_APIC_eilvt(offset, 0, APIC_EILVT_MSG_FIX, 1); } static int x86_pmu_amd_ibs_starting_cpu(unsigned int cpu) { setup_APIC_ibs(); return 0; } #ifdef CONFIG_PM static int perf_ibs_suspend(void) { clear_APIC_ibs(); return 0; } static void perf_ibs_resume(void) { ibs_eilvt_setup(); setup_APIC_ibs(); } static struct syscore_ops perf_ibs_syscore_ops = { .resume = perf_ibs_resume, .suspend = perf_ibs_suspend, }; static void perf_ibs_pm_init(void) { register_syscore_ops(&perf_ibs_syscore_ops); } #else static inline void perf_ibs_pm_init(void) { } #endif static int x86_pmu_amd_ibs_dying_cpu(unsigned int cpu) { clear_APIC_ibs(); return 0; } static __init int amd_ibs_init(void) { u32 caps; caps = __get_ibs_caps(); if (!caps) return -ENODEV; /* ibs not supported by the cpu */ ibs_eilvt_setup(); if (!ibs_eilvt_valid()) return -EINVAL; perf_ibs_pm_init(); ibs_caps = caps; /* make ibs_caps visible to other cpus: */ smp_mb(); /* * x86_pmu_amd_ibs_starting_cpu will be called from core on * all online cpus. */ cpuhp_setup_state(CPUHP_AP_PERF_X86_AMD_IBS_STARTING, "perf/x86/amd/ibs:starting", x86_pmu_amd_ibs_starting_cpu, x86_pmu_amd_ibs_dying_cpu); return perf_event_ibs_init(); } /* Since we need the pci subsystem to init ibs we can't do this earlier: */ device_initcall(amd_ibs_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1