Contributors: 33
Author Tokens Token Proportion Commits Commit Proportion
Jeremy Fitzhardinge 254 26.10% 1 1.92%
H. Peter Anvin 77 7.91% 5 9.62%
Andi Kleen 73 7.50% 2 3.85%
Nick Desaulniers 58 5.96% 2 3.85%
Linus Torvalds 49 5.04% 3 5.77%
Nicholas Piggin 46 4.73% 1 1.92%
Alexander van Heukelum 45 4.62% 3 5.77%
David Howells 44 4.52% 1 1.92%
Andrew Morton 42 4.32% 1 1.92%
Peter Zijlstra 34 3.49% 4 7.69%
Vincent Mailhol 28 2.88% 2 3.85%
Marco Elver 22 2.26% 1 1.92%
Alexander Lobakin 21 2.16% 1 1.92%
Alexander Potapenko 21 2.16% 1 1.92%
Denys Vlasenko 19 1.95% 1 1.92%
Uros Bizjak 19 1.95% 1 1.92%
Ingo Molnar 17 1.75% 1 1.92%
Mikulas Patocka 16 1.64% 1 1.92%
Jan Beulich 11 1.13% 3 5.77%
Borislav Petkov 11 1.13% 2 3.85%
Stephen Hemminger 10 1.03% 1 1.92%
Jiri Slaby 8 0.82% 1 1.92%
Matthew Wilcox 7 0.72% 2 3.85%
Daniel Axtens 7 0.72% 1 1.92%
Thomas Gleixner 6 0.62% 1 1.92%
Randy Dunlap 6 0.62% 1 1.92%
Akinobu Mita 6 0.62% 2 3.85%
Masahiro Yamada 5 0.51% 1 1.92%
Joe Perches 3 0.31% 1 1.92%
Jeff Garzik 3 0.31% 1 1.92%
Gerd Hoffmann 3 0.31% 1 1.92%
Linus Torvalds (pre-git) 1 0.10% 1 1.92%
Greg Kroah-Hartman 1 0.10% 1 1.92%
Total 973 52


/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_BITOPS_H
#define _ASM_X86_BITOPS_H

/*
 * Copyright 1992, Linus Torvalds.
 *
 * Note: inlines with more than a single statement should be marked
 * __always_inline to avoid problems with older gcc's inlining heuristics.
 */

#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif

#include <linux/compiler.h>
#include <asm/alternative.h>
#include <asm/rmwcc.h>
#include <asm/barrier.h>

#if BITS_PER_LONG == 32
# define _BITOPS_LONG_SHIFT 5
#elif BITS_PER_LONG == 64
# define _BITOPS_LONG_SHIFT 6
#else
# error "Unexpected BITS_PER_LONG"
#endif

#define BIT_64(n)			(U64_C(1) << (n))

/*
 * These have to be done with inline assembly: that way the bit-setting
 * is guaranteed to be atomic. All bit operations return 0 if the bit
 * was cleared before the operation and != 0 if it was not.
 *
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 */

#define RLONG_ADDR(x)			 "m" (*(volatile long *) (x))
#define WBYTE_ADDR(x)			"+m" (*(volatile char *) (x))

#define ADDR				RLONG_ADDR(addr)

/*
 * We do the locked ops that don't return the old value as
 * a mask operation on a byte.
 */
#define CONST_MASK_ADDR(nr, addr)	WBYTE_ADDR((void *)(addr) + ((nr)>>3))
#define CONST_MASK(nr)			(1 << ((nr) & 7))

static __always_inline void
arch_set_bit(long nr, volatile unsigned long *addr)
{
	if (__builtin_constant_p(nr)) {
		asm volatile(LOCK_PREFIX "orb %b1,%0"
			: CONST_MASK_ADDR(nr, addr)
			: "iq" (CONST_MASK(nr))
			: "memory");
	} else {
		asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
	}
}

static __always_inline void
arch___set_bit(unsigned long nr, volatile unsigned long *addr)
{
	asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
}

static __always_inline void
arch_clear_bit(long nr, volatile unsigned long *addr)
{
	if (__builtin_constant_p(nr)) {
		asm volatile(LOCK_PREFIX "andb %b1,%0"
			: CONST_MASK_ADDR(nr, addr)
			: "iq" (~CONST_MASK(nr)));
	} else {
		asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
	}
}

static __always_inline void
arch_clear_bit_unlock(long nr, volatile unsigned long *addr)
{
	barrier();
	arch_clear_bit(nr, addr);
}

static __always_inline void
arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
{
	asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
}

static __always_inline bool arch_xor_unlock_is_negative_byte(unsigned long mask,
		volatile unsigned long *addr)
{
	bool negative;
	asm volatile(LOCK_PREFIX "xorb %2,%1"
		CC_SET(s)
		: CC_OUT(s) (negative), WBYTE_ADDR(addr)
		: "iq" ((char)mask) : "memory");
	return negative;
}
#define arch_xor_unlock_is_negative_byte arch_xor_unlock_is_negative_byte

static __always_inline void
arch___clear_bit_unlock(long nr, volatile unsigned long *addr)
{
	arch___clear_bit(nr, addr);
}

static __always_inline void
arch___change_bit(unsigned long nr, volatile unsigned long *addr)
{
	asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
}

static __always_inline void
arch_change_bit(long nr, volatile unsigned long *addr)
{
	if (__builtin_constant_p(nr)) {
		asm volatile(LOCK_PREFIX "xorb %b1,%0"
			: CONST_MASK_ADDR(nr, addr)
			: "iq" (CONST_MASK(nr)));
	} else {
		asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
			: : RLONG_ADDR(addr), "Ir" (nr) : "memory");
	}
}

static __always_inline bool
arch_test_and_set_bit(long nr, volatile unsigned long *addr)
{
	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr);
}

static __always_inline bool
arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr)
{
	return arch_test_and_set_bit(nr, addr);
}

static __always_inline bool
arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
{
	bool oldbit;

	asm(__ASM_SIZE(bts) " %2,%1"
	    CC_SET(c)
	    : CC_OUT(c) (oldbit)
	    : ADDR, "Ir" (nr) : "memory");
	return oldbit;
}

static __always_inline bool
arch_test_and_clear_bit(long nr, volatile unsigned long *addr)
{
	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr);
}

/*
 * Note: the operation is performed atomically with respect to
 * the local CPU, but not other CPUs. Portable code should not
 * rely on this behaviour.
 * KVM relies on this behaviour on x86 for modifying memory that is also
 * accessed from a hypervisor on the same CPU if running in a VM: don't change
 * this without also updating arch/x86/kernel/kvm.c
 */
static __always_inline bool
arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
{
	bool oldbit;

	asm volatile(__ASM_SIZE(btr) " %2,%1"
		     CC_SET(c)
		     : CC_OUT(c) (oldbit)
		     : ADDR, "Ir" (nr) : "memory");
	return oldbit;
}

static __always_inline bool
arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
{
	bool oldbit;

	asm volatile(__ASM_SIZE(btc) " %2,%1"
		     CC_SET(c)
		     : CC_OUT(c) (oldbit)
		     : ADDR, "Ir" (nr) : "memory");

	return oldbit;
}

static __always_inline bool
arch_test_and_change_bit(long nr, volatile unsigned long *addr)
{
	return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
}

static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
{
	return ((1UL << (nr & (BITS_PER_LONG-1))) &
		(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
}

static __always_inline bool constant_test_bit_acquire(long nr, const volatile unsigned long *addr)
{
	bool oldbit;

	asm volatile("testb %2,%1"
		     CC_SET(nz)
		     : CC_OUT(nz) (oldbit)
		     : "m" (((unsigned char *)addr)[nr >> 3]),
		       "i" (1 << (nr & 7))
		     :"memory");

	return oldbit;
}

static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
{
	bool oldbit;

	asm volatile(__ASM_SIZE(bt) " %2,%1"
		     CC_SET(c)
		     : CC_OUT(c) (oldbit)
		     : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory");

	return oldbit;
}

static __always_inline bool
arch_test_bit(unsigned long nr, const volatile unsigned long *addr)
{
	return __builtin_constant_p(nr) ? constant_test_bit(nr, addr) :
					  variable_test_bit(nr, addr);
}

static __always_inline bool
arch_test_bit_acquire(unsigned long nr, const volatile unsigned long *addr)
{
	return __builtin_constant_p(nr) ? constant_test_bit_acquire(nr, addr) :
					  variable_test_bit(nr, addr);
}

static __always_inline unsigned long variable__ffs(unsigned long word)
{
	asm("rep; bsf %1,%0"
		: "=r" (word)
		: ASM_INPUT_RM (word));
	return word;
}

/**
 * __ffs - find first set bit in word
 * @word: The word to search
 *
 * Undefined if no bit exists, so code should check against 0 first.
 */
#define __ffs(word)				\
	(__builtin_constant_p(word) ?		\
	 (unsigned long)__builtin_ctzl(word) :	\
	 variable__ffs(word))

static __always_inline unsigned long variable_ffz(unsigned long word)
{
	asm("rep; bsf %1,%0"
		: "=r" (word)
		: "r" (~word));
	return word;
}

/**
 * ffz - find first zero bit in word
 * @word: The word to search
 *
 * Undefined if no zero exists, so code should check against ~0UL first.
 */
#define ffz(word)				\
	(__builtin_constant_p(word) ?		\
	 (unsigned long)__builtin_ctzl(~word) :	\
	 variable_ffz(word))

/*
 * __fls: find last set bit in word
 * @word: The word to search
 *
 * Undefined if no set bit exists, so code should check against 0 first.
 */
static __always_inline unsigned long __fls(unsigned long word)
{
	if (__builtin_constant_p(word))
		return BITS_PER_LONG - 1 - __builtin_clzl(word);

	asm("bsr %1,%0"
	    : "=r" (word)
	    : ASM_INPUT_RM (word));
	return word;
}

#undef ADDR

#ifdef __KERNEL__
static __always_inline int variable_ffs(int x)
{
	int r;

#ifdef CONFIG_X86_64
	/*
	 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
	 * dest reg is undefined if x==0, but their CPU architect says its
	 * value is written to set it to the same as before, except that the
	 * top 32 bits will be cleared.
	 *
	 * We cannot do this on 32 bits because at the very least some
	 * 486 CPUs did not behave this way.
	 */
	asm("bsfl %1,%0"
	    : "=r" (r)
	    : ASM_INPUT_RM (x), "0" (-1));
#elif defined(CONFIG_X86_CMOV)
	asm("bsfl %1,%0\n\t"
	    "cmovzl %2,%0"
	    : "=&r" (r) : "rm" (x), "r" (-1));
#else
	asm("bsfl %1,%0\n\t"
	    "jnz 1f\n\t"
	    "movl $-1,%0\n"
	    "1:" : "=r" (r) : "rm" (x));
#endif
	return r + 1;
}

/**
 * ffs - find first set bit in word
 * @x: the word to search
 *
 * This is defined the same way as the libc and compiler builtin ffs
 * routines, therefore differs in spirit from the other bitops.
 *
 * ffs(value) returns 0 if value is 0 or the position of the first
 * set bit if value is nonzero. The first (least significant) bit
 * is at position 1.
 */
#define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x))

/**
 * fls - find last set bit in word
 * @x: the word to search
 *
 * This is defined in a similar way as the libc and compiler builtin
 * ffs, but returns the position of the most significant set bit.
 *
 * fls(value) returns 0 if value is 0 or the position of the last
 * set bit if value is nonzero. The last (most significant) bit is
 * at position 32.
 */
static __always_inline int fls(unsigned int x)
{
	int r;

	if (__builtin_constant_p(x))
		return x ? 32 - __builtin_clz(x) : 0;

#ifdef CONFIG_X86_64
	/*
	 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
	 * dest reg is undefined if x==0, but their CPU architect says its
	 * value is written to set it to the same as before, except that the
	 * top 32 bits will be cleared.
	 *
	 * We cannot do this on 32 bits because at the very least some
	 * 486 CPUs did not behave this way.
	 */
	asm("bsrl %1,%0"
	    : "=r" (r)
	    : ASM_INPUT_RM (x), "0" (-1));
#elif defined(CONFIG_X86_CMOV)
	asm("bsrl %1,%0\n\t"
	    "cmovzl %2,%0"
	    : "=&r" (r) : "rm" (x), "rm" (-1));
#else
	asm("bsrl %1,%0\n\t"
	    "jnz 1f\n\t"
	    "movl $-1,%0\n"
	    "1:" : "=r" (r) : "rm" (x));
#endif
	return r + 1;
}

/**
 * fls64 - find last set bit in a 64-bit word
 * @x: the word to search
 *
 * This is defined in a similar way as the libc and compiler builtin
 * ffsll, but returns the position of the most significant set bit.
 *
 * fls64(value) returns 0 if value is 0 or the position of the last
 * set bit if value is nonzero. The last (most significant) bit is
 * at position 64.
 */
#ifdef CONFIG_X86_64
static __always_inline int fls64(__u64 x)
{
	int bitpos = -1;

	if (__builtin_constant_p(x))
		return x ? 64 - __builtin_clzll(x) : 0;
	/*
	 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
	 * dest reg is undefined if x==0, but their CPU architect says its
	 * value is written to set it to the same as before.
	 */
	asm("bsrq %1,%q0"
	    : "+r" (bitpos)
	    : ASM_INPUT_RM (x));
	return bitpos + 1;
}
#else
#include <asm-generic/bitops/fls64.h>
#endif

#include <asm-generic/bitops/sched.h>

#include <asm/arch_hweight.h>

#include <asm-generic/bitops/const_hweight.h>

#include <asm-generic/bitops/instrumented-atomic.h>
#include <asm-generic/bitops/instrumented-non-atomic.h>
#include <asm-generic/bitops/instrumented-lock.h>

#include <asm-generic/bitops/le.h>

#include <asm-generic/bitops/ext2-atomic-setbit.h>

#endif /* __KERNEL__ */
#endif /* _ASM_X86_BITOPS_H */