Contributors: 10
Author Tokens Token Proportion Commits Commit Proportion
Andi Kleen 885 87.36% 5 29.41%
Thomas Gleixner 56 5.53% 2 11.76%
Kees Cook 30 2.96% 1 5.88%
Willy Tarreau 25 2.47% 2 11.76%
Joe Perches 9 0.89% 2 11.76%
H. Peter Anvin 3 0.30% 1 5.88%
Michael Opdenacker 2 0.20% 1 5.88%
Al Viro 1 0.10% 1 5.88%
Andrew Morton 1 0.10% 1 5.88%
Adrian Bunk 1 0.10% 1 5.88%
Total 1013 17


/*
 * Architecture specific parts of the Floppy driver
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1995
 */
#ifndef _ASM_X86_FLOPPY_H
#define _ASM_X86_FLOPPY_H

#include <linux/vmalloc.h>

/*
 * The DMA channel used by the floppy controller cannot access data at
 * addresses >= 16MB
 *
 * Went back to the 1MB limit, as some people had problems with the floppy
 * driver otherwise. It doesn't matter much for performance anyway, as most
 * floppy accesses go through the track buffer.
 */
#define _CROSS_64KB(a, s, vdma)						\
	(!(vdma) &&							\
	 ((unsigned long)(a)/K_64 != ((unsigned long)(a) + (s) - 1) / K_64))

#define CROSS_64KB(a, s) _CROSS_64KB(a, s, use_virtual_dma & 1)


#define SW fd_routine[use_virtual_dma & 1]
#define CSW fd_routine[can_use_virtual_dma & 1]


#define fd_inb(base, reg)		inb_p((base) + (reg))
#define fd_outb(value, base, reg)	outb_p(value, (base) + (reg))

#define fd_request_dma()	CSW._request_dma(FLOPPY_DMA, "floppy")
#define fd_free_dma()		CSW._free_dma(FLOPPY_DMA)
#define fd_enable_irq()		enable_irq(FLOPPY_IRQ)
#define fd_disable_irq()	disable_irq(FLOPPY_IRQ)
#define fd_free_irq()		free_irq(FLOPPY_IRQ, NULL)
#define fd_get_dma_residue()	SW._get_dma_residue(FLOPPY_DMA)
#define fd_dma_mem_alloc(size)	SW._dma_mem_alloc(size)
#define fd_dma_setup(addr, size, mode, io) SW._dma_setup(addr, size, mode, io)

#define FLOPPY_CAN_FALLBACK_ON_NODMA

static int virtual_dma_count;
static int virtual_dma_residue;
static char *virtual_dma_addr;
static int virtual_dma_mode;
static int doing_pdma;

static irqreturn_t floppy_hardint(int irq, void *dev_id)
{
	unsigned char st;

#undef TRACE_FLPY_INT

#ifdef TRACE_FLPY_INT
	static int calls;
	static int bytes;
	static int dma_wait;
#endif
	if (!doing_pdma)
		return floppy_interrupt(irq, dev_id);

#ifdef TRACE_FLPY_INT
	if (!calls)
		bytes = virtual_dma_count;
#endif

	{
		int lcount;
		char *lptr;

		for (lcount = virtual_dma_count, lptr = virtual_dma_addr;
		     lcount; lcount--, lptr++) {
			st = inb(virtual_dma_port + FD_STATUS);
			st &= STATUS_DMA | STATUS_READY;
			if (st != (STATUS_DMA | STATUS_READY))
				break;
			if (virtual_dma_mode)
				outb_p(*lptr, virtual_dma_port + FD_DATA);
			else
				*lptr = inb_p(virtual_dma_port + FD_DATA);
		}
		virtual_dma_count = lcount;
		virtual_dma_addr = lptr;
		st = inb(virtual_dma_port + FD_STATUS);
	}

#ifdef TRACE_FLPY_INT
	calls++;
#endif
	if (st == STATUS_DMA)
		return IRQ_HANDLED;
	if (!(st & STATUS_DMA)) {
		virtual_dma_residue += virtual_dma_count;
		virtual_dma_count = 0;
#ifdef TRACE_FLPY_INT
		printk(KERN_DEBUG "count=%x, residue=%x calls=%d bytes=%d dma_wait=%d\n",
		       virtual_dma_count, virtual_dma_residue, calls, bytes,
		       dma_wait);
		calls = 0;
		dma_wait = 0;
#endif
		doing_pdma = 0;
		floppy_interrupt(irq, dev_id);
		return IRQ_HANDLED;
	}
#ifdef TRACE_FLPY_INT
	if (!virtual_dma_count)
		dma_wait++;
#endif
	return IRQ_HANDLED;
}

static void fd_disable_dma(void)
{
	if (!(can_use_virtual_dma & 1))
		disable_dma(FLOPPY_DMA);
	doing_pdma = 0;
	virtual_dma_residue += virtual_dma_count;
	virtual_dma_count = 0;
}

static int vdma_request_dma(unsigned int dmanr, const char *device_id)
{
	return 0;
}

static void vdma_nop(unsigned int dummy)
{
}


static int vdma_get_dma_residue(unsigned int dummy)
{
	return virtual_dma_count + virtual_dma_residue;
}


static int fd_request_irq(void)
{
	if (can_use_virtual_dma)
		return request_irq(FLOPPY_IRQ, floppy_hardint,
				   0, "floppy", NULL);
	else
		return request_irq(FLOPPY_IRQ, floppy_interrupt,
				   0, "floppy", NULL);
}

static unsigned long dma_mem_alloc(unsigned long size)
{
	return __get_dma_pages(GFP_KERNEL|__GFP_NORETRY, get_order(size));
}


static unsigned long vdma_mem_alloc(unsigned long size)
{
	return (unsigned long)vmalloc(size);

}

#define nodma_mem_alloc(size) vdma_mem_alloc(size)

static void _fd_dma_mem_free(unsigned long addr, unsigned long size)
{
	if ((unsigned long)addr >= (unsigned long)high_memory)
		vfree((void *)addr);
	else
		free_pages(addr, get_order(size));
}

#define fd_dma_mem_free(addr, size)  _fd_dma_mem_free(addr, size)

static void _fd_chose_dma_mode(char *addr, unsigned long size)
{
	if (can_use_virtual_dma == 2) {
		if ((unsigned long)addr >= (unsigned long)high_memory ||
		    isa_virt_to_bus(addr) >= 0x1000000 ||
		    _CROSS_64KB(addr, size, 0))
			use_virtual_dma = 1;
		else
			use_virtual_dma = 0;
	} else {
		use_virtual_dma = can_use_virtual_dma & 1;
	}
}

#define fd_chose_dma_mode(addr, size) _fd_chose_dma_mode(addr, size)


static int vdma_dma_setup(char *addr, unsigned long size, int mode, int io)
{
	doing_pdma = 1;
	virtual_dma_port = io;
	virtual_dma_mode = (mode == DMA_MODE_WRITE);
	virtual_dma_addr = addr;
	virtual_dma_count = size;
	virtual_dma_residue = 0;
	return 0;
}

static int hard_dma_setup(char *addr, unsigned long size, int mode, int io)
{
#ifdef FLOPPY_SANITY_CHECK
	if (CROSS_64KB(addr, size)) {
		printk("DMA crossing 64-K boundary %p-%p\n", addr, addr+size);
		return -1;
	}
#endif
	/* actual, physical DMA */
	doing_pdma = 0;
	clear_dma_ff(FLOPPY_DMA);
	set_dma_mode(FLOPPY_DMA, mode);
	set_dma_addr(FLOPPY_DMA, isa_virt_to_bus(addr));
	set_dma_count(FLOPPY_DMA, size);
	enable_dma(FLOPPY_DMA);
	return 0;
}

static struct fd_routine_l {
	int (*_request_dma)(unsigned int dmanr, const char *device_id);
	void (*_free_dma)(unsigned int dmanr);
	int (*_get_dma_residue)(unsigned int dummy);
	unsigned long (*_dma_mem_alloc)(unsigned long size);
	int (*_dma_setup)(char *addr, unsigned long size, int mode, int io);
} fd_routine[] = {
	{
		._request_dma		= request_dma,
		._free_dma		= free_dma,
		._get_dma_residue	= get_dma_residue,
		._dma_mem_alloc		= dma_mem_alloc,
		._dma_setup		= hard_dma_setup
	},
	{
		._request_dma		= vdma_request_dma,
		._free_dma		= vdma_nop,
		._get_dma_residue	= vdma_get_dma_residue,
		._dma_mem_alloc		= vdma_mem_alloc,
		._dma_setup		= vdma_dma_setup
	}
};


static int FDC1 = 0x3f0;
static int FDC2 = -1;

/*
 * Floppy types are stored in the rtc's CMOS RAM and so rtc_lock
 * is needed to prevent corrupted CMOS RAM in case "insmod floppy"
 * coincides with another rtc CMOS user.		Paul G.
 */
#define FLOPPY0_TYPE					\
({							\
	unsigned long flags;				\
	unsigned char val;				\
	spin_lock_irqsave(&rtc_lock, flags);		\
	val = (CMOS_READ(0x10) >> 4) & 15;		\
	spin_unlock_irqrestore(&rtc_lock, flags);	\
	val;						\
})

#define FLOPPY1_TYPE					\
({							\
	unsigned long flags;				\
	unsigned char val;				\
	spin_lock_irqsave(&rtc_lock, flags);		\
	val = CMOS_READ(0x10) & 15;			\
	spin_unlock_irqrestore(&rtc_lock, flags);	\
	val;						\
})

#define N_FDC 2
#define N_DRIVE 8

#define EXTRA_FLOPPY_PARAMS

#endif /* _ASM_X86_FLOPPY_H */