Contributors: 33
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Anthony Liguori |
163 |
29.48% |
2 |
4.26% |
Kuppuswamy Sathyanarayanan |
94 |
17.00% |
2 |
4.26% |
Christian Bornträger |
44 |
7.96% |
1 |
2.13% |
Andrew Lutomirski |
43 |
7.78% |
1 |
2.13% |
Gleb Natapov |
31 |
5.61% |
1 |
2.13% |
Srivatsa Vaddagiri |
19 |
3.44% |
1 |
2.13% |
Glauber de Oliveira Costa |
19 |
3.44% |
2 |
4.26% |
Andrew Morton |
18 |
3.25% |
1 |
2.13% |
Kirill A. Shutemov |
14 |
2.53% |
2 |
4.26% |
Avi Kivity |
12 |
2.17% |
3 |
6.38% |
Paolo Bonzini |
12 |
2.17% |
3 |
6.38% |
Joerg Roedel |
10 |
1.81% |
2 |
4.26% |
Eric B Munson |
9 |
1.63% |
1 |
2.13% |
Brijesh Singh |
9 |
1.63% |
1 |
2.13% |
Wanpeng Li |
8 |
1.45% |
1 |
2.13% |
Vitaly Kuznetsov |
7 |
1.27% |
3 |
6.38% |
Borislav Petkov |
6 |
1.08% |
1 |
2.13% |
Alexander Graf |
5 |
0.90% |
2 |
4.26% |
Marcelo Tosatti |
5 |
0.90% |
2 |
4.26% |
Ingo Molnar |
4 |
0.72% |
2 |
4.26% |
Hollis Blanchard |
3 |
0.54% |
1 |
2.13% |
H. Peter Anvin |
3 |
0.54% |
1 |
2.13% |
Andi Kleen |
2 |
0.36% |
1 |
2.13% |
Thomas Gleixner |
2 |
0.36% |
1 |
2.13% |
David Howells |
2 |
0.36% |
1 |
2.13% |
Yi Wang |
2 |
0.36% |
1 |
2.13% |
Jesse Larrew |
1 |
0.18% |
1 |
2.13% |
Alok N Kataria |
1 |
0.18% |
1 |
2.13% |
Greg Kroah-Hartman |
1 |
0.18% |
1 |
2.13% |
Uros Bizjak |
1 |
0.18% |
1 |
2.13% |
Peter Zijlstra |
1 |
0.18% |
1 |
2.13% |
Jan Kiszka |
1 |
0.18% |
1 |
2.13% |
Joe Perches |
1 |
0.18% |
1 |
2.13% |
Total |
553 |
|
47 |
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_KVM_PARA_H
#define _ASM_X86_KVM_PARA_H
#include <asm/processor.h>
#include <asm/alternative.h>
#include <linux/interrupt.h>
#include <uapi/asm/kvm_para.h>
#include <asm/tdx.h>
#ifdef CONFIG_KVM_GUEST
bool kvm_check_and_clear_guest_paused(void);
#else
static inline bool kvm_check_and_clear_guest_paused(void)
{
return false;
}
#endif /* CONFIG_KVM_GUEST */
#define KVM_HYPERCALL \
ALTERNATIVE("vmcall", "vmmcall", X86_FEATURE_VMMCALL)
/* For KVM hypercalls, a three-byte sequence of either the vmcall or the vmmcall
* instruction. The hypervisor may replace it with something else but only the
* instructions are guaranteed to be supported.
*
* Up to four arguments may be passed in rbx, rcx, rdx, and rsi respectively.
* The hypercall number should be placed in rax and the return value will be
* placed in rax. No other registers will be clobbered unless explicitly
* noted by the particular hypercall.
*/
static inline long kvm_hypercall0(unsigned int nr)
{
long ret;
if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST))
return tdx_kvm_hypercall(nr, 0, 0, 0, 0);
asm volatile(KVM_HYPERCALL
: "=a"(ret)
: "a"(nr)
: "memory");
return ret;
}
static inline long kvm_hypercall1(unsigned int nr, unsigned long p1)
{
long ret;
if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST))
return tdx_kvm_hypercall(nr, p1, 0, 0, 0);
asm volatile(KVM_HYPERCALL
: "=a"(ret)
: "a"(nr), "b"(p1)
: "memory");
return ret;
}
static inline long kvm_hypercall2(unsigned int nr, unsigned long p1,
unsigned long p2)
{
long ret;
if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST))
return tdx_kvm_hypercall(nr, p1, p2, 0, 0);
asm volatile(KVM_HYPERCALL
: "=a"(ret)
: "a"(nr), "b"(p1), "c"(p2)
: "memory");
return ret;
}
static inline long kvm_hypercall3(unsigned int nr, unsigned long p1,
unsigned long p2, unsigned long p3)
{
long ret;
if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST))
return tdx_kvm_hypercall(nr, p1, p2, p3, 0);
asm volatile(KVM_HYPERCALL
: "=a"(ret)
: "a"(nr), "b"(p1), "c"(p2), "d"(p3)
: "memory");
return ret;
}
static inline long kvm_hypercall4(unsigned int nr, unsigned long p1,
unsigned long p2, unsigned long p3,
unsigned long p4)
{
long ret;
if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST))
return tdx_kvm_hypercall(nr, p1, p2, p3, p4);
asm volatile(KVM_HYPERCALL
: "=a"(ret)
: "a"(nr), "b"(p1), "c"(p2), "d"(p3), "S"(p4)
: "memory");
return ret;
}
static inline long kvm_sev_hypercall3(unsigned int nr, unsigned long p1,
unsigned long p2, unsigned long p3)
{
long ret;
asm volatile("vmmcall"
: "=a"(ret)
: "a"(nr), "b"(p1), "c"(p2), "d"(p3)
: "memory");
return ret;
}
#ifdef CONFIG_KVM_GUEST
void kvmclock_init(void);
void kvmclock_disable(void);
bool kvm_para_available(void);
unsigned int kvm_arch_para_features(void);
unsigned int kvm_arch_para_hints(void);
void kvm_async_pf_task_wait_schedule(u32 token);
void kvm_async_pf_task_wake(u32 token);
u32 kvm_read_and_reset_apf_flags(void);
bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token);
DECLARE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
static __always_inline bool kvm_handle_async_pf(struct pt_regs *regs, u32 token)
{
if (static_branch_unlikely(&kvm_async_pf_enabled))
return __kvm_handle_async_pf(regs, token);
else
return false;
}
#ifdef CONFIG_PARAVIRT_SPINLOCKS
void __init kvm_spinlock_init(void);
#else /* !CONFIG_PARAVIRT_SPINLOCKS */
static inline void kvm_spinlock_init(void)
{
}
#endif /* CONFIG_PARAVIRT_SPINLOCKS */
#else /* CONFIG_KVM_GUEST */
#define kvm_async_pf_task_wait_schedule(T) do {} while(0)
#define kvm_async_pf_task_wake(T) do {} while(0)
static inline bool kvm_para_available(void)
{
return false;
}
static inline unsigned int kvm_arch_para_features(void)
{
return 0;
}
static inline unsigned int kvm_arch_para_hints(void)
{
return 0;
}
static inline u32 kvm_read_and_reset_apf_flags(void)
{
return 0;
}
static __always_inline bool kvm_handle_async_pf(struct pt_regs *regs, u32 token)
{
return false;
}
#endif
#endif /* _ASM_X86_KVM_PARA_H */