Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mike Travis | 1236 | 51.91% | 24 | 40.00% |
Jack Steiner | 851 | 35.74% | 16 | 26.67% |
Robin Holt | 117 | 4.91% | 4 | 6.67% |
Steve Wahl | 80 | 3.36% | 3 | 5.00% |
Russ Anderson | 63 | 2.65% | 2 | 3.33% |
Dimitri Sivanich | 14 | 0.59% | 2 | 3.33% |
Christoph Lameter | 4 | 0.17% | 1 | 1.67% |
Randy Dunlap | 4 | 0.17% | 2 | 3.33% |
Cliff Wickman | 4 | 0.17% | 1 | 1.67% |
Ingo Molnar | 3 | 0.13% | 2 | 3.33% |
H. Peter Anvin | 3 | 0.13% | 1 | 1.67% |
Björn Helgaas | 1 | 0.04% | 1 | 1.67% |
George Beshers | 1 | 0.04% | 1 | 1.67% |
Total | 2381 | 60 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * SGI UV architectural definitions * * (C) Copyright 2020 Hewlett Packard Enterprise Development LP * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved. */ #ifndef _ASM_X86_UV_UV_HUB_H #define _ASM_X86_UV_UV_HUB_H #ifdef CONFIG_X86_64 #include <linux/numa.h> #include <linux/percpu.h> #include <linux/timer.h> #include <linux/io.h> #include <linux/topology.h> #include <asm/types.h> #include <asm/percpu.h> #include <asm/uv/uv.h> #include <asm/uv/uv_mmrs.h> #include <asm/uv/bios.h> #include <asm/irq_vectors.h> #include <asm/io_apic.h> /* * Addressing Terminology * * M - The low M bits of a physical address represent the offset * into the blade local memory. RAM memory on a blade is physically * contiguous (although various IO spaces may punch holes in * it).. * * N - Number of bits in the node portion of a socket physical * address. * * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of * routers always have low bit of 1, C/MBricks have low bit * equal to 0. Most addressing macros that target UV hub chips * right shift the NASID by 1 to exclude the always-zero bit. * NASIDs contain up to 15 bits. * * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead * of nasids. * * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant * of the nasid for socket usage. * * GPA - (global physical address) a socket physical address converted * so that it can be used by the GRU as a global address. Socket * physical addresses 1) need additional NASID (node) bits added * to the high end of the address, and 2) unaliased if the * partition does not have a physical address 0. In addition, on * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40. * * * NumaLink Global Physical Address Format: * +--------------------------------+---------------------+ * |00..000| GNODE | NodeOffset | * +--------------------------------+---------------------+ * |<-------53 - M bits --->|<--------M bits -----> * * M - number of node offset bits (35 .. 40) * * * Memory/UV-HUB Processor Socket Address Format: * +----------------+---------------+---------------------+ * |00..000000000000| PNODE | NodeOffset | * +----------------+---------------+---------------------+ * <--- N bits --->|<--------M bits -----> * * M - number of node offset bits (35 .. 40) * N - number of PNODE bits (0 .. 10) * * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64). * The actual values are configuration dependent and are set at * boot time. M & N values are set by the hardware/BIOS at boot. * * * APICID format * NOTE!!!!!! This is the current format of the APICID. However, code * should assume that this will change in the future. Use functions * in this file for all APICID bit manipulations and conversion. * * 1111110000000000 * 5432109876543210 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg) * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg) * pppppppppppcccch SandyBridge (15 bits in hdw reg) * sssssssssss * * p = pnode bits * l = socket number on board * c = core * h = hyperthread * s = bits that are in the SOCKET_ID CSR * * Note: Processor may support fewer bits in the APICID register. The ACPI * tables hold all 16 bits. Software needs to be aware of this. * * Unless otherwise specified, all references to APICID refer to * the FULL value contained in ACPI tables, not the subset in the * processor APICID register. */ /* * Maximum number of bricks in all partitions and in all coherency domains. * This is the total number of bricks accessible in the numalink fabric. It * includes all C & M bricks. Routers are NOT included. * * This value is also the value of the maximum number of non-router NASIDs * in the numalink fabric. * * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused. */ #define UV_MAX_NUMALINK_BLADES 16384 /* * Maximum number of C/Mbricks within a software SSI (hardware may support * more). */ #define UV_MAX_SSI_BLADES 256 /* * The largest possible NASID of a C or M brick (+ 2) */ #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2) /* GAM (globally addressed memory) range table */ struct uv_gam_range_s { u32 limit; /* PA bits 56:26 (GAM_RANGE_SHFT) */ u16 nasid; /* node's global physical address */ s8 base; /* entry index of node's base addr */ u8 reserved; }; /* * The following defines attributes of the HUB chip. These attributes are * frequently referenced and are kept in a common per hub struct. * After setup, the struct is read only, so it should be readily * available in the L3 cache on the cpu socket for the node. */ struct uv_hub_info_s { unsigned int hub_type; unsigned char hub_revision; unsigned long global_mmr_base; unsigned long global_mmr_shift; unsigned long gpa_mask; unsigned short *socket_to_node; unsigned short *socket_to_pnode; unsigned short *pnode_to_socket; struct uv_gam_range_s *gr_table; unsigned short min_socket; unsigned short min_pnode; unsigned char m_val; unsigned char n_val; unsigned char gr_table_len; unsigned char apic_pnode_shift; unsigned char gpa_shift; unsigned char nasid_shift; unsigned char m_shift; unsigned char n_lshift; unsigned int gnode_extra; unsigned long gnode_upper; unsigned long lowmem_remap_top; unsigned long lowmem_remap_base; unsigned long global_gru_base; unsigned long global_gru_shift; unsigned short pnode; unsigned short pnode_mask; unsigned short coherency_domain_number; unsigned short numa_blade_id; unsigned short nr_possible_cpus; unsigned short nr_online_cpus; short memory_nid; unsigned short *node_to_socket; }; /* CPU specific info with a pointer to the hub common info struct */ struct uv_cpu_info_s { void *p_uv_hub_info; unsigned char blade_cpu_id; void *reserved; }; DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info); #define uv_cpu_info this_cpu_ptr(&__uv_cpu_info) #define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu)) /* Node specific hub common info struct */ extern void **__uv_hub_info_list; static inline struct uv_hub_info_s *uv_hub_info_list(int node) { return (struct uv_hub_info_s *)__uv_hub_info_list[node]; } static inline struct uv_hub_info_s *_uv_hub_info(void) { return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info; } #define uv_hub_info _uv_hub_info() static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu) { return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info; } static inline int uv_hub_type(void) { return uv_hub_info->hub_type; } static inline __init void uv_hub_type_set(int uvmask) { uv_hub_info->hub_type = uvmask; } /* * HUB revision ranges for each UV HUB architecture. * This is a software convention - NOT the hardware revision numbers in * the hub chip. */ #define UV2_HUB_REVISION_BASE 3 #define UV3_HUB_REVISION_BASE 5 #define UV4_HUB_REVISION_BASE 7 #define UV4A_HUB_REVISION_BASE 8 /* UV4 (fixed) rev 2 */ #define UV5_HUB_REVISION_BASE 9 static inline int is_uv(int uvmask) { return uv_hub_type() & uvmask; } static inline int is_uv1_hub(void) { return 0; } static inline int is_uv2_hub(void) { return is_uv(UV2); } static inline int is_uv3_hub(void) { return is_uv(UV3); } static inline int is_uv4a_hub(void) { return is_uv(UV4A); } static inline int is_uv4_hub(void) { return is_uv(UV4); } static inline int is_uv5_hub(void) { return is_uv(UV5); } /* * UV4A is a revision of UV4. So on UV4A, both is_uv4_hub() and * is_uv4a_hub() return true, While on UV4, only is_uv4_hub() * returns true. So to get true results, first test if is UV4A, * then test if is UV4. */ /* UVX class: UV2,3,4 */ static inline int is_uvx_hub(void) { return is_uv(UVX); } /* UVY class: UV5,..? */ static inline int is_uvy_hub(void) { return is_uv(UVY); } /* Any UV Hubbed System */ static inline int is_uv_hub(void) { return is_uv(UV_ANY); } union uvh_apicid { unsigned long v; struct uvh_apicid_s { unsigned long local_apic_mask : 24; unsigned long local_apic_shift : 5; unsigned long unused1 : 3; unsigned long pnode_mask : 24; unsigned long pnode_shift : 5; unsigned long unused2 : 3; } s; }; /* * Local & Global MMR space macros. * Note: macros are intended to be used ONLY by inline functions * in this file - not by other kernel code. * n - NASID (full 15-bit global nasid) * g - GNODE (full 15-bit global nasid, right shifted 1) * p - PNODE (local part of nsids, right shifted 1) */ #define UV_NASID_TO_PNODE(n) \ (((n) >> uv_hub_info->nasid_shift) & uv_hub_info->pnode_mask) #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra) #define UV_PNODE_TO_NASID(p) \ (UV_PNODE_TO_GNODE(p) << uv_hub_info->nasid_shift) #define UV2_LOCAL_MMR_BASE 0xfa000000UL #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL #define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024) #define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024) #define UV3_LOCAL_MMR_BASE 0xfa000000UL #define UV3_GLOBAL_MMR32_BASE 0xfc000000UL #define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024) #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024) #define UV4_LOCAL_MMR_BASE 0xfa000000UL #define UV4_GLOBAL_MMR32_BASE 0 #define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024) #define UV4_GLOBAL_MMR32_SIZE 0 #define UV5_LOCAL_MMR_BASE 0xfa000000UL #define UV5_GLOBAL_MMR32_BASE 0 #define UV5_LOCAL_MMR_SIZE (32UL * 1024 * 1024) #define UV5_GLOBAL_MMR32_SIZE 0 #define UV_LOCAL_MMR_BASE ( \ is_uv(UV2) ? UV2_LOCAL_MMR_BASE : \ is_uv(UV3) ? UV3_LOCAL_MMR_BASE : \ is_uv(UV4) ? UV4_LOCAL_MMR_BASE : \ is_uv(UV5) ? UV5_LOCAL_MMR_BASE : \ 0) #define UV_GLOBAL_MMR32_BASE ( \ is_uv(UV2) ? UV2_GLOBAL_MMR32_BASE : \ is_uv(UV3) ? UV3_GLOBAL_MMR32_BASE : \ is_uv(UV4) ? UV4_GLOBAL_MMR32_BASE : \ is_uv(UV5) ? UV5_GLOBAL_MMR32_BASE : \ 0) #define UV_LOCAL_MMR_SIZE ( \ is_uv(UV2) ? UV2_LOCAL_MMR_SIZE : \ is_uv(UV3) ? UV3_LOCAL_MMR_SIZE : \ is_uv(UV4) ? UV4_LOCAL_MMR_SIZE : \ is_uv(UV5) ? UV5_LOCAL_MMR_SIZE : \ 0) #define UV_GLOBAL_MMR32_SIZE ( \ is_uv(UV2) ? UV2_GLOBAL_MMR32_SIZE : \ is_uv(UV3) ? UV3_GLOBAL_MMR32_SIZE : \ is_uv(UV4) ? UV4_GLOBAL_MMR32_SIZE : \ is_uv(UV5) ? UV5_GLOBAL_MMR32_SIZE : \ 0) #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base) #define UV_GLOBAL_GRU_MMR_BASE 0x4000000 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15 #define _UV_GLOBAL_MMR64_PNODE_SHIFT 26 #define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift) #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT)) #define UV_GLOBAL_MMR64_PNODE_BITS(p) \ (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT) #define UVH_APICID 0x002D0E00L #define UV_APIC_PNODE_SHIFT 6 /* Local Bus from cpu's perspective */ #define LOCAL_BUS_BASE 0x1c00000 #define LOCAL_BUS_SIZE (4 * 1024 * 1024) /* * System Controller Interface Reg * * Note there are NO leds on a UV system. This register is only * used by the system controller to monitor system-wide operation. * There are 64 regs per node. With Nehalem cpus (2 cores per node, * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on * a node. * * The window is located at top of ACPI MMR space */ #define SCIR_WINDOW_COUNT 64 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \ LOCAL_BUS_SIZE - \ SCIR_WINDOW_COUNT) #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */ #define SCIR_CPU_ACTIVITY 0x02 /* not idle */ #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */ /* Loop through all installed blades */ #define for_each_possible_blade(bid) \ for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++) /* * Macros for converting between kernel virtual addresses, socket local physical * addresses, and UV global physical addresses. * Note: use the standard __pa() & __va() macros for converting * between socket virtual and socket physical addresses. */ /* global bits offset - number of local address bits in gpa for this UV arch */ static inline unsigned int uv_gpa_shift(void) { return uv_hub_info->gpa_shift; } #define _uv_gpa_shift /* Find node that has the address range that contains global address */ static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa) { struct uv_gam_range_s *gr = uv_hub_info->gr_table; unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT; int i, num = uv_hub_info->gr_table_len; if (gr) { for (i = 0; i < num; i++, gr++) { if (pal < gr->limit) return gr; } } pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr); BUG(); } /* Return base address of node that contains global address */ static inline unsigned long uv_gam_range_base(unsigned long pa) { struct uv_gam_range_s *gr = uv_gam_range(pa); int base = gr->base; if (base < 0) return 0UL; return uv_hub_info->gr_table[base].limit; } /* socket phys RAM --> UV global NASID (UV4+) */ static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr) { return uv_gam_range(paddr)->nasid; } #define _uv_soc_phys_ram_to_nasid /* socket virtual --> UV global NASID (UV4+) */ static inline unsigned long uv_gpa_nasid(void *v) { return uv_soc_phys_ram_to_nasid(__pa(v)); } /* socket phys RAM --> UV global physical address */ static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr) { unsigned int m_val = uv_hub_info->m_val; if (paddr < uv_hub_info->lowmem_remap_top) paddr |= uv_hub_info->lowmem_remap_base; if (m_val) { paddr |= uv_hub_info->gnode_upper; paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) | ((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift); } else { paddr |= uv_soc_phys_ram_to_nasid(paddr) << uv_hub_info->gpa_shift; } return paddr; } /* socket virtual --> UV global physical address */ static inline unsigned long uv_gpa(void *v) { return uv_soc_phys_ram_to_gpa(__pa(v)); } /* Top two bits indicate the requested address is in MMR space. */ static inline int uv_gpa_in_mmr_space(unsigned long gpa) { return (gpa >> 62) == 0x3UL; } /* UV global physical address --> socket phys RAM */ static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa) { unsigned long paddr; unsigned long remap_base = uv_hub_info->lowmem_remap_base; unsigned long remap_top = uv_hub_info->lowmem_remap_top; unsigned int m_val = uv_hub_info->m_val; if (m_val) gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) | ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val); paddr = gpa & uv_hub_info->gpa_mask; if (paddr >= remap_base && paddr < remap_base + remap_top) paddr -= remap_base; return paddr; } /* gpa -> gnode */ static inline unsigned long uv_gpa_to_gnode(unsigned long gpa) { unsigned int n_lshift = uv_hub_info->n_lshift; if (n_lshift) return gpa >> n_lshift; return uv_gam_range(gpa)->nasid >> 1; } /* gpa -> pnode */ static inline int uv_gpa_to_pnode(unsigned long gpa) { return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask; } /* gpa -> node offset */ static inline unsigned long uv_gpa_to_offset(unsigned long gpa) { unsigned int m_shift = uv_hub_info->m_shift; if (m_shift) return (gpa << m_shift) >> m_shift; return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa); } /* Convert socket to node */ static inline int _uv_socket_to_node(int socket, unsigned short *s2nid) { return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket; } static inline int uv_socket_to_node(int socket) { return _uv_socket_to_node(socket, uv_hub_info->socket_to_node); } static inline int uv_pnode_to_socket(int pnode) { unsigned short *p2s = uv_hub_info->pnode_to_socket; return p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode; } /* pnode, offset --> socket virtual */ static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset) { unsigned int m_val = uv_hub_info->m_val; unsigned long base; unsigned short sockid; if (m_val) return __va(((unsigned long)pnode << m_val) | offset); sockid = uv_pnode_to_socket(pnode); /* limit address of previous socket is our base, except node 0 is 0 */ if (sockid == 0) return __va((unsigned long)offset); base = (unsigned long)(uv_hub_info->gr_table[sockid - 1].limit); return __va(base << UV_GAM_RANGE_SHFT | offset); } /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */ static inline int uv_apicid_to_pnode(int apicid) { int pnode = apicid >> uv_hub_info->apic_pnode_shift; unsigned short *s2pn = uv_hub_info->socket_to_pnode; return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode; } /* * Access global MMRs using the low memory MMR32 space. This region supports * faster MMR access but not all MMRs are accessible in this space. */ static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset) { return __va(UV_GLOBAL_MMR32_BASE | UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset); } static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val) { writeq(val, uv_global_mmr32_address(pnode, offset)); } static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset) { return readq(uv_global_mmr32_address(pnode, offset)); } /* * Access Global MMR space using the MMR space located at the top of physical * memory. */ static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset) { return __va(UV_GLOBAL_MMR64_BASE | UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset); } static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val) { writeq(val, uv_global_mmr64_address(pnode, offset)); } static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset) { return readq(uv_global_mmr64_address(pnode, offset)); } static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val) { writeb(val, uv_global_mmr64_address(pnode, offset)); } static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset) { return readb(uv_global_mmr64_address(pnode, offset)); } /* * Access hub local MMRs. Faster than using global space but only local MMRs * are accessible. */ static inline unsigned long *uv_local_mmr_address(unsigned long offset) { return __va(UV_LOCAL_MMR_BASE | offset); } static inline unsigned long uv_read_local_mmr(unsigned long offset) { return readq(uv_local_mmr_address(offset)); } static inline void uv_write_local_mmr(unsigned long offset, unsigned long val) { writeq(val, uv_local_mmr_address(offset)); } static inline unsigned char uv_read_local_mmr8(unsigned long offset) { return readb(uv_local_mmr_address(offset)); } static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val) { writeb(val, uv_local_mmr_address(offset)); } /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */ static inline int uv_blade_processor_id(void) { return uv_cpu_info->blade_cpu_id; } /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */ static inline int uv_cpu_blade_processor_id(int cpu) { return uv_cpu_info_per(cpu)->blade_cpu_id; } /* Blade number to Node number (UV2..UV4 is 1:1) */ static inline int uv_blade_to_node(int blade) { return uv_socket_to_node(blade); } /* Blade number of current cpu. Numbered 0 .. <#blades -1> */ static inline int uv_numa_blade_id(void) { return uv_hub_info->numa_blade_id; } /* * Convert linux node number to the UV blade number. * .. Currently for UV2 thru UV4 the node and the blade are identical. * .. UV5 needs conversion when sub-numa clustering is enabled. */ static inline int uv_node_to_blade_id(int nid) { unsigned short *n2s = uv_hub_info->node_to_socket; return n2s ? n2s[nid] : nid; } /* Convert a CPU number to the UV blade number */ static inline int uv_cpu_to_blade_id(int cpu) { return uv_cpu_hub_info(cpu)->numa_blade_id; } /* Convert a blade id to the PNODE of the blade */ static inline int uv_blade_to_pnode(int bid) { unsigned short *s2p = uv_hub_info->socket_to_pnode; return s2p ? s2p[bid] : bid; } /* Nid of memory node on blade. -1 if no blade-local memory */ static inline int uv_blade_to_memory_nid(int bid) { return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid; } /* Determine the number of possible cpus on a blade */ static inline int uv_blade_nr_possible_cpus(int bid) { return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus; } /* Determine the number of online cpus on a blade */ static inline int uv_blade_nr_online_cpus(int bid) { return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus; } /* Convert a cpu id to the PNODE of the blade containing the cpu */ static inline int uv_cpu_to_pnode(int cpu) { return uv_cpu_hub_info(cpu)->pnode; } /* Convert a linux node number to the PNODE of the blade */ static inline int uv_node_to_pnode(int nid) { return uv_hub_info_list(nid)->pnode; } /* Maximum possible number of blades */ extern short uv_possible_blades; static inline int uv_num_possible_blades(void) { return uv_possible_blades; } /* Per Hub NMI support */ extern void uv_nmi_setup(void); extern void uv_nmi_setup_hubless(void); /* BIOS/Kernel flags exchange MMR */ #define UVH_BIOS_KERNEL_MMR UVH_SCRATCH5 #define UVH_BIOS_KERNEL_MMR_ALIAS UVH_SCRATCH5_ALIAS #define UVH_BIOS_KERNEL_MMR_ALIAS_2 UVH_SCRATCH5_ALIAS_2 /* TSC sync valid, set by BIOS */ #define UVH_TSC_SYNC_MMR UVH_BIOS_KERNEL_MMR #define UVH_TSC_SYNC_SHIFT 10 #define UVH_TSC_SYNC_SHIFT_UV2K 16 /* UV2/3k have different bits */ #define UVH_TSC_SYNC_MASK 3 /* 0011 */ #define UVH_TSC_SYNC_VALID 3 /* 0011 */ #define UVH_TSC_SYNC_UNKNOWN 0 /* 0000 */ /* BMC sets a bit this MMR non-zero before sending an NMI */ #define UVH_NMI_MMR UVH_BIOS_KERNEL_MMR #define UVH_NMI_MMR_CLEAR UVH_BIOS_KERNEL_MMR_ALIAS #define UVH_NMI_MMR_SHIFT 63 #define UVH_NMI_MMR_TYPE "SCRATCH5" struct uv_hub_nmi_s { raw_spinlock_t nmi_lock; atomic_t in_nmi; /* flag this node in UV NMI IRQ */ atomic_t cpu_owner; /* last locker of this struct */ atomic_t read_mmr_count; /* count of MMR reads */ atomic_t nmi_count; /* count of true UV NMIs */ unsigned long nmi_value; /* last value read from NMI MMR */ bool hub_present; /* false means UV hubless system */ bool pch_owner; /* indicates this hub owns PCH */ }; struct uv_cpu_nmi_s { struct uv_hub_nmi_s *hub; int state; int pinging; int queries; int pings; }; DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi); #define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub) #define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu)) #define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub) /* uv_cpu_nmi_states */ #define UV_NMI_STATE_OUT 0 #define UV_NMI_STATE_IN 1 #define UV_NMI_STATE_DUMP 2 #define UV_NMI_STATE_DUMP_DONE 3 /* * Get the minimum revision number of the hub chips within the partition. * (See UVx_HUB_REVISION_BASE above for specific values.) */ static inline int uv_get_min_hub_revision_id(void) { return uv_hub_info->hub_revision; } #endif /* CONFIG_X86_64 */ #endif /* _ASM_X86_UV_UV_HUB_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1