Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Gleixner | 2726 | 34.32% | 79 | 20.79% |
Andi Kleen | 1027 | 12.93% | 31 | 8.16% |
Yinghai Lu | 674 | 8.49% | 25 | 6.58% |
Cyrill V. Gorcunov | 472 | 5.94% | 37 | 9.74% |
Dou Liyang | 293 | 3.69% | 11 | 2.89% |
Suresh B. Siddha | 247 | 3.11% | 13 | 3.42% |
Robert Richter | 241 | 3.03% | 6 | 1.58% |
Linus Torvalds | 164 | 2.06% | 8 | 2.11% |
Borislav Petkov | 163 | 2.05% | 8 | 2.11% |
Peter Zijlstra | 133 | 1.67% | 2 | 0.53% |
Ville Syrjälä | 131 | 1.65% | 1 | 0.26% |
Eric W. Biedermann | 130 | 1.64% | 3 | 0.79% |
Daniel Sneddon | 105 | 1.32% | 1 | 0.26% |
David Woodhouse | 99 | 1.25% | 4 | 1.05% |
Jacob jun Pan | 98 | 1.23% | 3 | 0.79% |
Hidehiro Kawai | 88 | 1.11% | 1 | 0.26% |
Viresh Kumar | 86 | 1.08% | 1 | 0.26% |
Youquan Song | 77 | 0.97% | 1 | 0.26% |
Nicolai Stange | 67 | 0.84% | 4 | 1.05% |
Linus Torvalds (pre-git) | 58 | 0.73% | 6 | 1.58% |
Yasuaki Ishimatsu | 52 | 0.65% | 2 | 0.53% |
Juergen Gross | 52 | 0.65% | 2 | 0.53% |
Ingo Molnar | 40 | 0.50% | 11 | 2.89% |
Hiroshi Shimamoto | 39 | 0.49% | 3 | 0.79% |
Tony Luck | 38 | 0.48% | 1 | 0.26% |
Venkatesh Pallipadi | 36 | 0.45% | 3 | 0.79% |
Bryan O'Donoghue | 30 | 0.38% | 1 | 0.26% |
Kerstin Jonsson | 29 | 0.37% | 1 | 0.26% |
Jacob Shin | 29 | 0.37% | 2 | 0.53% |
Aaron Durbin | 26 | 0.33% | 1 | 0.26% |
Seiji Aguchi | 22 | 0.28% | 1 | 0.26% |
Karsten Wiese | 20 | 0.25% | 1 | 0.26% |
Andrew Morton | 18 | 0.23% | 2 | 0.53% |
Jiang Liu | 17 | 0.21% | 2 | 0.53% |
Sean Christopherson | 16 | 0.20% | 2 | 0.53% |
Glauber de Oliveira Costa | 14 | 0.18% | 2 | 0.53% |
Maciej W. Rozycki | 14 | 0.18% | 3 | 0.79% |
Jan Beulich | 13 | 0.16% | 2 | 0.53% |
Dave Hansen | 13 | 0.16% | 3 | 0.79% |
Fenghua Yu | 12 | 0.15% | 1 | 0.26% |
Alexander van Heukelum | 12 | 0.15% | 1 | 0.26% |
Henrik Kretzschmar | 12 | 0.15% | 2 | 0.53% |
Jan Stancek | 12 | 0.15% | 1 | 0.26% |
Andrew Lutomirski | 11 | 0.14% | 3 | 0.79% |
Hans de Goede | 11 | 0.14% | 1 | 0.26% |
Mark Broadbent | 11 | 0.14% | 1 | 0.26% |
Pu Wen | 10 | 0.13% | 1 | 0.26% |
Rafael J. Wysocki | 10 | 0.13% | 1 | 0.26% |
Rusty Russell | 10 | 0.13% | 2 | 0.53% |
Mateusz Jończyk | 10 | 0.13% | 1 | 0.26% |
Daniel Drake | 10 | 0.13% | 1 | 0.26% |
Uros Bizjak | 9 | 0.11% | 1 | 0.26% |
Shaohua Li | 9 | 0.11% | 2 | 0.53% |
Richard Weinberger | 8 | 0.10% | 1 | 0.26% |
Gleb Natapov | 8 | 0.10% | 1 | 0.26% |
Kefeng Wang | 8 | 0.10% | 1 | 0.26% |
Weidong Han | 8 | 0.10% | 1 | 0.26% |
Len Brown | 8 | 0.10% | 4 | 1.05% |
Ido Yariv | 7 | 0.09% | 1 | 0.26% |
Frédéric Weisbecker | 7 | 0.09% | 2 | 0.53% |
Paolo Bonzini | 6 | 0.08% | 2 | 0.53% |
David Rientjes | 6 | 0.08% | 2 | 0.53% |
Ralf Baechle | 6 | 0.08% | 2 | 0.53% |
Tejun Heo | 6 | 0.08% | 1 | 0.26% |
Vivek Goyal | 5 | 0.06% | 2 | 0.53% |
Dave Jones | 5 | 0.06% | 1 | 0.26% |
Jaswinder Singh Rajput | 5 | 0.06% | 2 | 0.53% |
Christoph Lameter | 5 | 0.06% | 2 | 0.53% |
Brian Gerst | 4 | 0.05% | 1 | 0.26% |
René Herman | 4 | 0.05% | 1 | 0.26% |
Denys Vlasenko | 4 | 0.05% | 1 | 0.26% |
Jan Kiszka | 4 | 0.05% | 1 | 0.26% |
Tony W Wang-oc | 4 | 0.05% | 1 | 0.26% |
Andreas Herrmann | 4 | 0.05% | 2 | 0.53% |
Paul Gortmaker | 4 | 0.05% | 2 | 0.53% |
Wanpeng Li | 4 | 0.05% | 1 | 0.26% |
Don Zickus | 4 | 0.05% | 1 | 0.26% |
Chris Wright | 4 | 0.05% | 1 | 0.26% |
Thorsten Blum | 4 | 0.05% | 1 | 0.26% |
Stéphane Eranian | 3 | 0.04% | 1 | 0.26% |
Alexey Y. Starikovskiy | 3 | 0.04% | 1 | 0.26% |
Michael S. Tsirkin | 3 | 0.04% | 1 | 0.26% |
Mikael Pettersson | 3 | 0.04% | 1 | 0.26% |
Shai Fultheim | 3 | 0.04% | 1 | 0.26% |
Joerg Roedel | 3 | 0.04% | 2 | 0.53% |
Mathias Krause | 2 | 0.03% | 1 | 0.26% |
Sheng Yang | 2 | 0.03% | 1 | 0.26% |
Colin Ian King | 2 | 0.03% | 1 | 0.26% |
Mike Travis | 2 | 0.03% | 1 | 0.26% |
Masahiro Yamada | 2 | 0.03% | 1 | 0.26% |
Jeremy Fitzhardinge | 2 | 0.03% | 1 | 0.26% |
Paul Mackerras | 2 | 0.03% | 1 | 0.26% |
Kenji Kaneshige | 2 | 0.03% | 1 | 0.26% |
Ravikiran G. Thirumalai | 2 | 0.03% | 1 | 0.26% |
Kuppuswamy Sathyanarayanan | 2 | 0.03% | 1 | 0.26% |
Arun Sharma | 1 | 0.01% | 1 | 0.26% |
John Levon | 1 | 0.01% | 1 | 0.26% |
Adrian Bunk | 1 | 0.01% | 1 | 0.26% |
Jean Delvare | 1 | 0.01% | 1 | 0.26% |
Frans Pop | 1 | 0.01% | 1 | 0.26% |
Randy Dunlap | 1 | 0.01% | 1 | 0.26% |
OGAWA Hirofumi | 1 | 0.01% | 1 | 0.26% |
Baoquan He | 1 | 0.01% | 1 | 0.26% |
Michael Hayes | 1 | 0.01% | 1 | 0.26% |
Adam Buchbinder | 1 | 0.01% | 1 | 0.26% |
Al Viro | 1 | 0.01% | 1 | 0.26% |
Oren Twaig | 1 | 0.01% | 1 | 0.26% |
Mike Rapoport | 1 | 0.01% | 1 | 0.26% |
Suravee Suthikulpanit | 1 | 0.01% | 1 | 0.26% |
Uwe Kleine-König | 1 | 0.01% | 1 | 0.26% |
Björn Helgaas | 1 | 0.01% | 1 | 0.26% |
Total | 7942 | 380 |
// SPDX-License-Identifier: GPL-2.0-only /* * Local APIC handling, local APIC timers * * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> * * Fixes * Maciej W. Rozycki : Bits for genuine 82489DX APICs; * thanks to Eric Gilmore * and Rolf G. Tews * for testing these extensively. * Maciej W. Rozycki : Various updates and fixes. * Mikael Pettersson : Power Management for UP-APIC. * Pavel Machek and * Mikael Pettersson : PM converted to driver model. */ #include <linux/perf_event.h> #include <linux/kernel_stat.h> #include <linux/mc146818rtc.h> #include <linux/acpi_pmtmr.h> #include <linux/bitmap.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/memblock.h> #include <linux/ftrace.h> #include <linux/ioport.h> #include <linux/export.h> #include <linux/syscore_ops.h> #include <linux/delay.h> #include <linux/timex.h> #include <linux/i8253.h> #include <linux/dmar.h> #include <linux/init.h> #include <linux/cpu.h> #include <linux/dmi.h> #include <linux/smp.h> #include <linux/mm.h> #include <xen/xen.h> #include <asm/trace/irq_vectors.h> #include <asm/irq_remapping.h> #include <asm/pc-conf-reg.h> #include <asm/perf_event.h> #include <asm/x86_init.h> #include <linux/atomic.h> #include <asm/barrier.h> #include <asm/mpspec.h> #include <asm/i8259.h> #include <asm/proto.h> #include <asm/traps.h> #include <asm/apic.h> #include <asm/acpi.h> #include <asm/io_apic.h> #include <asm/desc.h> #include <asm/hpet.h> #include <asm/mtrr.h> #include <asm/time.h> #include <asm/smp.h> #include <asm/mce.h> #include <asm/tsc.h> #include <asm/hypervisor.h> #include <asm/cpu_device_id.h> #include <asm/intel-family.h> #include <asm/irq_regs.h> #include <asm/cpu.h> #include "local.h" /* Processor that is doing the boot up */ u32 boot_cpu_physical_apicid __ro_after_init = BAD_APICID; EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid); u8 boot_cpu_apic_version __ro_after_init; /* * This variable controls which CPUs receive external NMIs. By default, * external NMIs are delivered only to the BSP. */ static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP; /* * Hypervisor supports 15 bits of APIC ID in MSI Extended Destination ID */ static bool virt_ext_dest_id __ro_after_init; /* For parallel bootup. */ unsigned long apic_mmio_base __ro_after_init; static inline bool apic_accessible(void) { return x2apic_mode || apic_mmio_base; } #ifdef CONFIG_X86_32 /* Local APIC was disabled by the BIOS and enabled by the kernel */ static int enabled_via_apicbase __ro_after_init; /* * Handle interrupt mode configuration register (IMCR). * This register controls whether the interrupt signals * that reach the BSP come from the master PIC or from the * local APIC. Before entering Symmetric I/O Mode, either * the BIOS or the operating system must switch out of * PIC Mode by changing the IMCR. */ static inline void imcr_pic_to_apic(void) { /* NMI and 8259 INTR go through APIC */ pc_conf_set(PC_CONF_MPS_IMCR, 0x01); } static inline void imcr_apic_to_pic(void) { /* NMI and 8259 INTR go directly to BSP */ pc_conf_set(PC_CONF_MPS_IMCR, 0x00); } #endif /* * Knob to control our willingness to enable the local APIC. * * +1=force-enable */ static int force_enable_local_apic __initdata; /* * APIC command line parameters */ static int __init parse_lapic(char *arg) { if (IS_ENABLED(CONFIG_X86_32) && !arg) force_enable_local_apic = 1; else if (arg && !strncmp(arg, "notscdeadline", 13)) setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); return 0; } early_param("lapic", parse_lapic); #ifdef CONFIG_X86_64 static int apic_calibrate_pmtmr __initdata; static __init int setup_apicpmtimer(char *s) { apic_calibrate_pmtmr = 1; notsc_setup(NULL); return 1; } __setup("apicpmtimer", setup_apicpmtimer); #endif static unsigned long mp_lapic_addr __ro_after_init; bool apic_is_disabled __ro_after_init; /* Disable local APIC timer from the kernel commandline or via dmi quirk */ static int disable_apic_timer __initdata; /* Local APIC timer works in C2 */ int local_apic_timer_c2_ok __ro_after_init; EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); /* * Debug level, exported for io_apic.c */ int apic_verbosity __ro_after_init; int pic_mode __ro_after_init; /* Have we found an MP table */ int smp_found_config __ro_after_init; static struct resource lapic_resource = { .name = "Local APIC", .flags = IORESOURCE_MEM | IORESOURCE_BUSY, }; unsigned int lapic_timer_period = 0; static void apic_pm_activate(void); /* * Get the LAPIC version */ static inline int lapic_get_version(void) { return GET_APIC_VERSION(apic_read(APIC_LVR)); } /* * Check, if the APIC is integrated or a separate chip */ static inline int lapic_is_integrated(void) { return APIC_INTEGRATED(lapic_get_version()); } /* * Check, whether this is a modern or a first generation APIC */ static int modern_apic(void) { /* AMD systems use old APIC versions, so check the CPU */ if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && boot_cpu_data.x86 >= 0xf) return 1; /* Hygon systems use modern APIC */ if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) return 1; return lapic_get_version() >= 0x14; } /* * right after this call apic become NOOP driven * so apic->write/read doesn't do anything */ static void __init apic_disable(void) { apic_install_driver(&apic_noop); } void native_apic_icr_write(u32 low, u32 id) { unsigned long flags; local_irq_save(flags); apic_write(APIC_ICR2, SET_XAPIC_DEST_FIELD(id)); apic_write(APIC_ICR, low); local_irq_restore(flags); } u64 native_apic_icr_read(void) { u32 icr1, icr2; icr2 = apic_read(APIC_ICR2); icr1 = apic_read(APIC_ICR); return icr1 | ((u64)icr2 << 32); } /** * lapic_get_maxlvt - get the maximum number of local vector table entries */ int lapic_get_maxlvt(void) { /* * - we always have APIC integrated on 64bit mode * - 82489DXs do not report # of LVT entries */ return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2; } /* * Local APIC timer */ /* Clock divisor */ #define APIC_DIVISOR 16 #define TSC_DIVISOR 8 /* i82489DX specific */ #define I82489DX_BASE_DIVIDER (((0x2) << 18)) /* * This function sets up the local APIC timer, with a timeout of * 'clocks' APIC bus clock. During calibration we actually call * this function twice on the boot CPU, once with a bogus timeout * value, second time for real. The other (noncalibrating) CPUs * call this function only once, with the real, calibrated value. * * We do reads before writes even if unnecessary, to get around the * P5 APIC double write bug. */ static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) { unsigned int lvtt_value, tmp_value; lvtt_value = LOCAL_TIMER_VECTOR; if (!oneshot) lvtt_value |= APIC_LVT_TIMER_PERIODIC; else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE; /* * The i82489DX APIC uses bit 18 and 19 for the base divider. This * overlaps with bit 18 on integrated APICs, but is not documented * in the SDM. No problem though. i82489DX equipped systems do not * have TSC deadline timer. */ if (!lapic_is_integrated()) lvtt_value |= I82489DX_BASE_DIVIDER; if (!irqen) lvtt_value |= APIC_LVT_MASKED; apic_write(APIC_LVTT, lvtt_value); if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) { /* * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode, * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized. * According to Intel, MFENCE can do the serialization here. */ asm volatile("mfence" : : : "memory"); return; } /* * Divide PICLK by 16 */ tmp_value = apic_read(APIC_TDCR); apic_write(APIC_TDCR, (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) | APIC_TDR_DIV_16); if (!oneshot) apic_write(APIC_TMICT, clocks / APIC_DIVISOR); } /* * Setup extended LVT, AMD specific * * Software should use the LVT offsets the BIOS provides. The offsets * are determined by the subsystems using it like those for MCE * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts * are supported. Beginning with family 10h at least 4 offsets are * available. * * Since the offsets must be consistent for all cores, we keep track * of the LVT offsets in software and reserve the offset for the same * vector also to be used on other cores. An offset is freed by * setting the entry to APIC_EILVT_MASKED. * * If the BIOS is right, there should be no conflicts. Otherwise a * "[Firmware Bug]: ..." error message is generated. However, if * software does not properly determines the offsets, it is not * necessarily a BIOS bug. */ static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX]; static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new) { return (old & APIC_EILVT_MASKED) || (new == APIC_EILVT_MASKED) || ((new & ~APIC_EILVT_MASKED) == old); } static unsigned int reserve_eilvt_offset(int offset, unsigned int new) { unsigned int rsvd, vector; if (offset >= APIC_EILVT_NR_MAX) return ~0; rsvd = atomic_read(&eilvt_offsets[offset]); do { vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */ if (vector && !eilvt_entry_is_changeable(vector, new)) /* may not change if vectors are different */ return rsvd; } while (!atomic_try_cmpxchg(&eilvt_offsets[offset], &rsvd, new)); rsvd = new & ~APIC_EILVT_MASKED; if (rsvd && rsvd != vector) pr_info("LVT offset %d assigned for vector 0x%02x\n", offset, rsvd); return new; } /* * If mask=1, the LVT entry does not generate interrupts while mask=0 * enables the vector. See also the BKDGs. Must be called with * preemption disabled. */ int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask) { unsigned long reg = APIC_EILVTn(offset); unsigned int new, old, reserved; new = (mask << 16) | (msg_type << 8) | vector; old = apic_read(reg); reserved = reserve_eilvt_offset(offset, new); if (reserved != new) { pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " "vector 0x%x, but the register is already in use for " "vector 0x%x on another cpu\n", smp_processor_id(), reg, offset, new, reserved); return -EINVAL; } if (!eilvt_entry_is_changeable(old, new)) { pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " "vector 0x%x, but the register is already in use for " "vector 0x%x on this cpu\n", smp_processor_id(), reg, offset, new, old); return -EBUSY; } apic_write(reg, new); return 0; } EXPORT_SYMBOL_GPL(setup_APIC_eilvt); /* * Program the next event, relative to now */ static int lapic_next_event(unsigned long delta, struct clock_event_device *evt) { apic_write(APIC_TMICT, delta); return 0; } static int lapic_next_deadline(unsigned long delta, struct clock_event_device *evt) { u64 tsc; /* This MSR is special and need a special fence: */ weak_wrmsr_fence(); tsc = rdtsc(); wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR)); return 0; } static int lapic_timer_shutdown(struct clock_event_device *evt) { unsigned int v; /* Lapic used as dummy for broadcast ? */ if (evt->features & CLOCK_EVT_FEAT_DUMMY) return 0; v = apic_read(APIC_LVTT); v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); apic_write(APIC_LVTT, v); apic_write(APIC_TMICT, 0); return 0; } static inline int lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot) { /* Lapic used as dummy for broadcast ? */ if (evt->features & CLOCK_EVT_FEAT_DUMMY) return 0; __setup_APIC_LVTT(lapic_timer_period, oneshot, 1); return 0; } static int lapic_timer_set_periodic(struct clock_event_device *evt) { return lapic_timer_set_periodic_oneshot(evt, false); } static int lapic_timer_set_oneshot(struct clock_event_device *evt) { return lapic_timer_set_periodic_oneshot(evt, true); } /* * Local APIC timer broadcast function */ static void lapic_timer_broadcast(const struct cpumask *mask) { #ifdef CONFIG_SMP __apic_send_IPI_mask(mask, LOCAL_TIMER_VECTOR); #endif } /* * The local apic timer can be used for any function which is CPU local. */ static struct clock_event_device lapic_clockevent = { .name = "lapic", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_DUMMY, .shift = 32, .set_state_shutdown = lapic_timer_shutdown, .set_state_periodic = lapic_timer_set_periodic, .set_state_oneshot = lapic_timer_set_oneshot, .set_state_oneshot_stopped = lapic_timer_shutdown, .set_next_event = lapic_next_event, .broadcast = lapic_timer_broadcast, .rating = 100, .irq = -1, }; static DEFINE_PER_CPU(struct clock_event_device, lapic_events); static const struct x86_cpu_id deadline_match[] __initconst = { X86_MATCH_VFM_STEPPINGS(INTEL_HASWELL_X, X86_STEPPINGS(0x2, 0x2), 0x3a), /* EP */ X86_MATCH_VFM_STEPPINGS(INTEL_HASWELL_X, X86_STEPPINGS(0x4, 0x4), 0x0f), /* EX */ X86_MATCH_VFM(INTEL_BROADWELL_X, 0x0b000020), X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x2, 0x2), 0x00000011), X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x3, 0x3), 0x0700000e), X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x4, 0x4), 0x0f00000c), X86_MATCH_VFM_STEPPINGS(INTEL_BROADWELL_D, X86_STEPPINGS(0x5, 0x5), 0x0e000003), X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPINGS(0x3, 0x3), 0x01000136), X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPINGS(0x4, 0x4), 0x02000014), X86_MATCH_VFM_STEPPINGS(INTEL_SKYLAKE_X, X86_STEPPINGS(0x5, 0xf), 0), X86_MATCH_VFM(INTEL_HASWELL, 0x22), X86_MATCH_VFM(INTEL_HASWELL_L, 0x20), X86_MATCH_VFM(INTEL_HASWELL_G, 0x17), X86_MATCH_VFM(INTEL_BROADWELL, 0x25), X86_MATCH_VFM(INTEL_BROADWELL_G, 0x17), X86_MATCH_VFM(INTEL_SKYLAKE_L, 0xb2), X86_MATCH_VFM(INTEL_SKYLAKE, 0xb2), X86_MATCH_VFM(INTEL_KABYLAKE_L, 0x52), X86_MATCH_VFM(INTEL_KABYLAKE, 0x52), {}, }; static __init bool apic_validate_deadline_timer(void) { const struct x86_cpu_id *m; u32 rev; if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) return false; if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) return true; m = x86_match_cpu(deadline_match); if (!m) return true; rev = (u32)m->driver_data; if (boot_cpu_data.microcode >= rev) return true; setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; " "please update microcode to version: 0x%x (or later)\n", rev); return false; } /* * Setup the local APIC timer for this CPU. Copy the initialized values * of the boot CPU and register the clock event in the framework. */ static void setup_APIC_timer(void) { struct clock_event_device *levt = this_cpu_ptr(&lapic_events); if (this_cpu_has(X86_FEATURE_ARAT)) { lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP; /* Make LAPIC timer preferable over percpu HPET */ lapic_clockevent.rating = 150; } memcpy(levt, &lapic_clockevent, sizeof(*levt)); levt->cpumask = cpumask_of(smp_processor_id()); if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { levt->name = "lapic-deadline"; levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_DUMMY); levt->set_next_event = lapic_next_deadline; clockevents_config_and_register(levt, tsc_khz * (1000 / TSC_DIVISOR), 0xF, ~0UL); } else clockevents_register_device(levt); } /* * Install the updated TSC frequency from recalibration at the TSC * deadline clockevent devices. */ static void __lapic_update_tsc_freq(void *info) { struct clock_event_device *levt = this_cpu_ptr(&lapic_events); if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) return; clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR)); } void lapic_update_tsc_freq(void) { /* * The clockevent device's ->mult and ->shift can both be * changed. In order to avoid races, schedule the frequency * update code on each CPU. */ on_each_cpu(__lapic_update_tsc_freq, NULL, 0); } /* * In this functions we calibrate APIC bus clocks to the external timer. * * We want to do the calibration only once since we want to have local timer * irqs synchronous. CPUs connected by the same APIC bus have the very same bus * frequency. * * This was previously done by reading the PIT/HPET and waiting for a wrap * around to find out, that a tick has elapsed. I have a box, where the PIT * readout is broken, so it never gets out of the wait loop again. This was * also reported by others. * * Monitoring the jiffies value is inaccurate and the clockevents * infrastructure allows us to do a simple substitution of the interrupt * handler. * * The calibration routine also uses the pm_timer when possible, as the PIT * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes * back to normal later in the boot process). */ #define LAPIC_CAL_LOOPS (HZ/10) static __initdata int lapic_cal_loops = -1; static __initdata long lapic_cal_t1, lapic_cal_t2; static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2; static __initdata u32 lapic_cal_pm1, lapic_cal_pm2; static __initdata unsigned long lapic_cal_j1, lapic_cal_j2; /* * Temporary interrupt handler and polled calibration function. */ static void __init lapic_cal_handler(struct clock_event_device *dev) { unsigned long long tsc = 0; long tapic = apic_read(APIC_TMCCT); u32 pm = acpi_pm_read_early(); if (boot_cpu_has(X86_FEATURE_TSC)) tsc = rdtsc(); switch (lapic_cal_loops++) { case 0: lapic_cal_t1 = tapic; lapic_cal_tsc1 = tsc; lapic_cal_pm1 = pm; lapic_cal_j1 = jiffies; break; case LAPIC_CAL_LOOPS: lapic_cal_t2 = tapic; lapic_cal_tsc2 = tsc; if (pm < lapic_cal_pm1) pm += ACPI_PM_OVRRUN; lapic_cal_pm2 = pm; lapic_cal_j2 = jiffies; break; } } static int __init calibrate_by_pmtimer(u32 deltapm, long *delta, long *deltatsc) { const long pm_100ms = PMTMR_TICKS_PER_SEC / 10; const long pm_thresh = pm_100ms / 100; unsigned long mult; u64 res; #ifndef CONFIG_X86_PM_TIMER return -1; #endif apic_printk(APIC_VERBOSE, "... PM-Timer delta = %u\n", deltapm); /* Check, if the PM timer is available */ if (!deltapm) return -1; mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22); if (deltapm > (pm_100ms - pm_thresh) && deltapm < (pm_100ms + pm_thresh)) { apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n"); return 0; } res = (((u64)deltapm) * mult) >> 22; do_div(res, 1000000); pr_warn("APIC calibration not consistent " "with PM-Timer: %ldms instead of 100ms\n", (long)res); /* Correct the lapic counter value */ res = (((u64)(*delta)) * pm_100ms); do_div(res, deltapm); pr_info("APIC delta adjusted to PM-Timer: " "%lu (%ld)\n", (unsigned long)res, *delta); *delta = (long)res; /* Correct the tsc counter value */ if (boot_cpu_has(X86_FEATURE_TSC)) { res = (((u64)(*deltatsc)) * pm_100ms); do_div(res, deltapm); apic_printk(APIC_VERBOSE, "TSC delta adjusted to " "PM-Timer: %lu (%ld)\n", (unsigned long)res, *deltatsc); *deltatsc = (long)res; } return 0; } static int __init lapic_init_clockevent(void) { if (!lapic_timer_period) return -1; /* Calculate the scaled math multiplication factor */ lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR, TICK_NSEC, lapic_clockevent.shift); lapic_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent); lapic_clockevent.max_delta_ticks = 0x7FFFFFFF; lapic_clockevent.min_delta_ns = clockevent_delta2ns(0xF, &lapic_clockevent); lapic_clockevent.min_delta_ticks = 0xF; return 0; } bool __init apic_needs_pit(void) { /* * If the frequencies are not known, PIT is required for both TSC * and apic timer calibration. */ if (!tsc_khz || !cpu_khz) return true; /* Is there an APIC at all or is it disabled? */ if (!boot_cpu_has(X86_FEATURE_APIC) || apic_is_disabled) return true; /* * If interrupt delivery mode is legacy PIC or virtual wire without * configuration, the local APIC timer won't be set up. Make sure * that the PIT is initialized. */ if (apic_intr_mode == APIC_PIC || apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG) return true; /* Virt guests may lack ARAT, but still have DEADLINE */ if (!boot_cpu_has(X86_FEATURE_ARAT)) return true; /* Deadline timer is based on TSC so no further PIT action required */ if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) return false; /* APIC timer disabled? */ if (disable_apic_timer) return true; /* * The APIC timer frequency is known already, no PIT calibration * required. If unknown, let the PIT be initialized. */ return lapic_timer_period == 0; } static int __init calibrate_APIC_clock(void) { struct clock_event_device *levt = this_cpu_ptr(&lapic_events); u64 tsc_perj = 0, tsc_start = 0; unsigned long jif_start; unsigned long deltaj; long delta, deltatsc; int pm_referenced = 0; if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) return 0; /* * Check if lapic timer has already been calibrated by platform * specific routine, such as tsc calibration code. If so just fill * in the clockevent structure and return. */ if (!lapic_init_clockevent()) { apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n", lapic_timer_period); /* * Direct calibration methods must have an always running * local APIC timer, no need for broadcast timer. */ lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; return 0; } apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n" "calibrating APIC timer ...\n"); /* * There are platforms w/o global clockevent devices. Instead of * making the calibration conditional on that, use a polling based * approach everywhere. */ local_irq_disable(); /* * Setup the APIC counter to maximum. There is no way the lapic * can underflow in the 100ms detection time frame */ __setup_APIC_LVTT(0xffffffff, 0, 0); /* * Methods to terminate the calibration loop: * 1) Global clockevent if available (jiffies) * 2) TSC if available and frequency is known */ jif_start = READ_ONCE(jiffies); if (tsc_khz) { tsc_start = rdtsc(); tsc_perj = div_u64((u64)tsc_khz * 1000, HZ); } /* * Enable interrupts so the tick can fire, if a global * clockevent device is available */ local_irq_enable(); while (lapic_cal_loops <= LAPIC_CAL_LOOPS) { /* Wait for a tick to elapse */ while (1) { if (tsc_khz) { u64 tsc_now = rdtsc(); if ((tsc_now - tsc_start) >= tsc_perj) { tsc_start += tsc_perj; break; } } else { unsigned long jif_now = READ_ONCE(jiffies); if (time_after(jif_now, jif_start)) { jif_start = jif_now; break; } } cpu_relax(); } /* Invoke the calibration routine */ local_irq_disable(); lapic_cal_handler(NULL); local_irq_enable(); } local_irq_disable(); /* Build delta t1-t2 as apic timer counts down */ delta = lapic_cal_t1 - lapic_cal_t2; apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta); deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1); /* we trust the PM based calibration if possible */ pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1, &delta, &deltatsc); lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS; lapic_init_clockevent(); apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta); apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult); apic_printk(APIC_VERBOSE, "..... calibration result: %u\n", lapic_timer_period); if (boot_cpu_has(X86_FEATURE_TSC)) { apic_printk(APIC_VERBOSE, "..... CPU clock speed is " "%ld.%04ld MHz.\n", (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ), (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ)); } apic_printk(APIC_VERBOSE, "..... host bus clock speed is " "%u.%04u MHz.\n", lapic_timer_period / (1000000 / HZ), lapic_timer_period % (1000000 / HZ)); /* * Do a sanity check on the APIC calibration result */ if (lapic_timer_period < (1000000 / HZ)) { local_irq_enable(); pr_warn("APIC frequency too slow, disabling apic timer\n"); return -1; } levt->features &= ~CLOCK_EVT_FEAT_DUMMY; /* * PM timer calibration failed or not turned on so lets try APIC * timer based calibration, if a global clockevent device is * available. */ if (!pm_referenced && global_clock_event) { apic_printk(APIC_VERBOSE, "... verify APIC timer\n"); /* * Setup the apic timer manually */ levt->event_handler = lapic_cal_handler; lapic_timer_set_periodic(levt); lapic_cal_loops = -1; /* Let the interrupts run */ local_irq_enable(); while (lapic_cal_loops <= LAPIC_CAL_LOOPS) cpu_relax(); /* Stop the lapic timer */ local_irq_disable(); lapic_timer_shutdown(levt); /* Jiffies delta */ deltaj = lapic_cal_j2 - lapic_cal_j1; apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj); /* Check, if the jiffies result is consistent */ if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2) apic_printk(APIC_VERBOSE, "... jiffies result ok\n"); else levt->features |= CLOCK_EVT_FEAT_DUMMY; } local_irq_enable(); if (levt->features & CLOCK_EVT_FEAT_DUMMY) { pr_warn("APIC timer disabled due to verification failure\n"); return -1; } return 0; } /* * Setup the boot APIC * * Calibrate and verify the result. */ void __init setup_boot_APIC_clock(void) { /* * The local apic timer can be disabled via the kernel * commandline or from the CPU detection code. Register the lapic * timer as a dummy clock event source on SMP systems, so the * broadcast mechanism is used. On UP systems simply ignore it. */ if (disable_apic_timer) { pr_info("Disabling APIC timer\n"); /* No broadcast on UP ! */ if (num_possible_cpus() > 1) { lapic_clockevent.mult = 1; setup_APIC_timer(); } return; } if (calibrate_APIC_clock()) { /* No broadcast on UP ! */ if (num_possible_cpus() > 1) setup_APIC_timer(); return; } /* * If nmi_watchdog is set to IO_APIC, we need the * PIT/HPET going. Otherwise register lapic as a dummy * device. */ lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; /* Setup the lapic or request the broadcast */ setup_APIC_timer(); amd_e400_c1e_apic_setup(); } void setup_secondary_APIC_clock(void) { setup_APIC_timer(); amd_e400_c1e_apic_setup(); } /* * The guts of the apic timer interrupt */ static void local_apic_timer_interrupt(void) { struct clock_event_device *evt = this_cpu_ptr(&lapic_events); /* * Normally we should not be here till LAPIC has been initialized but * in some cases like kdump, its possible that there is a pending LAPIC * timer interrupt from previous kernel's context and is delivered in * new kernel the moment interrupts are enabled. * * Interrupts are enabled early and LAPIC is setup much later, hence * its possible that when we get here evt->event_handler is NULL. * Check for event_handler being NULL and discard the interrupt as * spurious. */ if (!evt->event_handler) { pr_warn("Spurious LAPIC timer interrupt on cpu %d\n", smp_processor_id()); /* Switch it off */ lapic_timer_shutdown(evt); return; } /* * the NMI deadlock-detector uses this. */ inc_irq_stat(apic_timer_irqs); evt->event_handler(evt); } /* * Local APIC timer interrupt. This is the most natural way for doing * local interrupts, but local timer interrupts can be emulated by * broadcast interrupts too. [in case the hw doesn't support APIC timers] * * [ if a single-CPU system runs an SMP kernel then we call the local * interrupt as well. Thus we cannot inline the local irq ... ] */ DEFINE_IDTENTRY_SYSVEC(sysvec_apic_timer_interrupt) { struct pt_regs *old_regs = set_irq_regs(regs); apic_eoi(); trace_local_timer_entry(LOCAL_TIMER_VECTOR); local_apic_timer_interrupt(); trace_local_timer_exit(LOCAL_TIMER_VECTOR); set_irq_regs(old_regs); } /* * Local APIC start and shutdown */ /** * clear_local_APIC - shutdown the local APIC * * This is called, when a CPU is disabled and before rebooting, so the state of * the local APIC has no dangling leftovers. Also used to cleanout any BIOS * leftovers during boot. */ void clear_local_APIC(void) { int maxlvt; u32 v; if (!apic_accessible()) return; maxlvt = lapic_get_maxlvt(); /* * Masking an LVT entry can trigger a local APIC error * if the vector is zero. Mask LVTERR first to prevent this. */ if (maxlvt >= 3) { v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); } /* * Careful: we have to set masks only first to deassert * any level-triggered sources. */ v = apic_read(APIC_LVTT); apic_write(APIC_LVTT, v | APIC_LVT_MASKED); v = apic_read(APIC_LVT0); apic_write(APIC_LVT0, v | APIC_LVT_MASKED); v = apic_read(APIC_LVT1); apic_write(APIC_LVT1, v | APIC_LVT_MASKED); if (maxlvt >= 4) { v = apic_read(APIC_LVTPC); apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); } /* lets not touch this if we didn't frob it */ #ifdef CONFIG_X86_THERMAL_VECTOR if (maxlvt >= 5) { v = apic_read(APIC_LVTTHMR); apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED); } #endif #ifdef CONFIG_X86_MCE_INTEL if (maxlvt >= 6) { v = apic_read(APIC_LVTCMCI); if (!(v & APIC_LVT_MASKED)) apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED); } #endif /* * Clean APIC state for other OSs: */ apic_write(APIC_LVTT, APIC_LVT_MASKED); apic_write(APIC_LVT0, APIC_LVT_MASKED); apic_write(APIC_LVT1, APIC_LVT_MASKED); if (maxlvt >= 3) apic_write(APIC_LVTERR, APIC_LVT_MASKED); if (maxlvt >= 4) apic_write(APIC_LVTPC, APIC_LVT_MASKED); /* Integrated APIC (!82489DX) ? */ if (lapic_is_integrated()) { if (maxlvt > 3) /* Clear ESR due to Pentium errata 3AP and 11AP */ apic_write(APIC_ESR, 0); apic_read(APIC_ESR); } } /** * apic_soft_disable - Clears and software disables the local APIC on hotplug * * Contrary to disable_local_APIC() this does not touch the enable bit in * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC * bus would require a hardware reset as the APIC would lose track of bus * arbitration. On systems with FSB delivery APICBASE could be disabled, * but it has to be guaranteed that no interrupt is sent to the APIC while * in that state and it's not clear from the SDM whether it still responds * to INIT/SIPI messages. Stay on the safe side and use software disable. */ void apic_soft_disable(void) { u32 value; clear_local_APIC(); /* Soft disable APIC (implies clearing of registers for 82489DX!). */ value = apic_read(APIC_SPIV); value &= ~APIC_SPIV_APIC_ENABLED; apic_write(APIC_SPIV, value); } /** * disable_local_APIC - clear and disable the local APIC */ void disable_local_APIC(void) { if (!apic_accessible()) return; apic_soft_disable(); #ifdef CONFIG_X86_32 /* * When LAPIC was disabled by the BIOS and enabled by the kernel, * restore the disabled state. */ if (enabled_via_apicbase) { unsigned int l, h; rdmsr(MSR_IA32_APICBASE, l, h); l &= ~MSR_IA32_APICBASE_ENABLE; wrmsr(MSR_IA32_APICBASE, l, h); } #endif } /* * If Linux enabled the LAPIC against the BIOS default disable it down before * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and * not power-off. Additionally clear all LVT entries before disable_local_APIC * for the case where Linux didn't enable the LAPIC. */ void lapic_shutdown(void) { unsigned long flags; if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) return; local_irq_save(flags); #ifdef CONFIG_X86_32 if (!enabled_via_apicbase) clear_local_APIC(); else #endif disable_local_APIC(); local_irq_restore(flags); } /** * sync_Arb_IDs - synchronize APIC bus arbitration IDs */ void __init sync_Arb_IDs(void) { /* * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not * needed on AMD. */ if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD) return; /* * Wait for idle. */ apic_wait_icr_idle(); apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); apic_write(APIC_ICR, APIC_DEST_ALLINC | APIC_INT_LEVELTRIG | APIC_DM_INIT); } enum apic_intr_mode_id apic_intr_mode __ro_after_init; static int __init __apic_intr_mode_select(void) { /* Check kernel option */ if (apic_is_disabled) { pr_info("APIC disabled via kernel command line\n"); return APIC_PIC; } /* Check BIOS */ #ifdef CONFIG_X86_64 /* On 64-bit, the APIC must be integrated, Check local APIC only */ if (!boot_cpu_has(X86_FEATURE_APIC)) { apic_is_disabled = true; pr_info("APIC disabled by BIOS\n"); return APIC_PIC; } #else /* On 32-bit, the APIC may be integrated APIC or 82489DX */ /* Neither 82489DX nor integrated APIC ? */ if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) { apic_is_disabled = true; return APIC_PIC; } /* If the BIOS pretends there is an integrated APIC ? */ if (!boot_cpu_has(X86_FEATURE_APIC) && APIC_INTEGRATED(boot_cpu_apic_version)) { apic_is_disabled = true; pr_err(FW_BUG "Local APIC not detected, force emulation\n"); return APIC_PIC; } #endif /* Check MP table or ACPI MADT configuration */ if (!smp_found_config) { disable_ioapic_support(); if (!acpi_lapic) { pr_info("APIC: ACPI MADT or MP tables are not detected\n"); return APIC_VIRTUAL_WIRE_NO_CONFIG; } return APIC_VIRTUAL_WIRE; } #ifdef CONFIG_SMP /* If SMP should be disabled, then really disable it! */ if (!setup_max_cpus) { pr_info("APIC: SMP mode deactivated\n"); return APIC_SYMMETRIC_IO_NO_ROUTING; } #endif return APIC_SYMMETRIC_IO; } /* Select the interrupt delivery mode for the BSP */ void __init apic_intr_mode_select(void) { apic_intr_mode = __apic_intr_mode_select(); } /* * An initial setup of the virtual wire mode. */ void __init init_bsp_APIC(void) { unsigned int value; /* * Don't do the setup now if we have a SMP BIOS as the * through-I/O-APIC virtual wire mode might be active. */ if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC)) return; /* * Do not trust the local APIC being empty at bootup. */ clear_local_APIC(); /* * Enable APIC. */ value = apic_read(APIC_SPIV); value &= ~APIC_VECTOR_MASK; value |= APIC_SPIV_APIC_ENABLED; #ifdef CONFIG_X86_32 /* This bit is reserved on P4/Xeon and should be cleared */ if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 15)) value &= ~APIC_SPIV_FOCUS_DISABLED; else #endif value |= APIC_SPIV_FOCUS_DISABLED; value |= SPURIOUS_APIC_VECTOR; apic_write(APIC_SPIV, value); /* * Set up the virtual wire mode. */ apic_write(APIC_LVT0, APIC_DM_EXTINT); value = APIC_DM_NMI; if (!lapic_is_integrated()) /* 82489DX */ value |= APIC_LVT_LEVEL_TRIGGER; if (apic_extnmi == APIC_EXTNMI_NONE) value |= APIC_LVT_MASKED; apic_write(APIC_LVT1, value); } static void __init apic_bsp_setup(bool upmode); /* Init the interrupt delivery mode for the BSP */ void __init apic_intr_mode_init(void) { bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT); switch (apic_intr_mode) { case APIC_PIC: pr_info("APIC: Keep in PIC mode(8259)\n"); return; case APIC_VIRTUAL_WIRE: pr_info("APIC: Switch to virtual wire mode setup\n"); break; case APIC_VIRTUAL_WIRE_NO_CONFIG: pr_info("APIC: Switch to virtual wire mode setup with no configuration\n"); upmode = true; break; case APIC_SYMMETRIC_IO: pr_info("APIC: Switch to symmetric I/O mode setup\n"); break; case APIC_SYMMETRIC_IO_NO_ROUTING: pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n"); break; } x86_64_probe_apic(); x86_32_install_bigsmp(); if (x86_platform.apic_post_init) x86_platform.apic_post_init(); apic_bsp_setup(upmode); } static void lapic_setup_esr(void) { unsigned int oldvalue, value, maxlvt; if (!lapic_is_integrated()) { pr_info("No ESR for 82489DX.\n"); return; } if (apic->disable_esr) { /* * Something untraceable is creating bad interrupts on * secondary quads ... for the moment, just leave the * ESR disabled - we can't do anything useful with the * errors anyway - mbligh */ pr_info("Leaving ESR disabled.\n"); return; } maxlvt = lapic_get_maxlvt(); if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ apic_write(APIC_ESR, 0); oldvalue = apic_read(APIC_ESR); /* enables sending errors */ value = ERROR_APIC_VECTOR; apic_write(APIC_LVTERR, value); /* * spec says clear errors after enabling vector. */ if (maxlvt > 3) apic_write(APIC_ESR, 0); value = apic_read(APIC_ESR); if (value != oldvalue) apic_printk(APIC_VERBOSE, "ESR value before enabling " "vector: 0x%08x after: 0x%08x\n", oldvalue, value); } #define APIC_IR_REGS APIC_ISR_NR #define APIC_IR_BITS (APIC_IR_REGS * 32) #define APIC_IR_MAPSIZE (APIC_IR_BITS / BITS_PER_LONG) union apic_ir { unsigned long map[APIC_IR_MAPSIZE]; u32 regs[APIC_IR_REGS]; }; static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr) { int i, bit; /* Read the IRRs */ for (i = 0; i < APIC_IR_REGS; i++) irr->regs[i] = apic_read(APIC_IRR + i * 0x10); /* Read the ISRs */ for (i = 0; i < APIC_IR_REGS; i++) isr->regs[i] = apic_read(APIC_ISR + i * 0x10); /* * If the ISR map is not empty. ACK the APIC and run another round * to verify whether a pending IRR has been unblocked and turned * into a ISR. */ if (!bitmap_empty(isr->map, APIC_IR_BITS)) { /* * There can be multiple ISR bits set when a high priority * interrupt preempted a lower priority one. Issue an ACK * per set bit. */ for_each_set_bit(bit, isr->map, APIC_IR_BITS) apic_eoi(); return true; } return !bitmap_empty(irr->map, APIC_IR_BITS); } /* * After a crash, we no longer service the interrupts and a pending * interrupt from previous kernel might still have ISR bit set. * * Most probably by now the CPU has serviced that pending interrupt and it * might not have done the apic_eoi() because it thought, interrupt * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear * the ISR bit and cpu thinks it has already serviced the interrupt. Hence * a vector might get locked. It was noticed for timer irq (vector * 0x31). Issue an extra EOI to clear ISR. * * If there are pending IRR bits they turn into ISR bits after a higher * priority ISR bit has been acked. */ static void apic_pending_intr_clear(void) { union apic_ir irr, isr; unsigned int i; /* 512 loops are way oversized and give the APIC a chance to obey. */ for (i = 0; i < 512; i++) { if (!apic_check_and_ack(&irr, &isr)) return; } /* Dump the IRR/ISR content if that failed */ pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map); } /** * setup_local_APIC - setup the local APIC * * Used to setup local APIC while initializing BSP or bringing up APs. * Always called with preemption disabled. */ static void setup_local_APIC(void) { int cpu = smp_processor_id(); unsigned int value; if (apic_is_disabled) { disable_ioapic_support(); return; } /* * If this comes from kexec/kcrash the APIC might be enabled in * SPIV. Soft disable it before doing further initialization. */ value = apic_read(APIC_SPIV); value &= ~APIC_SPIV_APIC_ENABLED; apic_write(APIC_SPIV, value); #ifdef CONFIG_X86_32 /* Pound the ESR really hard over the head with a big hammer - mbligh */ if (lapic_is_integrated() && apic->disable_esr) { apic_write(APIC_ESR, 0); apic_write(APIC_ESR, 0); apic_write(APIC_ESR, 0); apic_write(APIC_ESR, 0); } #endif /* * Intel recommends to set DFR, LDR and TPR before enabling * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel * document number 292116). * * Except for APICs which operate in physical destination mode. */ if (apic->init_apic_ldr) apic->init_apic_ldr(); /* * Set Task Priority to 'accept all except vectors 0-31'. An APIC * vector in the 16-31 range could be delivered if TPR == 0, but we * would think it's an exception and terrible things will happen. We * never change this later on. */ value = apic_read(APIC_TASKPRI); value &= ~APIC_TPRI_MASK; value |= 0x10; apic_write(APIC_TASKPRI, value); /* Clear eventually stale ISR/IRR bits */ apic_pending_intr_clear(); /* * Now that we are all set up, enable the APIC */ value = apic_read(APIC_SPIV); value &= ~APIC_VECTOR_MASK; /* * Enable APIC */ value |= APIC_SPIV_APIC_ENABLED; #ifdef CONFIG_X86_32 /* * Some unknown Intel IO/APIC (or APIC) errata is biting us with * certain networking cards. If high frequency interrupts are * happening on a particular IOAPIC pin, plus the IOAPIC routing * entry is masked/unmasked at a high rate as well then sooner or * later IOAPIC line gets 'stuck', no more interrupts are received * from the device. If focus CPU is disabled then the hang goes * away, oh well :-( * * [ This bug can be reproduced easily with a level-triggered * PCI Ne2000 networking cards and PII/PIII processors, dual * BX chipset. ] */ /* * Actually disabling the focus CPU check just makes the hang less * frequent as it makes the interrupt distribution model be more * like LRU than MRU (the short-term load is more even across CPUs). */ /* * - enable focus processor (bit==0) * - 64bit mode always use processor focus * so no need to set it */ value &= ~APIC_SPIV_FOCUS_DISABLED; #endif /* * Set spurious IRQ vector */ value |= SPURIOUS_APIC_VECTOR; apic_write(APIC_SPIV, value); perf_events_lapic_init(); /* * Set up LVT0, LVT1: * * set up through-local-APIC on the boot CPU's LINT0. This is not * strictly necessary in pure symmetric-IO mode, but sometimes * we delegate interrupts to the 8259A. */ /* * TODO: set up through-local-APIC from through-I/O-APIC? --macro */ value = apic_read(APIC_LVT0) & APIC_LVT_MASKED; if (!cpu && (pic_mode || !value || ioapic_is_disabled)) { value = APIC_DM_EXTINT; apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu); } else { value = APIC_DM_EXTINT | APIC_LVT_MASKED; apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu); } apic_write(APIC_LVT0, value); /* * Only the BSP sees the LINT1 NMI signal by default. This can be * modified by apic_extnmi= boot option. */ if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) || apic_extnmi == APIC_EXTNMI_ALL) value = APIC_DM_NMI; else value = APIC_DM_NMI | APIC_LVT_MASKED; /* Is 82489DX ? */ if (!lapic_is_integrated()) value |= APIC_LVT_LEVEL_TRIGGER; apic_write(APIC_LVT1, value); #ifdef CONFIG_X86_MCE_INTEL /* Recheck CMCI information after local APIC is up on CPU #0 */ if (!cpu) cmci_recheck(); #endif } static void end_local_APIC_setup(void) { lapic_setup_esr(); #ifdef CONFIG_X86_32 { unsigned int value; /* Disable the local apic timer */ value = apic_read(APIC_LVTT); value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); apic_write(APIC_LVTT, value); } #endif apic_pm_activate(); } /* * APIC setup function for application processors. Called from smpboot.c */ void apic_ap_setup(void) { setup_local_APIC(); end_local_APIC_setup(); } static __init void apic_read_boot_cpu_id(bool x2apic) { /* * This can be invoked from check_x2apic() before the APIC has been * selected. But that code knows for sure that the BIOS enabled * X2APIC. */ if (x2apic) { boot_cpu_physical_apicid = native_apic_msr_read(APIC_ID); boot_cpu_apic_version = GET_APIC_VERSION(native_apic_msr_read(APIC_LVR)); } else { boot_cpu_physical_apicid = read_apic_id(); boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); } topology_register_boot_apic(boot_cpu_physical_apicid); x86_32_probe_bigsmp_early(); } #ifdef CONFIG_X86_X2APIC int x2apic_mode; EXPORT_SYMBOL_GPL(x2apic_mode); enum { X2APIC_OFF, X2APIC_DISABLED, /* All states below here have X2APIC enabled */ X2APIC_ON, X2APIC_ON_LOCKED }; static int x2apic_state; static bool x2apic_hw_locked(void) { u64 x86_arch_cap_msr; u64 msr; x86_arch_cap_msr = x86_read_arch_cap_msr(); if (x86_arch_cap_msr & ARCH_CAP_XAPIC_DISABLE) { rdmsrl(MSR_IA32_XAPIC_DISABLE_STATUS, msr); return (msr & LEGACY_XAPIC_DISABLED); } return false; } static void __x2apic_disable(void) { u64 msr; if (!boot_cpu_has(X86_FEATURE_APIC)) return; rdmsrl(MSR_IA32_APICBASE, msr); if (!(msr & X2APIC_ENABLE)) return; /* Disable xapic and x2apic first and then reenable xapic mode */ wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE)); wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE); printk_once(KERN_INFO "x2apic disabled\n"); } static void __x2apic_enable(void) { u64 msr; rdmsrl(MSR_IA32_APICBASE, msr); if (msr & X2APIC_ENABLE) return; wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE); printk_once(KERN_INFO "x2apic enabled\n"); } static int __init setup_nox2apic(char *str) { if (x2apic_enabled()) { u32 apicid = native_apic_msr_read(APIC_ID); if (apicid >= 255) { pr_warn("Apicid: %08x, cannot enforce nox2apic\n", apicid); return 0; } if (x2apic_hw_locked()) { pr_warn("APIC locked in x2apic mode, can't disable\n"); return 0; } pr_warn("x2apic already enabled.\n"); __x2apic_disable(); } setup_clear_cpu_cap(X86_FEATURE_X2APIC); x2apic_state = X2APIC_DISABLED; x2apic_mode = 0; return 0; } early_param("nox2apic", setup_nox2apic); /* Called from cpu_init() to enable x2apic on (secondary) cpus */ void x2apic_setup(void) { /* * Try to make the AP's APIC state match that of the BSP, but if the * BSP is unlocked and the AP is locked then there is a state mismatch. * Warn about the mismatch in case a GP fault occurs due to a locked AP * trying to be turned off. */ if (x2apic_state != X2APIC_ON_LOCKED && x2apic_hw_locked()) pr_warn("x2apic lock mismatch between BSP and AP.\n"); /* * If x2apic is not in ON or LOCKED state, disable it if already enabled * from BIOS. */ if (x2apic_state < X2APIC_ON) { __x2apic_disable(); return; } __x2apic_enable(); } static __init void apic_set_fixmap(bool read_apic); static __init void x2apic_disable(void) { u32 x2apic_id, state = x2apic_state; x2apic_mode = 0; x2apic_state = X2APIC_DISABLED; if (state != X2APIC_ON) return; x2apic_id = read_apic_id(); if (x2apic_id >= 255) panic("Cannot disable x2apic, id: %08x\n", x2apic_id); if (x2apic_hw_locked()) { pr_warn("Cannot disable locked x2apic, id: %08x\n", x2apic_id); return; } __x2apic_disable(); /* * Don't reread the APIC ID as it was already done from * check_x2apic() and the APIC driver still is a x2APIC variant, * which fails to do the read after x2APIC was disabled. */ apic_set_fixmap(false); } static __init void x2apic_enable(void) { if (x2apic_state != X2APIC_OFF) return; x2apic_mode = 1; x2apic_state = X2APIC_ON; __x2apic_enable(); } static __init void try_to_enable_x2apic(int remap_mode) { if (x2apic_state == X2APIC_DISABLED) return; if (remap_mode != IRQ_REMAP_X2APIC_MODE) { u32 apic_limit = 255; /* * Using X2APIC without IR is not architecturally supported * on bare metal but may be supported in guests. */ if (!x86_init.hyper.x2apic_available()) { pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n"); x2apic_disable(); return; } /* * If the hypervisor supports extended destination ID in * MSI, that increases the maximum APIC ID that can be * used for non-remapped IRQ domains. */ if (x86_init.hyper.msi_ext_dest_id()) { virt_ext_dest_id = 1; apic_limit = 32767; } /* * Without IR, all CPUs can be addressed by IOAPIC/MSI only * in physical mode, and CPUs with an APIC ID that cannot * be addressed must not be brought online. */ x2apic_set_max_apicid(apic_limit); x2apic_phys = 1; } x2apic_enable(); } void __init check_x2apic(void) { if (x2apic_enabled()) { pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n"); x2apic_mode = 1; if (x2apic_hw_locked()) x2apic_state = X2APIC_ON_LOCKED; else x2apic_state = X2APIC_ON; apic_read_boot_cpu_id(true); } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) { x2apic_state = X2APIC_DISABLED; } } #else /* CONFIG_X86_X2APIC */ void __init check_x2apic(void) { if (!apic_is_x2apic_enabled()) return; /* * Checkme: Can we simply turn off x2APIC here instead of disabling the APIC? */ pr_err("Kernel does not support x2APIC, please recompile with CONFIG_X86_X2APIC.\n"); pr_err("Disabling APIC, expect reduced performance and functionality.\n"); apic_is_disabled = true; setup_clear_cpu_cap(X86_FEATURE_APIC); } static inline void try_to_enable_x2apic(int remap_mode) { } static inline void __x2apic_enable(void) { } #endif /* !CONFIG_X86_X2APIC */ void __init enable_IR_x2apic(void) { unsigned long flags; int ret, ir_stat; if (ioapic_is_disabled) { pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n"); return; } ir_stat = irq_remapping_prepare(); if (ir_stat < 0 && !x2apic_supported()) return; ret = save_ioapic_entries(); if (ret) { pr_info("Saving IO-APIC state failed: %d\n", ret); return; } local_irq_save(flags); legacy_pic->mask_all(); mask_ioapic_entries(); /* If irq_remapping_prepare() succeeded, try to enable it */ if (ir_stat >= 0) ir_stat = irq_remapping_enable(); /* ir_stat contains the remap mode or an error code */ try_to_enable_x2apic(ir_stat); if (ir_stat < 0) restore_ioapic_entries(); legacy_pic->restore_mask(); local_irq_restore(flags); } #ifdef CONFIG_X86_64 /* * Detect and enable local APICs on non-SMP boards. * Original code written by Keir Fraser. * On AMD64 we trust the BIOS - if it says no APIC it is likely * not correctly set up (usually the APIC timer won't work etc.) */ static bool __init detect_init_APIC(void) { if (!boot_cpu_has(X86_FEATURE_APIC)) { pr_info("No local APIC present\n"); return false; } register_lapic_address(APIC_DEFAULT_PHYS_BASE); return true; } #else static bool __init apic_verify(unsigned long addr) { u32 features, h, l; /* * The APIC feature bit should now be enabled * in `cpuid' */ features = cpuid_edx(1); if (!(features & (1 << X86_FEATURE_APIC))) { pr_warn("Could not enable APIC!\n"); return false; } set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC); /* The BIOS may have set up the APIC at some other address */ if (boot_cpu_data.x86 >= 6) { rdmsr(MSR_IA32_APICBASE, l, h); if (l & MSR_IA32_APICBASE_ENABLE) addr = l & MSR_IA32_APICBASE_BASE; } register_lapic_address(addr); pr_info("Found and enabled local APIC!\n"); return true; } bool __init apic_force_enable(unsigned long addr) { u32 h, l; if (apic_is_disabled) return false; /* * Some BIOSes disable the local APIC in the APIC_BASE * MSR. This can only be done in software for Intel P6 or later * and AMD K7 (Model > 1) or later. */ if (boot_cpu_data.x86 >= 6) { rdmsr(MSR_IA32_APICBASE, l, h); if (!(l & MSR_IA32_APICBASE_ENABLE)) { pr_info("Local APIC disabled by BIOS -- reenabling.\n"); l &= ~MSR_IA32_APICBASE_BASE; l |= MSR_IA32_APICBASE_ENABLE | addr; wrmsr(MSR_IA32_APICBASE, l, h); enabled_via_apicbase = 1; } } return apic_verify(addr); } /* * Detect and initialize APIC */ static bool __init detect_init_APIC(void) { /* Disabled by kernel option? */ if (apic_is_disabled) return false; switch (boot_cpu_data.x86_vendor) { case X86_VENDOR_AMD: if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) || (boot_cpu_data.x86 >= 15)) break; goto no_apic; case X86_VENDOR_HYGON: break; case X86_VENDOR_INTEL: if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 || (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC))) break; goto no_apic; default: goto no_apic; } if (!boot_cpu_has(X86_FEATURE_APIC)) { /* * Over-ride BIOS and try to enable the local APIC only if * "lapic" specified. */ if (!force_enable_local_apic) { pr_info("Local APIC disabled by BIOS -- " "you can enable it with \"lapic\"\n"); return false; } if (!apic_force_enable(APIC_DEFAULT_PHYS_BASE)) return false; } else { if (!apic_verify(APIC_DEFAULT_PHYS_BASE)) return false; } apic_pm_activate(); return true; no_apic: pr_info("No local APIC present or hardware disabled\n"); return false; } #endif /** * init_apic_mappings - initialize APIC mappings */ void __init init_apic_mappings(void) { if (apic_validate_deadline_timer()) pr_info("TSC deadline timer available\n"); if (x2apic_mode) return; if (!smp_found_config) { if (!detect_init_APIC()) { pr_info("APIC: disable apic facility\n"); apic_disable(); } } } static __init void apic_set_fixmap(bool read_apic) { set_fixmap_nocache(FIX_APIC_BASE, mp_lapic_addr); apic_mmio_base = APIC_BASE; apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", apic_mmio_base, mp_lapic_addr); if (read_apic) apic_read_boot_cpu_id(false); } void __init register_lapic_address(unsigned long address) { /* This should only happen once */ WARN_ON_ONCE(mp_lapic_addr); mp_lapic_addr = address; if (!x2apic_mode) apic_set_fixmap(true); } /* * Local APIC interrupts */ /* * Common handling code for spurious_interrupt and spurious_vector entry * points below. No point in allowing the compiler to inline it twice. */ static noinline void handle_spurious_interrupt(u8 vector) { u32 v; trace_spurious_apic_entry(vector); inc_irq_stat(irq_spurious_count); /* * If this is a spurious interrupt then do not acknowledge */ if (vector == SPURIOUS_APIC_VECTOR) { /* See SDM vol 3 */ pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n", smp_processor_id()); goto out; } /* * If it is a vectored one, verify it's set in the ISR. If set, * acknowledge it. */ v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1)); if (v & (1 << (vector & 0x1f))) { pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n", vector, smp_processor_id()); apic_eoi(); } else { pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n", vector, smp_processor_id()); } out: trace_spurious_apic_exit(vector); } /** * spurious_interrupt - Catch all for interrupts raised on unused vectors * @regs: Pointer to pt_regs on stack * @vector: The vector number * * This is invoked from ASM entry code to catch all interrupts which * trigger on an entry which is routed to the common_spurious idtentry * point. */ DEFINE_IDTENTRY_IRQ(spurious_interrupt) { handle_spurious_interrupt(vector); } DEFINE_IDTENTRY_SYSVEC(sysvec_spurious_apic_interrupt) { handle_spurious_interrupt(SPURIOUS_APIC_VECTOR); } /* * This interrupt should never happen with our APIC/SMP architecture */ DEFINE_IDTENTRY_SYSVEC(sysvec_error_interrupt) { static const char * const error_interrupt_reason[] = { "Send CS error", /* APIC Error Bit 0 */ "Receive CS error", /* APIC Error Bit 1 */ "Send accept error", /* APIC Error Bit 2 */ "Receive accept error", /* APIC Error Bit 3 */ "Redirectable IPI", /* APIC Error Bit 4 */ "Send illegal vector", /* APIC Error Bit 5 */ "Received illegal vector", /* APIC Error Bit 6 */ "Illegal register address", /* APIC Error Bit 7 */ }; u32 v, i = 0; trace_error_apic_entry(ERROR_APIC_VECTOR); /* First tickle the hardware, only then report what went on. -- REW */ if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */ apic_write(APIC_ESR, 0); v = apic_read(APIC_ESR); apic_eoi(); atomic_inc(&irq_err_count); apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x", smp_processor_id(), v); v &= 0xff; while (v) { if (v & 0x1) apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]); i++; v >>= 1; } apic_printk(APIC_DEBUG, KERN_CONT "\n"); trace_error_apic_exit(ERROR_APIC_VECTOR); } /** * connect_bsp_APIC - attach the APIC to the interrupt system */ static void __init connect_bsp_APIC(void) { #ifdef CONFIG_X86_32 if (pic_mode) { /* * Do not trust the local APIC being empty at bootup. */ clear_local_APIC(); /* * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's * local APIC to INT and NMI lines. */ apic_printk(APIC_VERBOSE, "leaving PIC mode, " "enabling APIC mode.\n"); imcr_pic_to_apic(); } #endif } /** * disconnect_bsp_APIC - detach the APIC from the interrupt system * @virt_wire_setup: indicates, whether virtual wire mode is selected * * Virtual wire mode is necessary to deliver legacy interrupts even when the * APIC is disabled. */ void disconnect_bsp_APIC(int virt_wire_setup) { unsigned int value; #ifdef CONFIG_X86_32 if (pic_mode) { /* * Put the board back into PIC mode (has an effect only on * certain older boards). Note that APIC interrupts, including * IPIs, won't work beyond this point! The only exception are * INIT IPIs. */ apic_printk(APIC_VERBOSE, "disabling APIC mode, " "entering PIC mode.\n"); imcr_apic_to_pic(); return; } #endif /* Go back to Virtual Wire compatibility mode */ /* For the spurious interrupt use vector F, and enable it */ value = apic_read(APIC_SPIV); value &= ~APIC_VECTOR_MASK; value |= APIC_SPIV_APIC_ENABLED; value |= 0xf; apic_write(APIC_SPIV, value); if (!virt_wire_setup) { /* * For LVT0 make it edge triggered, active high, * external and enabled */ value = apic_read(APIC_LVT0); value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); apic_write(APIC_LVT0, value); } else { /* Disable LVT0 */ apic_write(APIC_LVT0, APIC_LVT_MASKED); } /* * For LVT1 make it edge triggered, active high, * nmi and enabled */ value = apic_read(APIC_LVT1); value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); apic_write(APIC_LVT1, value); } void __irq_msi_compose_msg(struct irq_cfg *cfg, struct msi_msg *msg, bool dmar) { memset(msg, 0, sizeof(*msg)); msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; msg->arch_addr_lo.dest_mode_logical = apic->dest_mode_logical; msg->arch_addr_lo.destid_0_7 = cfg->dest_apicid & 0xFF; msg->arch_data.delivery_mode = APIC_DELIVERY_MODE_FIXED; msg->arch_data.vector = cfg->vector; msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; /* * Only the IOMMU itself can use the trick of putting destination * APIC ID into the high bits of the address. Anything else would * just be writing to memory if it tried that, and needs IR to * address APICs which can't be addressed in the normal 32-bit * address range at 0xFFExxxxx. That is typically just 8 bits, but * some hypervisors allow the extended destination ID field in bits * 5-11 to be used, giving support for 15 bits of APIC IDs in total. */ if (dmar) msg->arch_addr_hi.destid_8_31 = cfg->dest_apicid >> 8; else if (virt_ext_dest_id && cfg->dest_apicid < 0x8000) msg->arch_addr_lo.virt_destid_8_14 = cfg->dest_apicid >> 8; else WARN_ON_ONCE(cfg->dest_apicid > 0xFF); } u32 x86_msi_msg_get_destid(struct msi_msg *msg, bool extid) { u32 dest = msg->arch_addr_lo.destid_0_7; if (extid) dest |= msg->arch_addr_hi.destid_8_31 << 8; return dest; } EXPORT_SYMBOL_GPL(x86_msi_msg_get_destid); static void __init apic_bsp_up_setup(void) { reset_phys_cpu_present_map(boot_cpu_physical_apicid); } /** * apic_bsp_setup - Setup function for local apic and io-apic * @upmode: Force UP mode (for APIC_init_uniprocessor) */ static void __init apic_bsp_setup(bool upmode) { connect_bsp_APIC(); if (upmode) apic_bsp_up_setup(); setup_local_APIC(); enable_IO_APIC(); end_local_APIC_setup(); irq_remap_enable_fault_handling(); setup_IO_APIC(); lapic_update_legacy_vectors(); } #ifdef CONFIG_UP_LATE_INIT void __init up_late_init(void) { if (apic_intr_mode == APIC_PIC) return; /* Setup local timer */ x86_init.timers.setup_percpu_clockev(); } #endif /* * Power management */ #ifdef CONFIG_PM static struct { /* * 'active' is true if the local APIC was enabled by us and * not the BIOS; this signifies that we are also responsible * for disabling it before entering apm/acpi suspend */ int active; /* r/w apic fields */ u32 apic_id; unsigned int apic_taskpri; unsigned int apic_ldr; unsigned int apic_dfr; unsigned int apic_spiv; unsigned int apic_lvtt; unsigned int apic_lvtpc; unsigned int apic_lvt0; unsigned int apic_lvt1; unsigned int apic_lvterr; unsigned int apic_tmict; unsigned int apic_tdcr; unsigned int apic_thmr; unsigned int apic_cmci; } apic_pm_state; static int lapic_suspend(void) { unsigned long flags; int maxlvt; if (!apic_pm_state.active) return 0; maxlvt = lapic_get_maxlvt(); apic_pm_state.apic_id = apic_read(APIC_ID); apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); apic_pm_state.apic_ldr = apic_read(APIC_LDR); apic_pm_state.apic_dfr = apic_read(APIC_DFR); apic_pm_state.apic_spiv = apic_read(APIC_SPIV); apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); if (maxlvt >= 4) apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); apic_pm_state.apic_tmict = apic_read(APIC_TMICT); apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); #ifdef CONFIG_X86_THERMAL_VECTOR if (maxlvt >= 5) apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); #endif #ifdef CONFIG_X86_MCE_INTEL if (maxlvt >= 6) apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI); #endif local_irq_save(flags); /* * Mask IOAPIC before disabling the local APIC to prevent stale IRR * entries on some implementations. */ mask_ioapic_entries(); disable_local_APIC(); irq_remapping_disable(); local_irq_restore(flags); return 0; } static void lapic_resume(void) { unsigned int l, h; unsigned long flags; int maxlvt; if (!apic_pm_state.active) return; local_irq_save(flags); /* * IO-APIC and PIC have their own resume routines. * We just mask them here to make sure the interrupt * subsystem is completely quiet while we enable x2apic * and interrupt-remapping. */ mask_ioapic_entries(); legacy_pic->mask_all(); if (x2apic_mode) { __x2apic_enable(); } else { /* * Make sure the APICBASE points to the right address * * FIXME! This will be wrong if we ever support suspend on * SMP! We'll need to do this as part of the CPU restore! */ if (boot_cpu_data.x86 >= 6) { rdmsr(MSR_IA32_APICBASE, l, h); l &= ~MSR_IA32_APICBASE_BASE; l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; wrmsr(MSR_IA32_APICBASE, l, h); } } maxlvt = lapic_get_maxlvt(); apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); apic_write(APIC_ID, apic_pm_state.apic_id); apic_write(APIC_DFR, apic_pm_state.apic_dfr); apic_write(APIC_LDR, apic_pm_state.apic_ldr); apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); apic_write(APIC_SPIV, apic_pm_state.apic_spiv); apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); #ifdef CONFIG_X86_THERMAL_VECTOR if (maxlvt >= 5) apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); #endif #ifdef CONFIG_X86_MCE_INTEL if (maxlvt >= 6) apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci); #endif if (maxlvt >= 4) apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); apic_write(APIC_TMICT, apic_pm_state.apic_tmict); apic_write(APIC_ESR, 0); apic_read(APIC_ESR); apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); apic_write(APIC_ESR, 0); apic_read(APIC_ESR); irq_remapping_reenable(x2apic_mode); local_irq_restore(flags); } /* * This device has no shutdown method - fully functioning local APICs * are needed on every CPU up until machine_halt/restart/poweroff. */ static struct syscore_ops lapic_syscore_ops = { .resume = lapic_resume, .suspend = lapic_suspend, }; static void apic_pm_activate(void) { apic_pm_state.active = 1; } static int __init init_lapic_sysfs(void) { /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ if (boot_cpu_has(X86_FEATURE_APIC)) register_syscore_ops(&lapic_syscore_ops); return 0; } /* local apic needs to resume before other devices access its registers. */ core_initcall(init_lapic_sysfs); #else /* CONFIG_PM */ static void apic_pm_activate(void) { } #endif /* CONFIG_PM */ #ifdef CONFIG_X86_64 static int multi_checked; static int multi; static int set_multi(const struct dmi_system_id *d) { if (multi) return 0; pr_info("APIC: %s detected, Multi Chassis\n", d->ident); multi = 1; return 0; } static const struct dmi_system_id multi_dmi_table[] = { { .callback = set_multi, .ident = "IBM System Summit2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "IBM"), DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"), }, }, {} }; static void dmi_check_multi(void) { if (multi_checked) return; dmi_check_system(multi_dmi_table); multi_checked = 1; } /* * apic_is_clustered_box() -- Check if we can expect good TSC * * Thus far, the major user of this is IBM's Summit2 series: * Clustered boxes may have unsynced TSC problems if they are * multi-chassis. * Use DMI to check them */ int apic_is_clustered_box(void) { dmi_check_multi(); return multi; } #endif /* * APIC command line parameters */ static int __init setup_disableapic(char *arg) { apic_is_disabled = true; setup_clear_cpu_cap(X86_FEATURE_APIC); return 0; } early_param("disableapic", setup_disableapic); /* same as disableapic, for compatibility */ static int __init setup_nolapic(char *arg) { return setup_disableapic(arg); } early_param("nolapic", setup_nolapic); static int __init parse_lapic_timer_c2_ok(char *arg) { local_apic_timer_c2_ok = 1; return 0; } early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); static int __init parse_disable_apic_timer(char *arg) { disable_apic_timer = 1; return 0; } early_param("noapictimer", parse_disable_apic_timer); static int __init parse_nolapic_timer(char *arg) { disable_apic_timer = 1; return 0; } early_param("nolapic_timer", parse_nolapic_timer); static int __init apic_set_verbosity(char *arg) { if (!arg) { if (IS_ENABLED(CONFIG_X86_32)) return -EINVAL; ioapic_is_disabled = false; return 0; } if (strcmp("debug", arg) == 0) apic_verbosity = APIC_DEBUG; else if (strcmp("verbose", arg) == 0) apic_verbosity = APIC_VERBOSE; #ifdef CONFIG_X86_64 else { pr_warn("APIC Verbosity level %s not recognised" " use apic=verbose or apic=debug\n", arg); return -EINVAL; } #endif return 0; } early_param("apic", apic_set_verbosity); static int __init lapic_insert_resource(void) { if (!apic_mmio_base) return -1; /* Put local APIC into the resource map. */ lapic_resource.start = apic_mmio_base; lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; insert_resource(&iomem_resource, &lapic_resource); return 0; } /* * need call insert after e820__reserve_resources() * that is using request_resource */ late_initcall(lapic_insert_resource); static int __init apic_set_extnmi(char *arg) { if (!arg) return -EINVAL; if (!strncmp("all", arg, 3)) apic_extnmi = APIC_EXTNMI_ALL; else if (!strncmp("none", arg, 4)) apic_extnmi = APIC_EXTNMI_NONE; else if (!strncmp("bsp", arg, 3)) apic_extnmi = APIC_EXTNMI_BSP; else { pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg); return -EINVAL; } return 0; } early_param("apic_extnmi", apic_set_extnmi);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1