Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yinghai Lu | 1981 | 38.56% | 40 | 20.83% |
Ingo Molnar | 764 | 14.87% | 36 | 18.75% |
Andi Kleen | 465 | 9.05% | 7 | 3.65% |
Linus Torvalds | 160 | 3.11% | 6 | 3.12% |
Jan H. Schönherr | 141 | 2.74% | 1 | 0.52% |
Denys Vlasenko | 136 | 2.65% | 3 | 1.56% |
Dan J Williams | 126 | 2.45% | 5 | 2.60% |
Mike Ditto | 115 | 2.24% | 1 | 0.52% |
Bernhard Walle | 105 | 2.04% | 2 | 1.04% |
Huang Ying | 103 | 2.01% | 5 | 2.60% |
Toshi Kani | 88 | 1.71% | 1 | 0.52% |
Chen Yu | 88 | 1.71% | 4 | 2.08% |
Rafael J. Wysocki | 85 | 1.65% | 3 | 1.56% |
Andrew Morton | 66 | 1.28% | 2 | 1.04% |
Tom Lendacky | 65 | 1.27% | 2 | 1.04% |
Linus Torvalds (pre-git) | 52 | 1.01% | 9 | 4.69% |
Jan Beulich | 48 | 0.93% | 2 | 1.04% |
Ross Philipson | 48 | 0.93% | 1 | 0.52% |
Alok N Kataria | 43 | 0.84% | 2 | 1.04% |
Christoph Hellwig | 37 | 0.72% | 1 | 0.52% |
KarimAllah Ahmed | 31 | 0.60% | 1 | 0.52% |
Linn Crosetto | 30 | 0.58% | 1 | 0.52% |
Alan Cox | 30 | 0.58% | 1 | 0.52% |
Bibo Mao | 27 | 0.53% | 2 | 1.04% |
Björn Helgaas | 27 | 0.53% | 1 | 0.52% |
Daniel Kiper | 25 | 0.49% | 1 | 0.52% |
Jeremy Fitzhardinge | 25 | 0.49% | 4 | 2.08% |
Kamal Mostafa | 24 | 0.47% | 2 | 1.04% |
Mike Rapoport | 22 | 0.43% | 5 | 2.60% |
H. Peter Anvin | 19 | 0.37% | 1 | 0.52% |
Joe Perches | 14 | 0.27% | 1 | 0.52% |
Paul Jackson | 12 | 0.23% | 3 | 1.56% |
Wei Yang | 11 | 0.21% | 2 | 1.04% |
Juergen Gross | 11 | 0.21% | 2 | 1.04% |
Arnd Bergmann | 10 | 0.19% | 1 | 0.52% |
Ashish Kalra | 10 | 0.19% | 1 | 0.52% |
huang.zijiang | 9 | 0.18% | 1 | 0.52% |
Alexander van Heukelum | 7 | 0.14% | 2 | 1.04% |
Ian Campbell | 6 | 0.12% | 1 | 0.52% |
WANG Chao | 6 | 0.12% | 2 | 1.04% |
Borislav Petkov | 6 | 0.12% | 1 | 0.52% |
Tejun Heo | 6 | 0.12% | 2 | 1.04% |
Lianbo Jiang | 6 | 0.12% | 1 | 0.52% |
Guan Xuetao | 5 | 0.10% | 1 | 0.52% |
Joseph Cihula | 5 | 0.10% | 1 | 0.52% |
Thomas Gleixner | 5 | 0.10% | 2 | 1.04% |
Cyrill V. Gorcunov | 4 | 0.08% | 2 | 1.04% |
Vladimir Berezniker | 4 | 0.08% | 1 | 0.52% |
Chun-Yi Lee | 3 | 0.06% | 1 | 0.52% |
Rusty Russell | 3 | 0.06% | 1 | 0.52% |
Prarit Bhargava | 3 | 0.06% | 1 | 0.52% |
Dave Hansen | 3 | 0.06% | 1 | 0.52% |
Yi Wang | 2 | 0.04% | 1 | 0.52% |
Pavel Machek | 2 | 0.04% | 1 | 0.52% |
Sebastian Andrzej Siewior | 2 | 0.04% | 1 | 0.52% |
Arjan van de Ven | 1 | 0.02% | 1 | 0.52% |
Wang Yong | 1 | 0.02% | 1 | 0.52% |
Patrick Mochel | 1 | 0.02% | 1 | 0.52% |
H Hartley Sweeten | 1 | 0.02% | 1 | 0.52% |
Adrian Bunk | 1 | 0.02% | 1 | 0.52% |
Masayoshi Mizuma | 1 | 0.02% | 1 | 0.52% |
Total | 5137 | 192 |
// SPDX-License-Identifier: GPL-2.0-only /* * Low level x86 E820 memory map handling functions. * * The firmware and bootloader passes us the "E820 table", which is the primary * physical memory layout description available about x86 systems. * * The kernel takes the E820 memory layout and optionally modifies it with * quirks and other tweaks, and feeds that into the generic Linux memory * allocation code routines via a platform independent interface (memblock, etc.). */ #include <linux/crash_dump.h> #include <linux/memblock.h> #include <linux/suspend.h> #include <linux/acpi.h> #include <linux/firmware-map.h> #include <linux/sort.h> #include <linux/memory_hotplug.h> #include <asm/e820/api.h> #include <asm/setup.h> /* * We organize the E820 table into three main data structures: * * - 'e820_table_firmware': the original firmware version passed to us by the * bootloader - not modified by the kernel. It is composed of two parts: * the first 128 E820 memory entries in boot_params.e820_table and the remaining * (if any) entries of the SETUP_E820_EXT nodes. We use this to: * * - inform the user about the firmware's notion of memory layout * via /sys/firmware/memmap * * - the hibernation code uses it to generate a kernel-independent CRC32 * checksum of the physical memory layout of a system. * * - 'e820_table_kexec': a slightly modified (by the kernel) firmware version * passed to us by the bootloader - the major difference between * e820_table_firmware[] and this one is that, the latter marks the setup_data * list created by the EFI boot stub as reserved, so that kexec can reuse the * setup_data information in the second kernel. Besides, e820_table_kexec[] * might also be modified by the kexec itself to fake a mptable. * We use this to: * * - kexec, which is a bootloader in disguise, uses the original E820 * layout to pass to the kexec-ed kernel. This way the original kernel * can have a restricted E820 map while the kexec()-ed kexec-kernel * can have access to full memory - etc. * * - 'e820_table': this is the main E820 table that is massaged by the * low level x86 platform code, or modified by boot parameters, before * passed on to higher level MM layers. * * Once the E820 map has been converted to the standard Linux memory layout * information its role stops - modifying it has no effect and does not get * re-propagated. So its main role is a temporary bootstrap storage of firmware * specific memory layout data during early bootup. */ static struct e820_table e820_table_init __initdata; static struct e820_table e820_table_kexec_init __initdata; static struct e820_table e820_table_firmware_init __initdata; struct e820_table *e820_table __refdata = &e820_table_init; struct e820_table *e820_table_kexec __refdata = &e820_table_kexec_init; struct e820_table *e820_table_firmware __refdata = &e820_table_firmware_init; /* For PCI or other memory-mapped resources */ unsigned long pci_mem_start = 0xaeedbabe; #ifdef CONFIG_PCI EXPORT_SYMBOL(pci_mem_start); #endif /* * This function checks if any part of the range <start,end> is mapped * with type. */ static bool _e820__mapped_any(struct e820_table *table, u64 start, u64 end, enum e820_type type) { int i; for (i = 0; i < table->nr_entries; i++) { struct e820_entry *entry = &table->entries[i]; if (type && entry->type != type) continue; if (entry->addr >= end || entry->addr + entry->size <= start) continue; return true; } return false; } bool e820__mapped_raw_any(u64 start, u64 end, enum e820_type type) { return _e820__mapped_any(e820_table_firmware, start, end, type); } EXPORT_SYMBOL_GPL(e820__mapped_raw_any); bool e820__mapped_any(u64 start, u64 end, enum e820_type type) { return _e820__mapped_any(e820_table, start, end, type); } EXPORT_SYMBOL_GPL(e820__mapped_any); /* * This function checks if the entire <start,end> range is mapped with 'type'. * * Note: this function only works correctly once the E820 table is sorted and * not-overlapping (at least for the range specified), which is the case normally. */ static struct e820_entry *__e820__mapped_all(u64 start, u64 end, enum e820_type type) { int i; for (i = 0; i < e820_table->nr_entries; i++) { struct e820_entry *entry = &e820_table->entries[i]; if (type && entry->type != type) continue; /* Is the region (part) in overlap with the current region? */ if (entry->addr >= end || entry->addr + entry->size <= start) continue; /* * If the region is at the beginning of <start,end> we move * 'start' to the end of the region since it's ok until there */ if (entry->addr <= start) start = entry->addr + entry->size; /* * If 'start' is now at or beyond 'end', we're done, full * coverage of the desired range exists: */ if (start >= end) return entry; } return NULL; } /* * This function checks if the entire range <start,end> is mapped with type. */ bool __init e820__mapped_all(u64 start, u64 end, enum e820_type type) { return __e820__mapped_all(start, end, type); } /* * This function returns the type associated with the range <start,end>. */ int e820__get_entry_type(u64 start, u64 end) { struct e820_entry *entry = __e820__mapped_all(start, end, 0); return entry ? entry->type : -EINVAL; } /* * Add a memory region to the kernel E820 map. */ static void __init __e820__range_add(struct e820_table *table, u64 start, u64 size, enum e820_type type) { int x = table->nr_entries; if (x >= ARRAY_SIZE(table->entries)) { pr_err("too many entries; ignoring [mem %#010llx-%#010llx]\n", start, start + size - 1); return; } table->entries[x].addr = start; table->entries[x].size = size; table->entries[x].type = type; table->nr_entries++; } void __init e820__range_add(u64 start, u64 size, enum e820_type type) { __e820__range_add(e820_table, start, size, type); } static void __init e820_print_type(enum e820_type type) { switch (type) { case E820_TYPE_RAM: /* Fall through: */ case E820_TYPE_RESERVED_KERN: pr_cont("usable"); break; case E820_TYPE_RESERVED: pr_cont("reserved"); break; case E820_TYPE_SOFT_RESERVED: pr_cont("soft reserved"); break; case E820_TYPE_ACPI: pr_cont("ACPI data"); break; case E820_TYPE_NVS: pr_cont("ACPI NVS"); break; case E820_TYPE_UNUSABLE: pr_cont("unusable"); break; case E820_TYPE_PMEM: /* Fall through: */ case E820_TYPE_PRAM: pr_cont("persistent (type %u)", type); break; default: pr_cont("type %u", type); break; } } void __init e820__print_table(char *who) { int i; for (i = 0; i < e820_table->nr_entries; i++) { pr_info("%s: [mem %#018Lx-%#018Lx] ", who, e820_table->entries[i].addr, e820_table->entries[i].addr + e820_table->entries[i].size - 1); e820_print_type(e820_table->entries[i].type); pr_cont("\n"); } } /* * Sanitize an E820 map. * * Some E820 layouts include overlapping entries. The following * replaces the original E820 map with a new one, removing overlaps, * and resolving conflicting memory types in favor of highest * numbered type. * * The input parameter 'entries' points to an array of 'struct * e820_entry' which on entry has elements in the range [0, *nr_entries) * valid, and which has space for up to max_nr_entries entries. * On return, the resulting sanitized E820 map entries will be in * overwritten in the same location, starting at 'entries'. * * The integer pointed to by nr_entries must be valid on entry (the * current number of valid entries located at 'entries'). If the * sanitizing succeeds the *nr_entries will be updated with the new * number of valid entries (something no more than max_nr_entries). * * The return value from e820__update_table() is zero if it * successfully 'sanitized' the map entries passed in, and is -1 * if it did nothing, which can happen if either of (1) it was * only passed one map entry, or (2) any of the input map entries * were invalid (start + size < start, meaning that the size was * so big the described memory range wrapped around through zero.) * * Visually we're performing the following * (1,2,3,4 = memory types)... * * Sample memory map (w/overlaps): * ____22__________________ * ______________________4_ * ____1111________________ * _44_____________________ * 11111111________________ * ____________________33__ * ___________44___________ * __________33333_________ * ______________22________ * ___________________2222_ * _________111111111______ * _____________________11_ * _________________4______ * * Sanitized equivalent (no overlap): * 1_______________________ * _44_____________________ * ___1____________________ * ____22__________________ * ______11________________ * _________1______________ * __________3_____________ * ___________44___________ * _____________33_________ * _______________2________ * ________________1_______ * _________________4______ * ___________________2____ * ____________________33__ * ______________________4_ */ struct change_member { /* Pointer to the original entry: */ struct e820_entry *entry; /* Address for this change point: */ unsigned long long addr; }; static struct change_member change_point_list[2*E820_MAX_ENTRIES] __initdata; static struct change_member *change_point[2*E820_MAX_ENTRIES] __initdata; static struct e820_entry *overlap_list[E820_MAX_ENTRIES] __initdata; static struct e820_entry new_entries[E820_MAX_ENTRIES] __initdata; static int __init cpcompare(const void *a, const void *b) { struct change_member * const *app = a, * const *bpp = b; const struct change_member *ap = *app, *bp = *bpp; /* * Inputs are pointers to two elements of change_point[]. If their * addresses are not equal, their difference dominates. If the addresses * are equal, then consider one that represents the end of its region * to be greater than one that does not. */ if (ap->addr != bp->addr) return ap->addr > bp->addr ? 1 : -1; return (ap->addr != ap->entry->addr) - (bp->addr != bp->entry->addr); } static bool e820_nomerge(enum e820_type type) { /* * These types may indicate distinct platform ranges aligned to * numa node, protection domain, performance domain, or other * boundaries. Do not merge them. */ if (type == E820_TYPE_PRAM) return true; if (type == E820_TYPE_SOFT_RESERVED) return true; return false; } int __init e820__update_table(struct e820_table *table) { struct e820_entry *entries = table->entries; u32 max_nr_entries = ARRAY_SIZE(table->entries); enum e820_type current_type, last_type; unsigned long long last_addr; u32 new_nr_entries, overlap_entries; u32 i, chg_idx, chg_nr; /* If there's only one memory region, don't bother: */ if (table->nr_entries < 2) return -1; BUG_ON(table->nr_entries > max_nr_entries); /* Bail out if we find any unreasonable addresses in the map: */ for (i = 0; i < table->nr_entries; i++) { if (entries[i].addr + entries[i].size < entries[i].addr) return -1; } /* Create pointers for initial change-point information (for sorting): */ for (i = 0; i < 2 * table->nr_entries; i++) change_point[i] = &change_point_list[i]; /* * Record all known change-points (starting and ending addresses), * omitting empty memory regions: */ chg_idx = 0; for (i = 0; i < table->nr_entries; i++) { if (entries[i].size != 0) { change_point[chg_idx]->addr = entries[i].addr; change_point[chg_idx++]->entry = &entries[i]; change_point[chg_idx]->addr = entries[i].addr + entries[i].size; change_point[chg_idx++]->entry = &entries[i]; } } chg_nr = chg_idx; /* Sort change-point list by memory addresses (low -> high): */ sort(change_point, chg_nr, sizeof(*change_point), cpcompare, NULL); /* Create a new memory map, removing overlaps: */ overlap_entries = 0; /* Number of entries in the overlap table */ new_nr_entries = 0; /* Index for creating new map entries */ last_type = 0; /* Start with undefined memory type */ last_addr = 0; /* Start with 0 as last starting address */ /* Loop through change-points, determining effect on the new map: */ for (chg_idx = 0; chg_idx < chg_nr; chg_idx++) { /* Keep track of all overlapping entries */ if (change_point[chg_idx]->addr == change_point[chg_idx]->entry->addr) { /* Add map entry to overlap list (> 1 entry implies an overlap) */ overlap_list[overlap_entries++] = change_point[chg_idx]->entry; } else { /* Remove entry from list (order independent, so swap with last): */ for (i = 0; i < overlap_entries; i++) { if (overlap_list[i] == change_point[chg_idx]->entry) overlap_list[i] = overlap_list[overlap_entries-1]; } overlap_entries--; } /* * If there are overlapping entries, decide which * "type" to use (larger value takes precedence -- * 1=usable, 2,3,4,4+=unusable) */ current_type = 0; for (i = 0; i < overlap_entries; i++) { if (overlap_list[i]->type > current_type) current_type = overlap_list[i]->type; } /* Continue building up new map based on this information: */ if (current_type != last_type || e820_nomerge(current_type)) { if (last_type) { new_entries[new_nr_entries].size = change_point[chg_idx]->addr - last_addr; /* Move forward only if the new size was non-zero: */ if (new_entries[new_nr_entries].size != 0) /* No more space left for new entries? */ if (++new_nr_entries >= max_nr_entries) break; } if (current_type) { new_entries[new_nr_entries].addr = change_point[chg_idx]->addr; new_entries[new_nr_entries].type = current_type; last_addr = change_point[chg_idx]->addr; } last_type = current_type; } } /* Copy the new entries into the original location: */ memcpy(entries, new_entries, new_nr_entries*sizeof(*entries)); table->nr_entries = new_nr_entries; return 0; } static int __init __append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) { struct boot_e820_entry *entry = entries; while (nr_entries) { u64 start = entry->addr; u64 size = entry->size; u64 end = start + size - 1; u32 type = entry->type; /* Ignore the entry on 64-bit overflow: */ if (start > end && likely(size)) return -1; e820__range_add(start, size, type); entry++; nr_entries--; } return 0; } /* * Copy the BIOS E820 map into a safe place. * * Sanity-check it while we're at it.. * * If we're lucky and live on a modern system, the setup code * will have given us a memory map that we can use to properly * set up memory. If we aren't, we'll fake a memory map. */ static int __init append_e820_table(struct boot_e820_entry *entries, u32 nr_entries) { /* Only one memory region (or negative)? Ignore it */ if (nr_entries < 2) return -1; return __append_e820_table(entries, nr_entries); } static u64 __init __e820__range_update(struct e820_table *table, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) { u64 end; unsigned int i; u64 real_updated_size = 0; BUG_ON(old_type == new_type); if (size > (ULLONG_MAX - start)) size = ULLONG_MAX - start; end = start + size; printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ", start, end - 1); e820_print_type(old_type); pr_cont(" ==> "); e820_print_type(new_type); pr_cont("\n"); for (i = 0; i < table->nr_entries; i++) { struct e820_entry *entry = &table->entries[i]; u64 final_start, final_end; u64 entry_end; if (entry->type != old_type) continue; entry_end = entry->addr + entry->size; /* Completely covered by new range? */ if (entry->addr >= start && entry_end <= end) { entry->type = new_type; real_updated_size += entry->size; continue; } /* New range is completely covered? */ if (entry->addr < start && entry_end > end) { __e820__range_add(table, start, size, new_type); __e820__range_add(table, end, entry_end - end, entry->type); entry->size = start - entry->addr; real_updated_size += size; continue; } /* Partially covered: */ final_start = max(start, entry->addr); final_end = min(end, entry_end); if (final_start >= final_end) continue; __e820__range_add(table, final_start, final_end - final_start, new_type); real_updated_size += final_end - final_start; /* * Left range could be head or tail, so need to update * its size first: */ entry->size -= final_end - final_start; if (entry->addr < final_start) continue; entry->addr = final_end; } return real_updated_size; } u64 __init e820__range_update(u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) { return __e820__range_update(e820_table, start, size, old_type, new_type); } u64 __init e820__range_update_table(struct e820_table *t, u64 start, u64 size, enum e820_type old_type, enum e820_type new_type) { return __e820__range_update(t, start, size, old_type, new_type); } /* Remove a range of memory from the E820 table: */ u64 __init e820__range_remove(u64 start, u64 size, enum e820_type old_type, bool check_type) { int i; u64 end; u64 real_removed_size = 0; if (size > (ULLONG_MAX - start)) size = ULLONG_MAX - start; end = start + size; printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ", start, end - 1); if (check_type) e820_print_type(old_type); pr_cont("\n"); for (i = 0; i < e820_table->nr_entries; i++) { struct e820_entry *entry = &e820_table->entries[i]; u64 final_start, final_end; u64 entry_end; if (check_type && entry->type != old_type) continue; entry_end = entry->addr + entry->size; /* Completely covered? */ if (entry->addr >= start && entry_end <= end) { real_removed_size += entry->size; memset(entry, 0, sizeof(*entry)); continue; } /* Is the new range completely covered? */ if (entry->addr < start && entry_end > end) { e820__range_add(end, entry_end - end, entry->type); entry->size = start - entry->addr; real_removed_size += size; continue; } /* Partially covered: */ final_start = max(start, entry->addr); final_end = min(end, entry_end); if (final_start >= final_end) continue; real_removed_size += final_end - final_start; /* * Left range could be head or tail, so need to update * the size first: */ entry->size -= final_end - final_start; if (entry->addr < final_start) continue; entry->addr = final_end; } return real_removed_size; } void __init e820__update_table_print(void) { if (e820__update_table(e820_table)) return; pr_info("modified physical RAM map:\n"); e820__print_table("modified"); } static void __init e820__update_table_kexec(void) { e820__update_table(e820_table_kexec); } #define MAX_GAP_END 0x100000000ull /* * Search for a gap in the E820 memory space from 0 to MAX_GAP_END (4GB). */ static int __init e820_search_gap(unsigned long *gapstart, unsigned long *gapsize) { unsigned long long last = MAX_GAP_END; int i = e820_table->nr_entries; int found = 0; while (--i >= 0) { unsigned long long start = e820_table->entries[i].addr; unsigned long long end = start + e820_table->entries[i].size; /* * Since "last" is at most 4GB, we know we'll * fit in 32 bits if this condition is true: */ if (last > end) { unsigned long gap = last - end; if (gap >= *gapsize) { *gapsize = gap; *gapstart = end; found = 1; } } if (start < last) last = start; } return found; } /* * Search for the biggest gap in the low 32 bits of the E820 * memory space. We pass this space to the PCI subsystem, so * that it can assign MMIO resources for hotplug or * unconfigured devices in. * * Hopefully the BIOS let enough space left. */ __init void e820__setup_pci_gap(void) { unsigned long gapstart, gapsize; int found; gapsize = 0x400000; found = e820_search_gap(&gapstart, &gapsize); if (!found) { #ifdef CONFIG_X86_64 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; pr_err("Cannot find an available gap in the 32-bit address range\n"); pr_err("PCI devices with unassigned 32-bit BARs may not work!\n"); #else gapstart = 0x10000000; #endif } /* * e820__reserve_resources_late() protects stolen RAM already: */ pci_mem_start = gapstart; pr_info("[mem %#010lx-%#010lx] available for PCI devices\n", gapstart, gapstart + gapsize - 1); } /* * Called late during init, in free_initmem(). * * Initial e820_table and e820_table_kexec are largish __initdata arrays. * * Copy them to a (usually much smaller) dynamically allocated area that is * sized precisely after the number of e820 entries. * * This is done after we've performed all the fixes and tweaks to the tables. * All functions which modify them are __init functions, which won't exist * after free_initmem(). */ __init void e820__reallocate_tables(void) { struct e820_table *n; int size; size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table->nr_entries; n = kmemdup(e820_table, size, GFP_KERNEL); BUG_ON(!n); e820_table = n; size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_kexec->nr_entries; n = kmemdup(e820_table_kexec, size, GFP_KERNEL); BUG_ON(!n); e820_table_kexec = n; size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry)*e820_table_firmware->nr_entries; n = kmemdup(e820_table_firmware, size, GFP_KERNEL); BUG_ON(!n); e820_table_firmware = n; } /* * Because of the small fixed size of struct boot_params, only the first * 128 E820 memory entries are passed to the kernel via boot_params.e820_table, * the remaining (if any) entries are passed via the SETUP_E820_EXT node of * struct setup_data, which is parsed here. */ void __init e820__memory_setup_extended(u64 phys_addr, u32 data_len) { int entries; struct boot_e820_entry *extmap; struct setup_data *sdata; sdata = early_memremap(phys_addr, data_len); entries = sdata->len / sizeof(*extmap); extmap = (struct boot_e820_entry *)(sdata->data); __append_e820_table(extmap, entries); e820__update_table(e820_table); memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); early_memunmap(sdata, data_len); pr_info("extended physical RAM map:\n"); e820__print_table("extended"); } /* * Find the ranges of physical addresses that do not correspond to * E820 RAM areas and register the corresponding pages as 'nosave' for * hibernation (32-bit) or software suspend and suspend to RAM (64-bit). * * This function requires the E820 map to be sorted and without any * overlapping entries. */ void __init e820__register_nosave_regions(unsigned long limit_pfn) { int i; unsigned long pfn = 0; for (i = 0; i < e820_table->nr_entries; i++) { struct e820_entry *entry = &e820_table->entries[i]; if (pfn < PFN_UP(entry->addr)) register_nosave_region(pfn, PFN_UP(entry->addr)); pfn = PFN_DOWN(entry->addr + entry->size); if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) register_nosave_region(PFN_UP(entry->addr), pfn); if (pfn >= limit_pfn) break; } } #ifdef CONFIG_ACPI /* * Register ACPI NVS memory regions, so that we can save/restore them during * hibernation and the subsequent resume: */ static int __init e820__register_nvs_regions(void) { int i; for (i = 0; i < e820_table->nr_entries; i++) { struct e820_entry *entry = &e820_table->entries[i]; if (entry->type == E820_TYPE_NVS) acpi_nvs_register(entry->addr, entry->size); } return 0; } core_initcall(e820__register_nvs_regions); #endif /* * Allocate the requested number of bytes with the requested alignment * and return (the physical address) to the caller. Also register this * range in the 'kexec' E820 table as a reserved range. * * This allows kexec to fake a new mptable, as if it came from the real * system. */ u64 __init e820__memblock_alloc_reserved(u64 size, u64 align) { u64 addr; addr = memblock_phys_alloc(size, align); if (addr) { e820__range_update_table(e820_table_kexec, addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED); pr_info("update e820_table_kexec for e820__memblock_alloc_reserved()\n"); e820__update_table_kexec(); } return addr; } #ifdef CONFIG_X86_32 # ifdef CONFIG_X86_PAE # define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) # else # define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) # endif #else /* CONFIG_X86_32 */ # define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT #endif /* * Find the highest page frame number we have available */ static unsigned long __init e820_end_pfn(unsigned long limit_pfn, enum e820_type type) { int i; unsigned long last_pfn = 0; unsigned long max_arch_pfn = MAX_ARCH_PFN; for (i = 0; i < e820_table->nr_entries; i++) { struct e820_entry *entry = &e820_table->entries[i]; unsigned long start_pfn; unsigned long end_pfn; if (entry->type != type) continue; start_pfn = entry->addr >> PAGE_SHIFT; end_pfn = (entry->addr + entry->size) >> PAGE_SHIFT; if (start_pfn >= limit_pfn) continue; if (end_pfn > limit_pfn) { last_pfn = limit_pfn; break; } if (end_pfn > last_pfn) last_pfn = end_pfn; } if (last_pfn > max_arch_pfn) last_pfn = max_arch_pfn; pr_info("last_pfn = %#lx max_arch_pfn = %#lx\n", last_pfn, max_arch_pfn); return last_pfn; } unsigned long __init e820__end_of_ram_pfn(void) { return e820_end_pfn(MAX_ARCH_PFN, E820_TYPE_RAM); } unsigned long __init e820__end_of_low_ram_pfn(void) { return e820_end_pfn(1UL << (32 - PAGE_SHIFT), E820_TYPE_RAM); } static void __init early_panic(char *msg) { early_printk(msg); panic(msg); } static int userdef __initdata; /* The "mem=nopentium" boot option disables 4MB page tables on 32-bit kernels: */ static int __init parse_memopt(char *p) { u64 mem_size; if (!p) return -EINVAL; if (!strcmp(p, "nopentium")) { #ifdef CONFIG_X86_32 setup_clear_cpu_cap(X86_FEATURE_PSE); return 0; #else pr_warn("mem=nopentium ignored! (only supported on x86_32)\n"); return -EINVAL; #endif } userdef = 1; mem_size = memparse(p, &p); /* Don't remove all memory when getting "mem={invalid}" parameter: */ if (mem_size == 0) return -EINVAL; e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); #ifdef CONFIG_MEMORY_HOTPLUG max_mem_size = mem_size; #endif return 0; } early_param("mem", parse_memopt); static int __init parse_memmap_one(char *p) { char *oldp; u64 start_at, mem_size; if (!p) return -EINVAL; if (!strncmp(p, "exactmap", 8)) { e820_table->nr_entries = 0; userdef = 1; return 0; } oldp = p; mem_size = memparse(p, &p); if (p == oldp) return -EINVAL; userdef = 1; if (*p == '@') { start_at = memparse(p+1, &p); e820__range_add(start_at, mem_size, E820_TYPE_RAM); } else if (*p == '#') { start_at = memparse(p+1, &p); e820__range_add(start_at, mem_size, E820_TYPE_ACPI); } else if (*p == '$') { start_at = memparse(p+1, &p); e820__range_add(start_at, mem_size, E820_TYPE_RESERVED); } else if (*p == '!') { start_at = memparse(p+1, &p); e820__range_add(start_at, mem_size, E820_TYPE_PRAM); } else if (*p == '%') { enum e820_type from = 0, to = 0; start_at = memparse(p + 1, &p); if (*p == '-') from = simple_strtoull(p + 1, &p, 0); if (*p == '+') to = simple_strtoull(p + 1, &p, 0); if (*p != '\0') return -EINVAL; if (from && to) e820__range_update(start_at, mem_size, from, to); else if (to) e820__range_add(start_at, mem_size, to); else if (from) e820__range_remove(start_at, mem_size, from, 1); else e820__range_remove(start_at, mem_size, 0, 0); } else { e820__range_remove(mem_size, ULLONG_MAX - mem_size, E820_TYPE_RAM, 1); } return *p == '\0' ? 0 : -EINVAL; } static int __init parse_memmap_opt(char *str) { while (str) { char *k = strchr(str, ','); if (k) *k++ = 0; parse_memmap_one(str); str = k; } return 0; } early_param("memmap", parse_memmap_opt); /* * Reserve all entries from the bootloader's extensible data nodes list, * because if present we are going to use it later on to fetch e820 * entries from it: */ void __init e820__reserve_setup_data(void) { struct setup_indirect *indirect; struct setup_data *data; u64 pa_data, pa_next; u32 len; pa_data = boot_params.hdr.setup_data; if (!pa_data) return; while (pa_data) { data = early_memremap(pa_data, sizeof(*data)); if (!data) { pr_warn("e820: failed to memremap setup_data entry\n"); return; } len = sizeof(*data); pa_next = data->next; e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); if (data->type == SETUP_INDIRECT) { len += data->len; early_memunmap(data, sizeof(*data)); data = early_memremap(pa_data, len); if (!data) { pr_warn("e820: failed to memremap indirect setup_data\n"); return; } indirect = (struct setup_indirect *)data->data; if (indirect->type != SETUP_INDIRECT) e820__range_update(indirect->addr, indirect->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN); } pa_data = pa_next; early_memunmap(data, len); } e820__update_table(e820_table); pr_info("extended physical RAM map:\n"); e820__print_table("reserve setup_data"); } /* * Called after parse_early_param(), after early parameters (such as mem=) * have been processed, in which case we already have an E820 table filled in * via the parameter callback function(s), but it's not sorted and printed yet: */ void __init e820__finish_early_params(void) { if (userdef) { if (e820__update_table(e820_table) < 0) early_panic("Invalid user supplied memory map"); pr_info("user-defined physical RAM map:\n"); e820__print_table("user"); } } static const char *__init e820_type_to_string(struct e820_entry *entry) { switch (entry->type) { case E820_TYPE_RESERVED_KERN: /* Fall-through: */ case E820_TYPE_RAM: return "System RAM"; case E820_TYPE_ACPI: return "ACPI Tables"; case E820_TYPE_NVS: return "ACPI Non-volatile Storage"; case E820_TYPE_UNUSABLE: return "Unusable memory"; case E820_TYPE_PRAM: return "Persistent Memory (legacy)"; case E820_TYPE_PMEM: return "Persistent Memory"; case E820_TYPE_RESERVED: return "Reserved"; case E820_TYPE_SOFT_RESERVED: return "Soft Reserved"; default: return "Unknown E820 type"; } } static unsigned long __init e820_type_to_iomem_type(struct e820_entry *entry) { switch (entry->type) { case E820_TYPE_RESERVED_KERN: /* Fall-through: */ case E820_TYPE_RAM: return IORESOURCE_SYSTEM_RAM; case E820_TYPE_ACPI: /* Fall-through: */ case E820_TYPE_NVS: /* Fall-through: */ case E820_TYPE_UNUSABLE: /* Fall-through: */ case E820_TYPE_PRAM: /* Fall-through: */ case E820_TYPE_PMEM: /* Fall-through: */ case E820_TYPE_RESERVED: /* Fall-through: */ case E820_TYPE_SOFT_RESERVED: /* Fall-through: */ default: return IORESOURCE_MEM; } } static unsigned long __init e820_type_to_iores_desc(struct e820_entry *entry) { switch (entry->type) { case E820_TYPE_ACPI: return IORES_DESC_ACPI_TABLES; case E820_TYPE_NVS: return IORES_DESC_ACPI_NV_STORAGE; case E820_TYPE_PMEM: return IORES_DESC_PERSISTENT_MEMORY; case E820_TYPE_PRAM: return IORES_DESC_PERSISTENT_MEMORY_LEGACY; case E820_TYPE_RESERVED: return IORES_DESC_RESERVED; case E820_TYPE_SOFT_RESERVED: return IORES_DESC_SOFT_RESERVED; case E820_TYPE_RESERVED_KERN: /* Fall-through: */ case E820_TYPE_RAM: /* Fall-through: */ case E820_TYPE_UNUSABLE: /* Fall-through: */ default: return IORES_DESC_NONE; } } static bool __init do_mark_busy(enum e820_type type, struct resource *res) { /* this is the legacy bios/dos rom-shadow + mmio region */ if (res->start < (1ULL<<20)) return true; /* * Treat persistent memory and other special memory ranges like * device memory, i.e. reserve it for exclusive use of a driver */ switch (type) { case E820_TYPE_RESERVED: case E820_TYPE_SOFT_RESERVED: case E820_TYPE_PRAM: case E820_TYPE_PMEM: return false; case E820_TYPE_RESERVED_KERN: case E820_TYPE_RAM: case E820_TYPE_ACPI: case E820_TYPE_NVS: case E820_TYPE_UNUSABLE: default: return true; } } /* * Mark E820 reserved areas as busy for the resource manager: */ static struct resource __initdata *e820_res; void __init e820__reserve_resources(void) { int i; struct resource *res; u64 end; res = memblock_alloc(sizeof(*res) * e820_table->nr_entries, SMP_CACHE_BYTES); if (!res) panic("%s: Failed to allocate %zu bytes\n", __func__, sizeof(*res) * e820_table->nr_entries); e820_res = res; for (i = 0; i < e820_table->nr_entries; i++) { struct e820_entry *entry = e820_table->entries + i; end = entry->addr + entry->size - 1; if (end != (resource_size_t)end) { res++; continue; } res->start = entry->addr; res->end = end; res->name = e820_type_to_string(entry); res->flags = e820_type_to_iomem_type(entry); res->desc = e820_type_to_iores_desc(entry); /* * Don't register the region that could be conflicted with * PCI device BAR resources and insert them later in * pcibios_resource_survey(): */ if (do_mark_busy(entry->type, res)) { res->flags |= IORESOURCE_BUSY; insert_resource(&iomem_resource, res); } res++; } /* Expose the bootloader-provided memory layout to the sysfs. */ for (i = 0; i < e820_table_firmware->nr_entries; i++) { struct e820_entry *entry = e820_table_firmware->entries + i; firmware_map_add_early(entry->addr, entry->addr + entry->size, e820_type_to_string(entry)); } } /* * How much should we pad the end of RAM, depending on where it is? */ static unsigned long __init ram_alignment(resource_size_t pos) { unsigned long mb = pos >> 20; /* To 64kB in the first megabyte */ if (!mb) return 64*1024; /* To 1MB in the first 16MB */ if (mb < 16) return 1024*1024; /* To 64MB for anything above that */ return 64*1024*1024; } #define MAX_RESOURCE_SIZE ((resource_size_t)-1) void __init e820__reserve_resources_late(void) { int i; struct resource *res; res = e820_res; for (i = 0; i < e820_table->nr_entries; i++) { if (!res->parent && res->end) insert_resource_expand_to_fit(&iomem_resource, res); res++; } /* * Try to bump up RAM regions to reasonable boundaries, to * avoid stolen RAM: */ for (i = 0; i < e820_table->nr_entries; i++) { struct e820_entry *entry = &e820_table->entries[i]; u64 start, end; if (entry->type != E820_TYPE_RAM) continue; start = entry->addr + entry->size; end = round_up(start, ram_alignment(start)) - 1; if (end > MAX_RESOURCE_SIZE) end = MAX_RESOURCE_SIZE; if (start >= end) continue; printk(KERN_DEBUG "e820: reserve RAM buffer [mem %#010llx-%#010llx]\n", start, end); reserve_region_with_split(&iomem_resource, start, end, "RAM buffer"); } } /* * Pass the firmware (bootloader) E820 map to the kernel and process it: */ char *__init e820__memory_setup_default(void) { char *who = "BIOS-e820"; /* * Try to copy the BIOS-supplied E820-map. * * Otherwise fake a memory map; one section from 0k->640k, * the next section from 1mb->appropriate_mem_k */ if (append_e820_table(boot_params.e820_table, boot_params.e820_entries) < 0) { u64 mem_size; /* Compare results from other methods and take the one that gives more RAM: */ if (boot_params.alt_mem_k < boot_params.screen_info.ext_mem_k) { mem_size = boot_params.screen_info.ext_mem_k; who = "BIOS-88"; } else { mem_size = boot_params.alt_mem_k; who = "BIOS-e801"; } e820_table->nr_entries = 0; e820__range_add(0, LOWMEMSIZE(), E820_TYPE_RAM); e820__range_add(HIGH_MEMORY, mem_size << 10, E820_TYPE_RAM); } /* We just appended a lot of ranges, sanitize the table: */ e820__update_table(e820_table); return who; } /* * Calls e820__memory_setup_default() in essence to pick up the firmware/bootloader * E820 map - with an optional platform quirk available for virtual platforms * to override this method of boot environment processing: */ void __init e820__memory_setup(void) { char *who; /* This is a firmware interface ABI - make sure we don't break it: */ BUILD_BUG_ON(sizeof(struct boot_e820_entry) != 20); who = x86_init.resources.memory_setup(); memcpy(e820_table_kexec, e820_table, sizeof(*e820_table_kexec)); memcpy(e820_table_firmware, e820_table, sizeof(*e820_table_firmware)); pr_info("BIOS-provided physical RAM map:\n"); e820__print_table(who); } void __init e820__memblock_setup(void) { int i; u64 end; /* * The bootstrap memblock region count maximum is 128 entries * (INIT_MEMBLOCK_REGIONS), but EFI might pass us more E820 entries * than that - so allow memblock resizing. * * This is safe, because this call happens pretty late during x86 setup, * so we know about reserved memory regions already. (This is important * so that memblock resizing does no stomp over reserved areas.) */ memblock_allow_resize(); for (i = 0; i < e820_table->nr_entries; i++) { struct e820_entry *entry = &e820_table->entries[i]; end = entry->addr + entry->size; if (end != (resource_size_t)end) continue; if (entry->type == E820_TYPE_SOFT_RESERVED) memblock_reserve(entry->addr, entry->size); if (entry->type != E820_TYPE_RAM && entry->type != E820_TYPE_RESERVED_KERN) continue; memblock_add(entry->addr, entry->size); } /* Throw away partial pages: */ memblock_trim_memory(PAGE_SIZE); memblock_dump_all(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1