Contributors: 47
Author Tokens Token Proportion Commits Commit Proportion
Don Zickus 925 40.38% 14 12.96%
Paul E. McKenney 605 26.41% 4 3.70%
Dave Hansen 99 4.32% 3 2.78%
Thomas Gleixner 92 4.02% 12 11.11%
Andrew Lutomirski 80 3.49% 2 1.85%
Linus Torvalds (pre-git) 80 3.49% 11 10.19%
H. Peter Anvin 70 3.06% 1 0.93%
Peter Zijlstra 50 2.18% 5 4.63%
Steven Rostedt 39 1.70% 5 4.63%
Hidehiro Kawai 28 1.22% 3 2.78%
Changbin Du 27 1.18% 1 0.93%
Lai Jiangshan 24 1.05% 1 0.93%
Brian Gerst 21 0.92% 2 1.85%
Masami Hiramatsu 20 0.87% 1 0.93%
Li Zhong 17 0.74% 1 0.93%
Joerg Roedel 15 0.65% 2 1.85%
Ingo Molnar 11 0.48% 4 3.70%
Scott Wood 9 0.39% 1 0.93%
Jacob jun Pan 7 0.31% 2 1.85%
Kurt Garloff 7 0.31% 1 0.93%
Alexander van Heukelum 7 0.31% 3 2.78%
Huang Ying 5 0.22% 1 0.93%
Yunhong Jiang 4 0.17% 1 0.93%
Kostenzer Felix 4 0.17% 1 0.93%
Sean Christopherson 4 0.17% 1 0.93%
Paul Gortmaker 3 0.13% 1 0.93%
Dave Jones 3 0.13% 1 0.93%
Jan Beulich 3 0.13% 2 1.85%
Andi Kleen 3 0.13% 2 1.85%
Arnd Bergmann 3 0.13% 1 0.93%
Mathias Nyman 3 0.13% 1 0.93%
Mikael Pettersson 2 0.09% 1 0.93%
Libing Zhou 2 0.09% 1 0.93%
John Levon 2 0.09% 1 0.93%
Hiroshi Shimamoto 2 0.09% 2 1.85%
Maciej W. Rozycki 2 0.09% 1 0.93%
Prasanna S. Panchamukhi 2 0.09% 1 0.93%
Namhyung Kim 2 0.09% 1 0.93%
Miguel Botón 1 0.04% 1 0.93%
Ashok Raj 1 0.04% 1 0.93%
Brijesh Singh 1 0.04% 1 0.93%
Mike Travis 1 0.04% 1 0.93%
Martin Molnar 1 0.04% 1 0.93%
Arun Sharma 1 0.04% 1 0.93%
Ulrich Obergfell 1 0.04% 1 0.93%
Mark Rutland 1 0.04% 1 0.93%
Zwane Mwaikambo 1 0.04% 1 0.93%
Total 2291 108


// SPDX-License-Identifier: GPL-2.0-only
/*
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
 *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
 *
 *  Pentium III FXSR, SSE support
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */

/*
 * Handle hardware traps and faults.
 */
#include <linux/spinlock.h>
#include <linux/kprobes.h>
#include <linux/kdebug.h>
#include <linux/sched/debug.h>
#include <linux/nmi.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/hardirq.h>
#include <linux/ratelimit.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/atomic.h>
#include <linux/sched/clock.h>

#include <asm/cpu_entry_area.h>
#include <asm/traps.h>
#include <asm/mach_traps.h>
#include <asm/nmi.h>
#include <asm/x86_init.h>
#include <asm/reboot.h>
#include <asm/cache.h>
#include <asm/nospec-branch.h>
#include <asm/microcode.h>
#include <asm/sev.h>
#include <asm/fred.h>

#define CREATE_TRACE_POINTS
#include <trace/events/nmi.h>

struct nmi_desc {
	raw_spinlock_t lock;
	struct list_head head;
};

static struct nmi_desc nmi_desc[NMI_MAX] = 
{
	{
		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
		.head = LIST_HEAD_INIT(nmi_desc[0].head),
	},
	{
		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
		.head = LIST_HEAD_INIT(nmi_desc[1].head),
	},
	{
		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
		.head = LIST_HEAD_INIT(nmi_desc[2].head),
	},
	{
		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
		.head = LIST_HEAD_INIT(nmi_desc[3].head),
	},

};

struct nmi_stats {
	unsigned int normal;
	unsigned int unknown;
	unsigned int external;
	unsigned int swallow;
	unsigned long recv_jiffies;
	unsigned long idt_seq;
	unsigned long idt_nmi_seq;
	unsigned long idt_ignored;
	atomic_long_t idt_calls;
	unsigned long idt_seq_snap;
	unsigned long idt_nmi_seq_snap;
	unsigned long idt_ignored_snap;
	long idt_calls_snap;
};

static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);

static int ignore_nmis __read_mostly;

int unknown_nmi_panic;
/*
 * Prevent NMI reason port (0x61) being accessed simultaneously, can
 * only be used in NMI handler.
 */
static DEFINE_RAW_SPINLOCK(nmi_reason_lock);

static int __init setup_unknown_nmi_panic(char *str)
{
	unknown_nmi_panic = 1;
	return 1;
}
__setup("unknown_nmi_panic", setup_unknown_nmi_panic);

#define nmi_to_desc(type) (&nmi_desc[type])

static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;

static int __init nmi_warning_debugfs(void)
{
	debugfs_create_u64("nmi_longest_ns", 0644,
			arch_debugfs_dir, &nmi_longest_ns);
	return 0;
}
fs_initcall(nmi_warning_debugfs);

static void nmi_check_duration(struct nmiaction *action, u64 duration)
{
	int remainder_ns, decimal_msecs;

	if (duration < nmi_longest_ns || duration < action->max_duration)
		return;

	action->max_duration = duration;

	remainder_ns = do_div(duration, (1000 * 1000));
	decimal_msecs = remainder_ns / 1000;

	printk_ratelimited(KERN_INFO
		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
		action->handler, duration, decimal_msecs);
}

static int nmi_handle(unsigned int type, struct pt_regs *regs)
{
	struct nmi_desc *desc = nmi_to_desc(type);
	struct nmiaction *a;
	int handled=0;

	rcu_read_lock();

	/*
	 * NMIs are edge-triggered, which means if you have enough
	 * of them concurrently, you can lose some because only one
	 * can be latched at any given time.  Walk the whole list
	 * to handle those situations.
	 */
	list_for_each_entry_rcu(a, &desc->head, list) {
		int thishandled;
		u64 delta;

		delta = sched_clock();
		thishandled = a->handler(type, regs);
		handled += thishandled;
		delta = sched_clock() - delta;
		trace_nmi_handler(a->handler, (int)delta, thishandled);

		nmi_check_duration(a, delta);
	}

	rcu_read_unlock();

	/* return total number of NMI events handled */
	return handled;
}
NOKPROBE_SYMBOL(nmi_handle);

int __register_nmi_handler(unsigned int type, struct nmiaction *action)
{
	struct nmi_desc *desc = nmi_to_desc(type);
	unsigned long flags;

	if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
		return -EINVAL;

	raw_spin_lock_irqsave(&desc->lock, flags);

	/*
	 * Indicate if there are multiple registrations on the
	 * internal NMI handler call chains (SERR and IO_CHECK).
	 */
	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));

	/*
	 * some handlers need to be executed first otherwise a fake
	 * event confuses some handlers (kdump uses this flag)
	 */
	if (action->flags & NMI_FLAG_FIRST)
		list_add_rcu(&action->list, &desc->head);
	else
		list_add_tail_rcu(&action->list, &desc->head);

	raw_spin_unlock_irqrestore(&desc->lock, flags);
	return 0;
}
EXPORT_SYMBOL(__register_nmi_handler);

void unregister_nmi_handler(unsigned int type, const char *name)
{
	struct nmi_desc *desc = nmi_to_desc(type);
	struct nmiaction *n, *found = NULL;
	unsigned long flags;

	raw_spin_lock_irqsave(&desc->lock, flags);

	list_for_each_entry_rcu(n, &desc->head, list) {
		/*
		 * the name passed in to describe the nmi handler
		 * is used as the lookup key
		 */
		if (!strcmp(n->name, name)) {
			WARN(in_nmi(),
				"Trying to free NMI (%s) from NMI context!\n", n->name);
			list_del_rcu(&n->list);
			found = n;
			break;
		}
	}

	raw_spin_unlock_irqrestore(&desc->lock, flags);
	if (found) {
		synchronize_rcu();
		INIT_LIST_HEAD(&found->list);
	}
}
EXPORT_SYMBOL_GPL(unregister_nmi_handler);

static void
pci_serr_error(unsigned char reason, struct pt_regs *regs)
{
	/* check to see if anyone registered against these types of errors */
	if (nmi_handle(NMI_SERR, regs))
		return;

	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
		 reason, smp_processor_id());

	if (panic_on_unrecovered_nmi)
		nmi_panic(regs, "NMI: Not continuing");

	pr_emerg("Dazed and confused, but trying to continue\n");

	/* Clear and disable the PCI SERR error line. */
	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
	outb(reason, NMI_REASON_PORT);
}
NOKPROBE_SYMBOL(pci_serr_error);

static void
io_check_error(unsigned char reason, struct pt_regs *regs)
{
	unsigned long i;

	/* check to see if anyone registered against these types of errors */
	if (nmi_handle(NMI_IO_CHECK, regs))
		return;

	pr_emerg(
	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
		 reason, smp_processor_id());
	show_regs(regs);

	if (panic_on_io_nmi) {
		nmi_panic(regs, "NMI IOCK error: Not continuing");

		/*
		 * If we end up here, it means we have received an NMI while
		 * processing panic(). Simply return without delaying and
		 * re-enabling NMIs.
		 */
		return;
	}

	/* Re-enable the IOCK line, wait for a few seconds */
	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
	outb(reason, NMI_REASON_PORT);

	i = 20000;
	while (--i) {
		touch_nmi_watchdog();
		udelay(100);
	}

	reason &= ~NMI_REASON_CLEAR_IOCHK;
	outb(reason, NMI_REASON_PORT);
}
NOKPROBE_SYMBOL(io_check_error);

static void
unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
{
	int handled;

	/*
	 * Use 'false' as back-to-back NMIs are dealt with one level up.
	 * Of course this makes having multiple 'unknown' handlers useless
	 * as only the first one is ever run (unless it can actually determine
	 * if it caused the NMI)
	 */
	handled = nmi_handle(NMI_UNKNOWN, regs);
	if (handled) {
		__this_cpu_add(nmi_stats.unknown, handled);
		return;
	}

	__this_cpu_add(nmi_stats.unknown, 1);

	pr_emerg_ratelimited("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
			     reason, smp_processor_id());

	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
		nmi_panic(regs, "NMI: Not continuing");

	pr_emerg_ratelimited("Dazed and confused, but trying to continue\n");
}
NOKPROBE_SYMBOL(unknown_nmi_error);

static DEFINE_PER_CPU(bool, swallow_nmi);
static DEFINE_PER_CPU(unsigned long, last_nmi_rip);

static noinstr void default_do_nmi(struct pt_regs *regs)
{
	unsigned char reason = 0;
	int handled;
	bool b2b = false;

	/*
	 * CPU-specific NMI must be processed before non-CPU-specific
	 * NMI, otherwise we may lose it, because the CPU-specific
	 * NMI can not be detected/processed on other CPUs.
	 */

	/*
	 * Back-to-back NMIs are interesting because they can either
	 * be two NMI or more than two NMIs (any thing over two is dropped
	 * due to NMI being edge-triggered).  If this is the second half
	 * of the back-to-back NMI, assume we dropped things and process
	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
	 */
	if (regs->ip == __this_cpu_read(last_nmi_rip))
		b2b = true;
	else
		__this_cpu_write(swallow_nmi, false);

	__this_cpu_write(last_nmi_rip, regs->ip);

	instrumentation_begin();

	if (microcode_nmi_handler_enabled() && microcode_nmi_handler())
		goto out;

	handled = nmi_handle(NMI_LOCAL, regs);
	__this_cpu_add(nmi_stats.normal, handled);
	if (handled) {
		/*
		 * There are cases when a NMI handler handles multiple
		 * events in the current NMI.  One of these events may
		 * be queued for in the next NMI.  Because the event is
		 * already handled, the next NMI will result in an unknown
		 * NMI.  Instead lets flag this for a potential NMI to
		 * swallow.
		 */
		if (handled > 1)
			__this_cpu_write(swallow_nmi, true);
		goto out;
	}

	/*
	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
	 *
	 * Another CPU may be processing panic routines while holding
	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
	 * and if so, call its callback directly.  If there is no CPU preparing
	 * crash dump, we simply loop here.
	 */
	while (!raw_spin_trylock(&nmi_reason_lock)) {
		run_crash_ipi_callback(regs);
		cpu_relax();
	}

	reason = x86_platform.get_nmi_reason();

	if (reason & NMI_REASON_MASK) {
		if (reason & NMI_REASON_SERR)
			pci_serr_error(reason, regs);
		else if (reason & NMI_REASON_IOCHK)
			io_check_error(reason, regs);
#ifdef CONFIG_X86_32
		/*
		 * Reassert NMI in case it became active
		 * meanwhile as it's edge-triggered:
		 */
		reassert_nmi();
#endif
		__this_cpu_add(nmi_stats.external, 1);
		raw_spin_unlock(&nmi_reason_lock);
		goto out;
	}
	raw_spin_unlock(&nmi_reason_lock);

	/*
	 * Only one NMI can be latched at a time.  To handle
	 * this we may process multiple nmi handlers at once to
	 * cover the case where an NMI is dropped.  The downside
	 * to this approach is we may process an NMI prematurely,
	 * while its real NMI is sitting latched.  This will cause
	 * an unknown NMI on the next run of the NMI processing.
	 *
	 * We tried to flag that condition above, by setting the
	 * swallow_nmi flag when we process more than one event.
	 * This condition is also only present on the second half
	 * of a back-to-back NMI, so we flag that condition too.
	 *
	 * If both are true, we assume we already processed this
	 * NMI previously and we swallow it.  Otherwise we reset
	 * the logic.
	 *
	 * There are scenarios where we may accidentally swallow
	 * a 'real' unknown NMI.  For example, while processing
	 * a perf NMI another perf NMI comes in along with a
	 * 'real' unknown NMI.  These two NMIs get combined into
	 * one (as described above).  When the next NMI gets
	 * processed, it will be flagged by perf as handled, but
	 * no one will know that there was a 'real' unknown NMI sent
	 * also.  As a result it gets swallowed.  Or if the first
	 * perf NMI returns two events handled then the second
	 * NMI will get eaten by the logic below, again losing a
	 * 'real' unknown NMI.  But this is the best we can do
	 * for now.
	 */
	if (b2b && __this_cpu_read(swallow_nmi))
		__this_cpu_add(nmi_stats.swallow, 1);
	else
		unknown_nmi_error(reason, regs);

out:
	instrumentation_end();
}

/*
 * NMIs can page fault or hit breakpoints which will cause it to lose
 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
 *
 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
 * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
 * if the outer NMI came from kernel mode, but we can still nest if the
 * outer NMI came from user mode.
 *
 * To handle these nested NMIs, we have three states:
 *
 *  1) not running
 *  2) executing
 *  3) latched
 *
 * When no NMI is in progress, it is in the "not running" state.
 * When an NMI comes in, it goes into the "executing" state.
 * Normally, if another NMI is triggered, it does not interrupt
 * the running NMI and the HW will simply latch it so that when
 * the first NMI finishes, it will restart the second NMI.
 * (Note, the latch is binary, thus multiple NMIs triggering,
 *  when one is running, are ignored. Only one NMI is restarted.)
 *
 * If an NMI executes an iret, another NMI can preempt it. We do not
 * want to allow this new NMI to run, but we want to execute it when the
 * first one finishes.  We set the state to "latched", and the exit of
 * the first NMI will perform a dec_return, if the result is zero
 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
 * dec_return would have set the state to NMI_EXECUTING (what we want it
 * to be when we are running). In this case, we simply jump back to
 * rerun the NMI handler again, and restart the 'latched' NMI.
 *
 * No trap (breakpoint or page fault) should be hit before nmi_restart,
 * thus there is no race between the first check of state for NOT_RUNNING
 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
 * at this point.
 *
 * In case the NMI takes a page fault, we need to save off the CR2
 * because the NMI could have preempted another page fault and corrupt
 * the CR2 that is about to be read. As nested NMIs must be restarted
 * and they can not take breakpoints or page faults, the update of the
 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
 * Otherwise, there would be a race of another nested NMI coming in
 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
 */
enum nmi_states {
	NMI_NOT_RUNNING = 0,
	NMI_EXECUTING,
	NMI_LATCHED,
};
static DEFINE_PER_CPU(enum nmi_states, nmi_state);
static DEFINE_PER_CPU(unsigned long, nmi_cr2);
static DEFINE_PER_CPU(unsigned long, nmi_dr7);

DEFINE_IDTENTRY_RAW(exc_nmi)
{
	irqentry_state_t irq_state;
	struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);

	/*
	 * Re-enable NMIs right here when running as an SEV-ES guest. This might
	 * cause nested NMIs, but those can be handled safely.
	 */
	sev_es_nmi_complete();
	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
		raw_atomic_long_inc(&nsp->idt_calls);

	if (arch_cpu_is_offline(smp_processor_id())) {
		if (microcode_nmi_handler_enabled())
			microcode_offline_nmi_handler();
		return;
	}

	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
		this_cpu_write(nmi_state, NMI_LATCHED);
		return;
	}
	this_cpu_write(nmi_state, NMI_EXECUTING);
	this_cpu_write(nmi_cr2, read_cr2());

nmi_restart:
	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
		WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
		WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
		WRITE_ONCE(nsp->recv_jiffies, jiffies);
	}

	/*
	 * Needs to happen before DR7 is accessed, because the hypervisor can
	 * intercept DR7 reads/writes, turning those into #VC exceptions.
	 */
	sev_es_ist_enter(regs);

	this_cpu_write(nmi_dr7, local_db_save());

	irq_state = irqentry_nmi_enter(regs);

	inc_irq_stat(__nmi_count);

	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
		WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
	} else if (!ignore_nmis) {
		if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
			WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
			WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
		}
		default_do_nmi(regs);
		if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
			WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
			WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
		}
	}

	irqentry_nmi_exit(regs, irq_state);

	local_db_restore(this_cpu_read(nmi_dr7));

	sev_es_ist_exit();

	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
		write_cr2(this_cpu_read(nmi_cr2));
	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
		WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
		WARN_ON_ONCE(nsp->idt_seq & 0x1);
		WRITE_ONCE(nsp->recv_jiffies, jiffies);
	}
	if (this_cpu_dec_return(nmi_state))
		goto nmi_restart;
}

#if IS_ENABLED(CONFIG_KVM_INTEL)
DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
{
	exc_nmi(regs);
}
#if IS_MODULE(CONFIG_KVM_INTEL)
EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
#endif
#endif

#ifdef CONFIG_NMI_CHECK_CPU

static char *nmi_check_stall_msg[] = {
/*									*/
/* +--------- nmi_seq & 0x1: CPU is currently in NMI handler.		*/
/* | +------ cpu_is_offline(cpu)					*/
/* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls):	*/
/* | | |	NMI handler has been invoked.				*/
/* | | |								*/
/* V V V								*/
/* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
/* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
/* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
/* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
/* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
/* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
/* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
/* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
};

void nmi_backtrace_stall_snap(const struct cpumask *btp)
{
	int cpu;
	struct nmi_stats *nsp;

	for_each_cpu(cpu, btp) {
		nsp = per_cpu_ptr(&nmi_stats, cpu);
		nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
		nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
		nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
		nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
	}
}

void nmi_backtrace_stall_check(const struct cpumask *btp)
{
	int cpu;
	int idx;
	unsigned long nmi_seq;
	unsigned long j = jiffies;
	char *modp;
	char *msgp;
	char *msghp;
	struct nmi_stats *nsp;

	for_each_cpu(cpu, btp) {
		nsp = per_cpu_ptr(&nmi_stats, cpu);
		modp = "";
		msghp = "";
		nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
		if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
			msgp = "CPU entered NMI handler function, but has not exited";
		} else if (nsp->idt_nmi_seq_snap == nmi_seq ||
			   nsp->idt_nmi_seq_snap + 1 == nmi_seq) {
			idx = ((nmi_seq & 0x1) << 2) |
			      (cpu_is_offline(cpu) << 1) |
			      (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
			msgp = nmi_check_stall_msg[idx];
			if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
				modp = ", but OK because ignore_nmis was set";
			if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
				msghp = " (CPU exited one NMI handler function)";
			else if (nmi_seq & 0x1)
				msghp = " (CPU currently in NMI handler function)";
			else
				msghp = " (CPU was never in an NMI handler function)";
		} else {
			msgp = "CPU is handling NMIs";
		}
		pr_alert("%s: CPU %d: %s%s%s\n", __func__, cpu, msgp, modp, msghp);
		pr_alert("%s: last activity: %lu jiffies ago.\n",
			 __func__, j - READ_ONCE(nsp->recv_jiffies));
	}
}

#endif

#ifdef CONFIG_X86_FRED
/*
 * With FRED, CR2/DR6 is pushed to #PF/#DB stack frame during FRED
 * event delivery, i.e., there is no problem of transient states.
 * And NMI unblocking only happens when the stack frame indicates
 * that so should happen.
 *
 * Thus, the NMI entry stub for FRED is really straightforward and
 * as simple as most exception handlers. As such, #DB is allowed
 * during NMI handling.
 */
DEFINE_FREDENTRY_NMI(exc_nmi)
{
	irqentry_state_t irq_state;

	if (arch_cpu_is_offline(smp_processor_id())) {
		if (microcode_nmi_handler_enabled())
			microcode_offline_nmi_handler();
		return;
	}

	/*
	 * Save CR2 for eventual restore to cover the case where the NMI
	 * hits the VMENTER/VMEXIT region where guest CR2 is life. This
	 * prevents guest state corruption in case that the NMI handler
	 * takes a page fault.
	 */
	this_cpu_write(nmi_cr2, read_cr2());

	irq_state = irqentry_nmi_enter(regs);

	inc_irq_stat(__nmi_count);
	default_do_nmi(regs);

	irqentry_nmi_exit(regs, irq_state);

	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
		write_cr2(this_cpu_read(nmi_cr2));
}
#endif

void stop_nmi(void)
{
	ignore_nmis++;
}

void restart_nmi(void)
{
	ignore_nmis--;
}

/* reset the back-to-back NMI logic */
void local_touch_nmi(void)
{
	__this_cpu_write(last_nmi_rip, 0);
}
EXPORT_SYMBOL_GPL(local_touch_nmi);