Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ricardo Neri | 922 | 84.59% | 4 | 25.00% |
Brendan Shanks | 141 | 12.94% | 2 | 12.50% |
Joerg Roedel | 15 | 1.38% | 3 | 18.75% |
Borislav Petkov | 5 | 0.46% | 2 | 12.50% |
Eric W. Biedermann | 4 | 0.37% | 2 | 12.50% |
Ingo Molnar | 1 | 0.09% | 1 | 6.25% |
Jason Yan | 1 | 0.09% | 1 | 6.25% |
Babu Moger | 1 | 0.09% | 1 | 6.25% |
Total | 1090 | 16 |
/* * umip.c Emulation for instruction protected by the User-Mode Instruction * Prevention feature * * Copyright (c) 2017, Intel Corporation. * Ricardo Neri <ricardo.neri-calderon@linux.intel.com> */ #include <linux/uaccess.h> #include <asm/umip.h> #include <asm/traps.h> #include <asm/insn.h> #include <asm/insn-eval.h> #include <linux/ratelimit.h> #undef pr_fmt #define pr_fmt(fmt) "umip: " fmt /** DOC: Emulation for User-Mode Instruction Prevention (UMIP) * * User-Mode Instruction Prevention is a security feature present in recent * x86 processors that, when enabled, prevents a group of instructions (SGDT, * SIDT, SLDT, SMSW and STR) from being run in user mode by issuing a general * protection fault if the instruction is executed with CPL > 0. * * Rather than relaying to the user space the general protection fault caused by * the UMIP-protected instructions (in the form of a SIGSEGV signal), it can be * trapped and emulate the result of such instructions to provide dummy values. * This allows to both conserve the current kernel behavior and not reveal the * system resources that UMIP intends to protect (i.e., the locations of the * global descriptor and interrupt descriptor tables, the segment selectors of * the local descriptor table, the value of the task state register and the * contents of the CR0 register). * * This emulation is needed because certain applications (e.g., WineHQ and * DOSEMU2) rely on this subset of instructions to function. * * The instructions protected by UMIP can be split in two groups. Those which * return a kernel memory address (SGDT and SIDT) and those which return a * value (SLDT, STR and SMSW). * * For the instructions that return a kernel memory address, applications * such as WineHQ rely on the result being located in the kernel memory space, * not the actual location of the table. The result is emulated as a hard-coded * value that, lies close to the top of the kernel memory. The limit for the GDT * and the IDT are set to zero. * * The instruction SMSW is emulated to return the value that the register CR0 * has at boot time as set in the head_32. * SLDT and STR are emulated to return the values that the kernel programmatically * assigns: * - SLDT returns (GDT_ENTRY_LDT * 8) if an LDT has been set, 0 if not. * - STR returns (GDT_ENTRY_TSS * 8). * * Emulation is provided for both 32-bit and 64-bit processes. * * Care is taken to appropriately emulate the results when segmentation is * used. That is, rather than relying on USER_DS and USER_CS, the function * insn_get_addr_ref() inspects the segment descriptor pointed by the * registers in pt_regs. This ensures that we correctly obtain the segment * base address and the address and operand sizes even if the user space * application uses a local descriptor table. */ #define UMIP_DUMMY_GDT_BASE 0xfffffffffffe0000ULL #define UMIP_DUMMY_IDT_BASE 0xffffffffffff0000ULL /* * The SGDT and SIDT instructions store the contents of the global descriptor * table and interrupt table registers, respectively. The destination is a * memory operand of X+2 bytes. X bytes are used to store the base address of * the table and 2 bytes are used to store the limit. In 32-bit processes X * has a value of 4, in 64-bit processes X has a value of 8. */ #define UMIP_GDT_IDT_BASE_SIZE_64BIT 8 #define UMIP_GDT_IDT_BASE_SIZE_32BIT 4 #define UMIP_GDT_IDT_LIMIT_SIZE 2 #define UMIP_INST_SGDT 0 /* 0F 01 /0 */ #define UMIP_INST_SIDT 1 /* 0F 01 /1 */ #define UMIP_INST_SMSW 2 /* 0F 01 /4 */ #define UMIP_INST_SLDT 3 /* 0F 00 /0 */ #define UMIP_INST_STR 4 /* 0F 00 /1 */ static const char * const umip_insns[5] = { [UMIP_INST_SGDT] = "SGDT", [UMIP_INST_SIDT] = "SIDT", [UMIP_INST_SMSW] = "SMSW", [UMIP_INST_SLDT] = "SLDT", [UMIP_INST_STR] = "STR", }; #define umip_pr_err(regs, fmt, ...) \ umip_printk(regs, KERN_ERR, fmt, ##__VA_ARGS__) #define umip_pr_debug(regs, fmt, ...) \ umip_printk(regs, KERN_DEBUG, fmt, ##__VA_ARGS__) /** * umip_printk() - Print a rate-limited message * @regs: Register set with the context in which the warning is printed * @log_level: Kernel log level to print the message * @fmt: The text string to print * * Print the text contained in @fmt. The print rate is limited to bursts of 5 * messages every two minutes. The purpose of this customized version of * printk() is to print messages when user space processes use any of the * UMIP-protected instructions. Thus, the printed text is prepended with the * task name and process ID number of the current task as well as the * instruction and stack pointers in @regs as seen when entering kernel mode. * * Returns: * * None. */ static __printf(3, 4) void umip_printk(const struct pt_regs *regs, const char *log_level, const char *fmt, ...) { /* Bursts of 5 messages every two minutes */ static DEFINE_RATELIMIT_STATE(ratelimit, 2 * 60 * HZ, 5); struct task_struct *tsk = current; struct va_format vaf; va_list args; if (!__ratelimit(&ratelimit)) return; va_start(args, fmt); vaf.fmt = fmt; vaf.va = &args; printk("%s" pr_fmt("%s[%d] ip:%lx sp:%lx: %pV"), log_level, tsk->comm, task_pid_nr(tsk), regs->ip, regs->sp, &vaf); va_end(args); } /** * identify_insn() - Identify a UMIP-protected instruction * @insn: Instruction structure with opcode and ModRM byte. * * From the opcode and ModRM.reg in @insn identify, if any, a UMIP-protected * instruction that can be emulated. * * Returns: * * On success, a constant identifying a specific UMIP-protected instruction that * can be emulated. * * -EINVAL on error or when not an UMIP-protected instruction that can be * emulated. */ static int identify_insn(struct insn *insn) { /* By getting modrm we also get the opcode. */ insn_get_modrm(insn); if (!insn->modrm.nbytes) return -EINVAL; /* All the instructions of interest start with 0x0f. */ if (insn->opcode.bytes[0] != 0xf) return -EINVAL; if (insn->opcode.bytes[1] == 0x1) { switch (X86_MODRM_REG(insn->modrm.value)) { case 0: return UMIP_INST_SGDT; case 1: return UMIP_INST_SIDT; case 4: return UMIP_INST_SMSW; default: return -EINVAL; } } else if (insn->opcode.bytes[1] == 0x0) { if (X86_MODRM_REG(insn->modrm.value) == 0) return UMIP_INST_SLDT; else if (X86_MODRM_REG(insn->modrm.value) == 1) return UMIP_INST_STR; else return -EINVAL; } else { return -EINVAL; } } /** * emulate_umip_insn() - Emulate UMIP instructions and return dummy values * @insn: Instruction structure with operands * @umip_inst: A constant indicating the instruction to emulate * @data: Buffer into which the dummy result is stored * @data_size: Size of the emulated result * @x86_64: true if process is 64-bit, false otherwise * * Emulate an instruction protected by UMIP and provide a dummy result. The * result of the emulation is saved in @data. The size of the results depends * on both the instruction and type of operand (register vs memory address). * The size of the result is updated in @data_size. Caller is responsible * of providing a @data buffer of at least UMIP_GDT_IDT_BASE_SIZE + * UMIP_GDT_IDT_LIMIT_SIZE bytes. * * Returns: * * 0 on success, -EINVAL on error while emulating. */ static int emulate_umip_insn(struct insn *insn, int umip_inst, unsigned char *data, int *data_size, bool x86_64) { if (!data || !data_size || !insn) return -EINVAL; /* * These two instructions return the base address and limit of the * global and interrupt descriptor table, respectively. According to the * Intel Software Development manual, the base address can be 24-bit, * 32-bit or 64-bit. Limit is always 16-bit. If the operand size is * 16-bit, the returned value of the base address is supposed to be a * zero-extended 24-byte number. However, it seems that a 32-byte number * is always returned irrespective of the operand size. */ if (umip_inst == UMIP_INST_SGDT || umip_inst == UMIP_INST_SIDT) { u64 dummy_base_addr; u16 dummy_limit = 0; /* SGDT and SIDT do not use registers operands. */ if (X86_MODRM_MOD(insn->modrm.value) == 3) return -EINVAL; if (umip_inst == UMIP_INST_SGDT) dummy_base_addr = UMIP_DUMMY_GDT_BASE; else dummy_base_addr = UMIP_DUMMY_IDT_BASE; /* * 64-bit processes use the entire dummy base address. * 32-bit processes use the lower 32 bits of the base address. * dummy_base_addr is always 64 bits, but we memcpy the correct * number of bytes from it to the destination. */ if (x86_64) *data_size = UMIP_GDT_IDT_BASE_SIZE_64BIT; else *data_size = UMIP_GDT_IDT_BASE_SIZE_32BIT; memcpy(data + 2, &dummy_base_addr, *data_size); *data_size += UMIP_GDT_IDT_LIMIT_SIZE; memcpy(data, &dummy_limit, UMIP_GDT_IDT_LIMIT_SIZE); } else if (umip_inst == UMIP_INST_SMSW || umip_inst == UMIP_INST_SLDT || umip_inst == UMIP_INST_STR) { unsigned long dummy_value; if (umip_inst == UMIP_INST_SMSW) { dummy_value = CR0_STATE; } else if (umip_inst == UMIP_INST_STR) { dummy_value = GDT_ENTRY_TSS * 8; } else if (umip_inst == UMIP_INST_SLDT) { #ifdef CONFIG_MODIFY_LDT_SYSCALL down_read(¤t->mm->context.ldt_usr_sem); if (current->mm->context.ldt) dummy_value = GDT_ENTRY_LDT * 8; else dummy_value = 0; up_read(¤t->mm->context.ldt_usr_sem); #else dummy_value = 0; #endif } /* * For these 3 instructions, the number * of bytes to be copied in the result buffer is determined * by whether the operand is a register or a memory location. * If operand is a register, return as many bytes as the operand * size. If operand is memory, return only the two least * significant bytes. */ if (X86_MODRM_MOD(insn->modrm.value) == 3) *data_size = insn->opnd_bytes; else *data_size = 2; memcpy(data, &dummy_value, *data_size); } else { return -EINVAL; } return 0; } /** * force_sig_info_umip_fault() - Force a SIGSEGV with SEGV_MAPERR * @addr: Address that caused the signal * @regs: Register set containing the instruction pointer * * Force a SIGSEGV signal with SEGV_MAPERR as the error code. This function is * intended to be used to provide a segmentation fault when the result of the * UMIP emulation could not be copied to the user space memory. * * Returns: none */ static void force_sig_info_umip_fault(void __user *addr, struct pt_regs *regs) { struct task_struct *tsk = current; tsk->thread.cr2 = (unsigned long)addr; tsk->thread.error_code = X86_PF_USER | X86_PF_WRITE; tsk->thread.trap_nr = X86_TRAP_PF; force_sig_fault(SIGSEGV, SEGV_MAPERR, addr); if (!(show_unhandled_signals && unhandled_signal(tsk, SIGSEGV))) return; umip_pr_err(regs, "segfault in emulation. error%x\n", X86_PF_USER | X86_PF_WRITE); } /** * fixup_umip_exception() - Fixup a general protection fault caused by UMIP * @regs: Registers as saved when entering the #GP handler * * The instructions SGDT, SIDT, STR, SMSW and SLDT cause a general protection * fault if executed with CPL > 0 (i.e., from user space). This function fixes * the exception up and provides dummy results for SGDT, SIDT and SMSW; STR * and SLDT are not fixed up. * * If operands are memory addresses, results are copied to user-space memory as * indicated by the instruction pointed by eIP using the registers indicated in * the instruction operands. If operands are registers, results are copied into * the context that was saved when entering kernel mode. * * Returns: * * True if emulation was successful; false if not. */ bool fixup_umip_exception(struct pt_regs *regs) { int nr_copied, reg_offset, dummy_data_size, umip_inst; /* 10 bytes is the maximum size of the result of UMIP instructions */ unsigned char dummy_data[10] = { 0 }; unsigned char buf[MAX_INSN_SIZE]; unsigned long *reg_addr; void __user *uaddr; struct insn insn; if (!regs) return false; /* * Give up on emulation if fetching the instruction failed. Should a * page fault or a #GP be issued? */ nr_copied = insn_fetch_from_user(regs, buf); if (nr_copied <= 0) return false; if (!insn_decode_from_regs(&insn, regs, buf, nr_copied)) return false; umip_inst = identify_insn(&insn); if (umip_inst < 0) return false; umip_pr_debug(regs, "%s instruction cannot be used by applications.\n", umip_insns[umip_inst]); umip_pr_debug(regs, "For now, expensive software emulation returns the result.\n"); if (emulate_umip_insn(&insn, umip_inst, dummy_data, &dummy_data_size, user_64bit_mode(regs))) return false; /* * If operand is a register, write result to the copy of the register * value that was pushed to the stack when entering into kernel mode. * Upon exit, the value we write will be restored to the actual hardware * register. */ if (X86_MODRM_MOD(insn.modrm.value) == 3) { reg_offset = insn_get_modrm_rm_off(&insn, regs); /* * Negative values are usually errors. In memory addressing, * the exception is -EDOM. Since we expect a register operand, * all negative values are errors. */ if (reg_offset < 0) return false; reg_addr = (unsigned long *)((unsigned long)regs + reg_offset); memcpy(reg_addr, dummy_data, dummy_data_size); } else { uaddr = insn_get_addr_ref(&insn, regs); if ((unsigned long)uaddr == -1L) return false; nr_copied = copy_to_user(uaddr, dummy_data, dummy_data_size); if (nr_copied > 0) { /* * If copy fails, send a signal and tell caller that * fault was fixed up. */ force_sig_info_umip_fault(uaddr, regs); return true; } } /* increase IP to let the program keep going */ regs->ip += insn.length; return true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1