Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kai Huang | 4478 | 99.51% | 17 | 62.96% |
Andi Kleen | 8 | 0.18% | 1 | 3.70% |
Dave Jones | 4 | 0.09% | 2 | 7.41% |
Ingo Molnar | 2 | 0.04% | 2 | 7.41% |
Dave Hansen | 2 | 0.04% | 1 | 3.70% |
Masami Hiramatsu | 2 | 0.04% | 1 | 3.70% |
Andy Shevchenko | 2 | 0.04% | 1 | 3.70% |
Jaswinder Singh Rajput | 1 | 0.02% | 1 | 3.70% |
Thomas Gleixner | 1 | 0.02% | 1 | 3.70% |
Total | 4500 | 27 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright(c) 2023 Intel Corporation. * * Intel Trusted Domain Extensions (TDX) support */ #define pr_fmt(fmt) "virt/tdx: " fmt #include <linux/types.h> #include <linux/cache.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/printk.h> #include <linux/cpu.h> #include <linux/spinlock.h> #include <linux/percpu-defs.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/memblock.h> #include <linux/memory.h> #include <linux/minmax.h> #include <linux/sizes.h> #include <linux/pfn.h> #include <linux/align.h> #include <linux/sort.h> #include <linux/log2.h> #include <linux/acpi.h> #include <linux/suspend.h> #include <asm/page.h> #include <asm/special_insns.h> #include <asm/msr-index.h> #include <asm/msr.h> #include <asm/cpufeature.h> #include <asm/tdx.h> #include <asm/intel-family.h> #include <asm/processor.h> #include <asm/mce.h> #include "tdx.h" static u32 tdx_global_keyid __ro_after_init; static u32 tdx_guest_keyid_start __ro_after_init; static u32 tdx_nr_guest_keyids __ro_after_init; static DEFINE_PER_CPU(bool, tdx_lp_initialized); static struct tdmr_info_list tdx_tdmr_list; static enum tdx_module_status_t tdx_module_status; static DEFINE_MUTEX(tdx_module_lock); /* All TDX-usable memory regions. Protected by mem_hotplug_lock. */ static LIST_HEAD(tdx_memlist); typedef void (*sc_err_func_t)(u64 fn, u64 err, struct tdx_module_args *args); static inline void seamcall_err(u64 fn, u64 err, struct tdx_module_args *args) { pr_err("SEAMCALL (0x%016llx) failed: 0x%016llx\n", fn, err); } static inline void seamcall_err_ret(u64 fn, u64 err, struct tdx_module_args *args) { seamcall_err(fn, err, args); pr_err("RCX 0x%016llx RDX 0x%016llx R08 0x%016llx\n", args->rcx, args->rdx, args->r8); pr_err("R09 0x%016llx R10 0x%016llx R11 0x%016llx\n", args->r9, args->r10, args->r11); } static inline int sc_retry_prerr(sc_func_t func, sc_err_func_t err_func, u64 fn, struct tdx_module_args *args) { u64 sret = sc_retry(func, fn, args); if (sret == TDX_SUCCESS) return 0; if (sret == TDX_SEAMCALL_VMFAILINVALID) return -ENODEV; if (sret == TDX_SEAMCALL_GP) return -EOPNOTSUPP; if (sret == TDX_SEAMCALL_UD) return -EACCES; err_func(fn, sret, args); return -EIO; } #define seamcall_prerr(__fn, __args) \ sc_retry_prerr(__seamcall, seamcall_err, (__fn), (__args)) #define seamcall_prerr_ret(__fn, __args) \ sc_retry_prerr(__seamcall_ret, seamcall_err_ret, (__fn), (__args)) /* * Do the module global initialization once and return its result. * It can be done on any cpu. It's always called with interrupts * disabled. */ static int try_init_module_global(void) { struct tdx_module_args args = {}; static DEFINE_RAW_SPINLOCK(sysinit_lock); static bool sysinit_done; static int sysinit_ret; lockdep_assert_irqs_disabled(); raw_spin_lock(&sysinit_lock); if (sysinit_done) goto out; /* RCX is module attributes and all bits are reserved */ args.rcx = 0; sysinit_ret = seamcall_prerr(TDH_SYS_INIT, &args); /* * The first SEAMCALL also detects the TDX module, thus * it can fail due to the TDX module is not loaded. * Dump message to let the user know. */ if (sysinit_ret == -ENODEV) pr_err("module not loaded\n"); sysinit_done = true; out: raw_spin_unlock(&sysinit_lock); return sysinit_ret; } /** * tdx_cpu_enable - Enable TDX on local cpu * * Do one-time TDX module per-cpu initialization SEAMCALL (and TDX module * global initialization SEAMCALL if not done) on local cpu to make this * cpu be ready to run any other SEAMCALLs. * * Always call this function via IPI function calls. * * Return 0 on success, otherwise errors. */ int tdx_cpu_enable(void) { struct tdx_module_args args = {}; int ret; if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM)) return -ENODEV; lockdep_assert_irqs_disabled(); if (__this_cpu_read(tdx_lp_initialized)) return 0; /* * The TDX module global initialization is the very first step * to enable TDX. Need to do it first (if hasn't been done) * before the per-cpu initialization. */ ret = try_init_module_global(); if (ret) return ret; ret = seamcall_prerr(TDH_SYS_LP_INIT, &args); if (ret) return ret; __this_cpu_write(tdx_lp_initialized, true); return 0; } EXPORT_SYMBOL_GPL(tdx_cpu_enable); /* * Add a memory region as a TDX memory block. The caller must make sure * all memory regions are added in address ascending order and don't * overlap. */ static int add_tdx_memblock(struct list_head *tmb_list, unsigned long start_pfn, unsigned long end_pfn, int nid) { struct tdx_memblock *tmb; tmb = kmalloc(sizeof(*tmb), GFP_KERNEL); if (!tmb) return -ENOMEM; INIT_LIST_HEAD(&tmb->list); tmb->start_pfn = start_pfn; tmb->end_pfn = end_pfn; tmb->nid = nid; /* @tmb_list is protected by mem_hotplug_lock */ list_add_tail(&tmb->list, tmb_list); return 0; } static void free_tdx_memlist(struct list_head *tmb_list) { /* @tmb_list is protected by mem_hotplug_lock */ while (!list_empty(tmb_list)) { struct tdx_memblock *tmb = list_first_entry(tmb_list, struct tdx_memblock, list); list_del(&tmb->list); kfree(tmb); } } /* * Ensure that all memblock memory regions are convertible to TDX * memory. Once this has been established, stash the memblock * ranges off in a secondary structure because memblock is modified * in memory hotplug while TDX memory regions are fixed. */ static int build_tdx_memlist(struct list_head *tmb_list) { unsigned long start_pfn, end_pfn; int i, nid, ret; for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { /* * The first 1MB is not reported as TDX convertible memory. * Although the first 1MB is always reserved and won't end up * to the page allocator, it is still in memblock's memory * regions. Skip them manually to exclude them as TDX memory. */ start_pfn = max(start_pfn, PHYS_PFN(SZ_1M)); if (start_pfn >= end_pfn) continue; /* * Add the memory regions as TDX memory. The regions in * memblock has already guaranteed they are in address * ascending order and don't overlap. */ ret = add_tdx_memblock(tmb_list, start_pfn, end_pfn, nid); if (ret) goto err; } return 0; err: free_tdx_memlist(tmb_list); return ret; } static int read_sys_metadata_field(u64 field_id, u64 *data) { struct tdx_module_args args = {}; int ret; /* * TDH.SYS.RD -- reads one global metadata field * - RDX (in): the field to read * - R8 (out): the field data */ args.rdx = field_id; ret = seamcall_prerr_ret(TDH_SYS_RD, &args); if (ret) return ret; *data = args.r8; return 0; } static int read_sys_metadata_field16(u64 field_id, int offset, struct tdx_tdmr_sysinfo *ts) { u16 *ts_member = ((void *)ts) + offset; u64 tmp; int ret; if (WARN_ON_ONCE(MD_FIELD_ID_ELE_SIZE_CODE(field_id) != MD_FIELD_ID_ELE_SIZE_16BIT)) return -EINVAL; ret = read_sys_metadata_field(field_id, &tmp); if (ret) return ret; *ts_member = tmp; return 0; } struct field_mapping { u64 field_id; int offset; }; #define TD_SYSINFO_MAP(_field_id, _offset) \ { .field_id = MD_FIELD_ID_##_field_id, \ .offset = offsetof(struct tdx_tdmr_sysinfo, _offset) } /* Map TD_SYSINFO fields into 'struct tdx_tdmr_sysinfo': */ static const struct field_mapping fields[] = { TD_SYSINFO_MAP(MAX_TDMRS, max_tdmrs), TD_SYSINFO_MAP(MAX_RESERVED_PER_TDMR, max_reserved_per_tdmr), TD_SYSINFO_MAP(PAMT_4K_ENTRY_SIZE, pamt_entry_size[TDX_PS_4K]), TD_SYSINFO_MAP(PAMT_2M_ENTRY_SIZE, pamt_entry_size[TDX_PS_2M]), TD_SYSINFO_MAP(PAMT_1G_ENTRY_SIZE, pamt_entry_size[TDX_PS_1G]), }; static int get_tdx_tdmr_sysinfo(struct tdx_tdmr_sysinfo *tdmr_sysinfo) { int ret; int i; /* Populate 'tdmr_sysinfo' fields using the mapping structure above: */ for (i = 0; i < ARRAY_SIZE(fields); i++) { ret = read_sys_metadata_field16(fields[i].field_id, fields[i].offset, tdmr_sysinfo); if (ret) return ret; } return 0; } /* Calculate the actual TDMR size */ static int tdmr_size_single(u16 max_reserved_per_tdmr) { int tdmr_sz; /* * The actual size of TDMR depends on the maximum * number of reserved areas. */ tdmr_sz = sizeof(struct tdmr_info); tdmr_sz += sizeof(struct tdmr_reserved_area) * max_reserved_per_tdmr; return ALIGN(tdmr_sz, TDMR_INFO_ALIGNMENT); } static int alloc_tdmr_list(struct tdmr_info_list *tdmr_list, struct tdx_tdmr_sysinfo *tdmr_sysinfo) { size_t tdmr_sz, tdmr_array_sz; void *tdmr_array; tdmr_sz = tdmr_size_single(tdmr_sysinfo->max_reserved_per_tdmr); tdmr_array_sz = tdmr_sz * tdmr_sysinfo->max_tdmrs; /* * To keep things simple, allocate all TDMRs together. * The buffer needs to be physically contiguous to make * sure each TDMR is physically contiguous. */ tdmr_array = alloc_pages_exact(tdmr_array_sz, GFP_KERNEL | __GFP_ZERO); if (!tdmr_array) return -ENOMEM; tdmr_list->tdmrs = tdmr_array; /* * Keep the size of TDMR to find the target TDMR * at a given index in the TDMR list. */ tdmr_list->tdmr_sz = tdmr_sz; tdmr_list->max_tdmrs = tdmr_sysinfo->max_tdmrs; tdmr_list->nr_consumed_tdmrs = 0; return 0; } static void free_tdmr_list(struct tdmr_info_list *tdmr_list) { free_pages_exact(tdmr_list->tdmrs, tdmr_list->max_tdmrs * tdmr_list->tdmr_sz); } /* Get the TDMR from the list at the given index. */ static struct tdmr_info *tdmr_entry(struct tdmr_info_list *tdmr_list, int idx) { int tdmr_info_offset = tdmr_list->tdmr_sz * idx; return (void *)tdmr_list->tdmrs + tdmr_info_offset; } #define TDMR_ALIGNMENT SZ_1G #define TDMR_ALIGN_DOWN(_addr) ALIGN_DOWN((_addr), TDMR_ALIGNMENT) #define TDMR_ALIGN_UP(_addr) ALIGN((_addr), TDMR_ALIGNMENT) static inline u64 tdmr_end(struct tdmr_info *tdmr) { return tdmr->base + tdmr->size; } /* * Take the memory referenced in @tmb_list and populate the * preallocated @tdmr_list, following all the special alignment * and size rules for TDMR. */ static int fill_out_tdmrs(struct list_head *tmb_list, struct tdmr_info_list *tdmr_list) { struct tdx_memblock *tmb; int tdmr_idx = 0; /* * Loop over TDX memory regions and fill out TDMRs to cover them. * To keep it simple, always try to use one TDMR to cover one * memory region. * * In practice TDX supports at least 64 TDMRs. A 2-socket system * typically only consumes less than 10 of those. This code is * dumb and simple and may use more TMDRs than is strictly * required. */ list_for_each_entry(tmb, tmb_list, list) { struct tdmr_info *tdmr = tdmr_entry(tdmr_list, tdmr_idx); u64 start, end; start = TDMR_ALIGN_DOWN(PFN_PHYS(tmb->start_pfn)); end = TDMR_ALIGN_UP(PFN_PHYS(tmb->end_pfn)); /* * A valid size indicates the current TDMR has already * been filled out to cover the previous memory region(s). */ if (tdmr->size) { /* * Loop to the next if the current memory region * has already been fully covered. */ if (end <= tdmr_end(tdmr)) continue; /* Otherwise, skip the already covered part. */ if (start < tdmr_end(tdmr)) start = tdmr_end(tdmr); /* * Create a new TDMR to cover the current memory * region, or the remaining part of it. */ tdmr_idx++; if (tdmr_idx >= tdmr_list->max_tdmrs) { pr_warn("initialization failed: TDMRs exhausted.\n"); return -ENOSPC; } tdmr = tdmr_entry(tdmr_list, tdmr_idx); } tdmr->base = start; tdmr->size = end - start; } /* @tdmr_idx is always the index of the last valid TDMR. */ tdmr_list->nr_consumed_tdmrs = tdmr_idx + 1; /* * Warn early that kernel is about to run out of TDMRs. * * This is an indication that TDMR allocation has to be * reworked to be smarter to not run into an issue. */ if (tdmr_list->max_tdmrs - tdmr_list->nr_consumed_tdmrs < TDMR_NR_WARN) pr_warn("consumed TDMRs reaching limit: %d used out of %d\n", tdmr_list->nr_consumed_tdmrs, tdmr_list->max_tdmrs); return 0; } /* * Calculate PAMT size given a TDMR and a page size. The returned * PAMT size is always aligned up to 4K page boundary. */ static unsigned long tdmr_get_pamt_sz(struct tdmr_info *tdmr, int pgsz, u16 pamt_entry_size) { unsigned long pamt_sz, nr_pamt_entries; switch (pgsz) { case TDX_PS_4K: nr_pamt_entries = tdmr->size >> PAGE_SHIFT; break; case TDX_PS_2M: nr_pamt_entries = tdmr->size >> PMD_SHIFT; break; case TDX_PS_1G: nr_pamt_entries = tdmr->size >> PUD_SHIFT; break; default: WARN_ON_ONCE(1); return 0; } pamt_sz = nr_pamt_entries * pamt_entry_size; /* TDX requires PAMT size must be 4K aligned */ pamt_sz = ALIGN(pamt_sz, PAGE_SIZE); return pamt_sz; } /* * Locate a NUMA node which should hold the allocation of the @tdmr * PAMT. This node will have some memory covered by the TDMR. The * relative amount of memory covered is not considered. */ static int tdmr_get_nid(struct tdmr_info *tdmr, struct list_head *tmb_list) { struct tdx_memblock *tmb; /* * A TDMR must cover at least part of one TMB. That TMB will end * after the TDMR begins. But, that TMB may have started before * the TDMR. Find the next 'tmb' that _ends_ after this TDMR * begins. Ignore 'tmb' start addresses. They are irrelevant. */ list_for_each_entry(tmb, tmb_list, list) { if (tmb->end_pfn > PHYS_PFN(tdmr->base)) return tmb->nid; } /* * Fall back to allocating the TDMR's metadata from node 0 when * no TDX memory block can be found. This should never happen * since TDMRs originate from TDX memory blocks. */ pr_warn("TDMR [0x%llx, 0x%llx): unable to find local NUMA node for PAMT allocation, fallback to use node 0.\n", tdmr->base, tdmr_end(tdmr)); return 0; } /* * Allocate PAMTs from the local NUMA node of some memory in @tmb_list * within @tdmr, and set up PAMTs for @tdmr. */ static int tdmr_set_up_pamt(struct tdmr_info *tdmr, struct list_head *tmb_list, u16 pamt_entry_size[]) { unsigned long pamt_base[TDX_PS_NR]; unsigned long pamt_size[TDX_PS_NR]; unsigned long tdmr_pamt_base; unsigned long tdmr_pamt_size; struct page *pamt; int pgsz, nid; nid = tdmr_get_nid(tdmr, tmb_list); /* * Calculate the PAMT size for each TDX supported page size * and the total PAMT size. */ tdmr_pamt_size = 0; for (pgsz = TDX_PS_4K; pgsz < TDX_PS_NR; pgsz++) { pamt_size[pgsz] = tdmr_get_pamt_sz(tdmr, pgsz, pamt_entry_size[pgsz]); tdmr_pamt_size += pamt_size[pgsz]; } /* * Allocate one chunk of physically contiguous memory for all * PAMTs. This helps minimize the PAMT's use of reserved areas * in overlapped TDMRs. */ pamt = alloc_contig_pages(tdmr_pamt_size >> PAGE_SHIFT, GFP_KERNEL, nid, &node_online_map); if (!pamt) return -ENOMEM; /* * Break the contiguous allocation back up into the * individual PAMTs for each page size. */ tdmr_pamt_base = page_to_pfn(pamt) << PAGE_SHIFT; for (pgsz = TDX_PS_4K; pgsz < TDX_PS_NR; pgsz++) { pamt_base[pgsz] = tdmr_pamt_base; tdmr_pamt_base += pamt_size[pgsz]; } tdmr->pamt_4k_base = pamt_base[TDX_PS_4K]; tdmr->pamt_4k_size = pamt_size[TDX_PS_4K]; tdmr->pamt_2m_base = pamt_base[TDX_PS_2M]; tdmr->pamt_2m_size = pamt_size[TDX_PS_2M]; tdmr->pamt_1g_base = pamt_base[TDX_PS_1G]; tdmr->pamt_1g_size = pamt_size[TDX_PS_1G]; return 0; } static void tdmr_get_pamt(struct tdmr_info *tdmr, unsigned long *pamt_base, unsigned long *pamt_size) { unsigned long pamt_bs, pamt_sz; /* * The PAMT was allocated in one contiguous unit. The 4K PAMT * should always point to the beginning of that allocation. */ pamt_bs = tdmr->pamt_4k_base; pamt_sz = tdmr->pamt_4k_size + tdmr->pamt_2m_size + tdmr->pamt_1g_size; WARN_ON_ONCE((pamt_bs & ~PAGE_MASK) || (pamt_sz & ~PAGE_MASK)); *pamt_base = pamt_bs; *pamt_size = pamt_sz; } static void tdmr_do_pamt_func(struct tdmr_info *tdmr, void (*pamt_func)(unsigned long base, unsigned long size)) { unsigned long pamt_base, pamt_size; tdmr_get_pamt(tdmr, &pamt_base, &pamt_size); /* Do nothing if PAMT hasn't been allocated for this TDMR */ if (!pamt_size) return; if (WARN_ON_ONCE(!pamt_base)) return; pamt_func(pamt_base, pamt_size); } static void free_pamt(unsigned long pamt_base, unsigned long pamt_size) { free_contig_range(pamt_base >> PAGE_SHIFT, pamt_size >> PAGE_SHIFT); } static void tdmr_free_pamt(struct tdmr_info *tdmr) { tdmr_do_pamt_func(tdmr, free_pamt); } static void tdmrs_free_pamt_all(struct tdmr_info_list *tdmr_list) { int i; for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) tdmr_free_pamt(tdmr_entry(tdmr_list, i)); } /* Allocate and set up PAMTs for all TDMRs */ static int tdmrs_set_up_pamt_all(struct tdmr_info_list *tdmr_list, struct list_head *tmb_list, u16 pamt_entry_size[]) { int i, ret = 0; for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) { ret = tdmr_set_up_pamt(tdmr_entry(tdmr_list, i), tmb_list, pamt_entry_size); if (ret) goto err; } return 0; err: tdmrs_free_pamt_all(tdmr_list); return ret; } /* * Convert TDX private pages back to normal by using MOVDIR64B to * clear these pages. Note this function doesn't flush cache of * these TDX private pages. The caller should make sure of that. */ static void reset_tdx_pages(unsigned long base, unsigned long size) { const void *zero_page = (const void *)page_address(ZERO_PAGE(0)); unsigned long phys, end; end = base + size; for (phys = base; phys < end; phys += 64) movdir64b(__va(phys), zero_page); /* * MOVDIR64B uses WC protocol. Use memory barrier to * make sure any later user of these pages sees the * updated data. */ mb(); } static void tdmr_reset_pamt(struct tdmr_info *tdmr) { tdmr_do_pamt_func(tdmr, reset_tdx_pages); } static void tdmrs_reset_pamt_all(struct tdmr_info_list *tdmr_list) { int i; for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) tdmr_reset_pamt(tdmr_entry(tdmr_list, i)); } static unsigned long tdmrs_count_pamt_kb(struct tdmr_info_list *tdmr_list) { unsigned long pamt_size = 0; int i; for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) { unsigned long base, size; tdmr_get_pamt(tdmr_entry(tdmr_list, i), &base, &size); pamt_size += size; } return pamt_size / 1024; } static int tdmr_add_rsvd_area(struct tdmr_info *tdmr, int *p_idx, u64 addr, u64 size, u16 max_reserved_per_tdmr) { struct tdmr_reserved_area *rsvd_areas = tdmr->reserved_areas; int idx = *p_idx; /* Reserved area must be 4K aligned in offset and size */ if (WARN_ON(addr & ~PAGE_MASK || size & ~PAGE_MASK)) return -EINVAL; if (idx >= max_reserved_per_tdmr) { pr_warn("initialization failed: TDMR [0x%llx, 0x%llx): reserved areas exhausted.\n", tdmr->base, tdmr_end(tdmr)); return -ENOSPC; } /* * Consume one reserved area per call. Make no effort to * optimize or reduce the number of reserved areas which are * consumed by contiguous reserved areas, for instance. */ rsvd_areas[idx].offset = addr - tdmr->base; rsvd_areas[idx].size = size; *p_idx = idx + 1; return 0; } /* * Go through @tmb_list to find holes between memory areas. If any of * those holes fall within @tdmr, set up a TDMR reserved area to cover * the hole. */ static int tdmr_populate_rsvd_holes(struct list_head *tmb_list, struct tdmr_info *tdmr, int *rsvd_idx, u16 max_reserved_per_tdmr) { struct tdx_memblock *tmb; u64 prev_end; int ret; /* * Start looking for reserved blocks at the * beginning of the TDMR. */ prev_end = tdmr->base; list_for_each_entry(tmb, tmb_list, list) { u64 start, end; start = PFN_PHYS(tmb->start_pfn); end = PFN_PHYS(tmb->end_pfn); /* Break if this region is after the TDMR */ if (start >= tdmr_end(tdmr)) break; /* Exclude regions before this TDMR */ if (end < tdmr->base) continue; /* * Skip over memory areas that * have already been dealt with. */ if (start <= prev_end) { prev_end = end; continue; } /* Add the hole before this region */ ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, prev_end, start - prev_end, max_reserved_per_tdmr); if (ret) return ret; prev_end = end; } /* Add the hole after the last region if it exists. */ if (prev_end < tdmr_end(tdmr)) { ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, prev_end, tdmr_end(tdmr) - prev_end, max_reserved_per_tdmr); if (ret) return ret; } return 0; } /* * Go through @tdmr_list to find all PAMTs. If any of those PAMTs * overlaps with @tdmr, set up a TDMR reserved area to cover the * overlapping part. */ static int tdmr_populate_rsvd_pamts(struct tdmr_info_list *tdmr_list, struct tdmr_info *tdmr, int *rsvd_idx, u16 max_reserved_per_tdmr) { int i, ret; for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) { struct tdmr_info *tmp = tdmr_entry(tdmr_list, i); unsigned long pamt_base, pamt_size, pamt_end; tdmr_get_pamt(tmp, &pamt_base, &pamt_size); /* Each TDMR must already have PAMT allocated */ WARN_ON_ONCE(!pamt_size || !pamt_base); pamt_end = pamt_base + pamt_size; /* Skip PAMTs outside of the given TDMR */ if ((pamt_end <= tdmr->base) || (pamt_base >= tdmr_end(tdmr))) continue; /* Only mark the part within the TDMR as reserved */ if (pamt_base < tdmr->base) pamt_base = tdmr->base; if (pamt_end > tdmr_end(tdmr)) pamt_end = tdmr_end(tdmr); ret = tdmr_add_rsvd_area(tdmr, rsvd_idx, pamt_base, pamt_end - pamt_base, max_reserved_per_tdmr); if (ret) return ret; } return 0; } /* Compare function called by sort() for TDMR reserved areas */ static int rsvd_area_cmp_func(const void *a, const void *b) { struct tdmr_reserved_area *r1 = (struct tdmr_reserved_area *)a; struct tdmr_reserved_area *r2 = (struct tdmr_reserved_area *)b; if (r1->offset + r1->size <= r2->offset) return -1; if (r1->offset >= r2->offset + r2->size) return 1; /* Reserved areas cannot overlap. The caller must guarantee. */ WARN_ON_ONCE(1); return -1; } /* * Populate reserved areas for the given @tdmr, including memory holes * (via @tmb_list) and PAMTs (via @tdmr_list). */ static int tdmr_populate_rsvd_areas(struct tdmr_info *tdmr, struct list_head *tmb_list, struct tdmr_info_list *tdmr_list, u16 max_reserved_per_tdmr) { int ret, rsvd_idx = 0; ret = tdmr_populate_rsvd_holes(tmb_list, tdmr, &rsvd_idx, max_reserved_per_tdmr); if (ret) return ret; ret = tdmr_populate_rsvd_pamts(tdmr_list, tdmr, &rsvd_idx, max_reserved_per_tdmr); if (ret) return ret; /* TDX requires reserved areas listed in address ascending order */ sort(tdmr->reserved_areas, rsvd_idx, sizeof(struct tdmr_reserved_area), rsvd_area_cmp_func, NULL); return 0; } /* * Populate reserved areas for all TDMRs in @tdmr_list, including memory * holes (via @tmb_list) and PAMTs. */ static int tdmrs_populate_rsvd_areas_all(struct tdmr_info_list *tdmr_list, struct list_head *tmb_list, u16 max_reserved_per_tdmr) { int i; for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) { int ret; ret = tdmr_populate_rsvd_areas(tdmr_entry(tdmr_list, i), tmb_list, tdmr_list, max_reserved_per_tdmr); if (ret) return ret; } return 0; } /* * Construct a list of TDMRs on the preallocated space in @tdmr_list * to cover all TDX memory regions in @tmb_list based on the TDX module * TDMR global information in @tdmr_sysinfo. */ static int construct_tdmrs(struct list_head *tmb_list, struct tdmr_info_list *tdmr_list, struct tdx_tdmr_sysinfo *tdmr_sysinfo) { int ret; ret = fill_out_tdmrs(tmb_list, tdmr_list); if (ret) return ret; ret = tdmrs_set_up_pamt_all(tdmr_list, tmb_list, tdmr_sysinfo->pamt_entry_size); if (ret) return ret; ret = tdmrs_populate_rsvd_areas_all(tdmr_list, tmb_list, tdmr_sysinfo->max_reserved_per_tdmr); if (ret) tdmrs_free_pamt_all(tdmr_list); /* * The tdmr_info_list is read-only from here on out. * Ensure that these writes are seen by other CPUs. * Pairs with a smp_rmb() in is_pamt_page(). */ smp_wmb(); return ret; } static int config_tdx_module(struct tdmr_info_list *tdmr_list, u64 global_keyid) { struct tdx_module_args args = {}; u64 *tdmr_pa_array; size_t array_sz; int i, ret; /* * TDMRs are passed to the TDX module via an array of physical * addresses of each TDMR. The array itself also has certain * alignment requirement. */ array_sz = tdmr_list->nr_consumed_tdmrs * sizeof(u64); array_sz = roundup_pow_of_two(array_sz); if (array_sz < TDMR_INFO_PA_ARRAY_ALIGNMENT) array_sz = TDMR_INFO_PA_ARRAY_ALIGNMENT; tdmr_pa_array = kzalloc(array_sz, GFP_KERNEL); if (!tdmr_pa_array) return -ENOMEM; for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) tdmr_pa_array[i] = __pa(tdmr_entry(tdmr_list, i)); args.rcx = __pa(tdmr_pa_array); args.rdx = tdmr_list->nr_consumed_tdmrs; args.r8 = global_keyid; ret = seamcall_prerr(TDH_SYS_CONFIG, &args); /* Free the array as it is not required anymore. */ kfree(tdmr_pa_array); return ret; } static int do_global_key_config(void *unused) { struct tdx_module_args args = {}; return seamcall_prerr(TDH_SYS_KEY_CONFIG, &args); } /* * Attempt to configure the global KeyID on all physical packages. * * This requires running code on at least one CPU in each package. * TDMR initialization) will fail will fail if any package in the * system has no online CPUs. * * This code takes no affirmative steps to online CPUs. Callers (aka. * KVM) can ensure success by ensuring sufficient CPUs are online and * can run SEAMCALLs. */ static int config_global_keyid(void) { cpumask_var_t packages; int cpu, ret = -EINVAL; if (!zalloc_cpumask_var(&packages, GFP_KERNEL)) return -ENOMEM; /* * Hardware doesn't guarantee cache coherency across different * KeyIDs. The kernel needs to flush PAMT's dirty cachelines * (associated with KeyID 0) before the TDX module can use the * global KeyID to access the PAMT. Given PAMTs are potentially * large (~1/256th of system RAM), just use WBINVD. */ wbinvd_on_all_cpus(); for_each_online_cpu(cpu) { /* * The key configuration only needs to be done once per * package and will return an error if configured more * than once. Avoid doing it multiple times per package. */ if (cpumask_test_and_set_cpu(topology_physical_package_id(cpu), packages)) continue; /* * TDH.SYS.KEY.CONFIG cannot run concurrently on * different cpus. Do it one by one. */ ret = smp_call_on_cpu(cpu, do_global_key_config, NULL, true); if (ret) break; } free_cpumask_var(packages); return ret; } static int init_tdmr(struct tdmr_info *tdmr) { u64 next; /* * Initializing a TDMR can be time consuming. To avoid long * SEAMCALLs, the TDX module may only initialize a part of the * TDMR in each call. */ do { struct tdx_module_args args = { .rcx = tdmr->base, }; int ret; ret = seamcall_prerr_ret(TDH_SYS_TDMR_INIT, &args); if (ret) return ret; /* * RDX contains 'next-to-initialize' address if * TDH.SYS.TDMR.INIT did not fully complete and * should be retried. */ next = args.rdx; cond_resched(); /* Keep making SEAMCALLs until the TDMR is done */ } while (next < tdmr->base + tdmr->size); return 0; } static int init_tdmrs(struct tdmr_info_list *tdmr_list) { int i; /* * This operation is costly. It can be parallelized, * but keep it simple for now. */ for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) { int ret; ret = init_tdmr(tdmr_entry(tdmr_list, i)); if (ret) return ret; } return 0; } static int init_tdx_module(void) { struct tdx_tdmr_sysinfo tdmr_sysinfo; int ret; /* * To keep things simple, assume that all TDX-protected memory * will come from the page allocator. Make sure all pages in the * page allocator are TDX-usable memory. * * Build the list of "TDX-usable" memory regions which cover all * pages in the page allocator to guarantee that. Do it while * holding mem_hotplug_lock read-lock as the memory hotplug code * path reads the @tdx_memlist to reject any new memory. */ get_online_mems(); ret = build_tdx_memlist(&tdx_memlist); if (ret) goto out_put_tdxmem; ret = get_tdx_tdmr_sysinfo(&tdmr_sysinfo); if (ret) goto err_free_tdxmem; /* Allocate enough space for constructing TDMRs */ ret = alloc_tdmr_list(&tdx_tdmr_list, &tdmr_sysinfo); if (ret) goto err_free_tdxmem; /* Cover all TDX-usable memory regions in TDMRs */ ret = construct_tdmrs(&tdx_memlist, &tdx_tdmr_list, &tdmr_sysinfo); if (ret) goto err_free_tdmrs; /* Pass the TDMRs and the global KeyID to the TDX module */ ret = config_tdx_module(&tdx_tdmr_list, tdx_global_keyid); if (ret) goto err_free_pamts; /* Config the key of global KeyID on all packages */ ret = config_global_keyid(); if (ret) goto err_reset_pamts; /* Initialize TDMRs to complete the TDX module initialization */ ret = init_tdmrs(&tdx_tdmr_list); if (ret) goto err_reset_pamts; pr_info("%lu KB allocated for PAMT\n", tdmrs_count_pamt_kb(&tdx_tdmr_list)); out_put_tdxmem: /* * @tdx_memlist is written here and read at memory hotplug time. * Lock out memory hotplug code while building it. */ put_online_mems(); return ret; err_reset_pamts: /* * Part of PAMTs may already have been initialized by the * TDX module. Flush cache before returning PAMTs back * to the kernel. */ wbinvd_on_all_cpus(); /* * According to the TDX hardware spec, if the platform * doesn't have the "partial write machine check" * erratum, any kernel read/write will never cause #MC * in kernel space, thus it's OK to not convert PAMTs * back to normal. But do the conversion anyway here * as suggested by the TDX spec. */ tdmrs_reset_pamt_all(&tdx_tdmr_list); err_free_pamts: tdmrs_free_pamt_all(&tdx_tdmr_list); err_free_tdmrs: free_tdmr_list(&tdx_tdmr_list); err_free_tdxmem: free_tdx_memlist(&tdx_memlist); goto out_put_tdxmem; } static int __tdx_enable(void) { int ret; ret = init_tdx_module(); if (ret) { pr_err("module initialization failed (%d)\n", ret); tdx_module_status = TDX_MODULE_ERROR; return ret; } pr_info("module initialized\n"); tdx_module_status = TDX_MODULE_INITIALIZED; return 0; } /** * tdx_enable - Enable TDX module to make it ready to run TDX guests * * This function assumes the caller has: 1) held read lock of CPU hotplug * lock to prevent any new cpu from becoming online; 2) done both VMXON * and tdx_cpu_enable() on all online cpus. * * This function requires there's at least one online cpu for each CPU * package to succeed. * * This function can be called in parallel by multiple callers. * * Return 0 if TDX is enabled successfully, otherwise error. */ int tdx_enable(void) { int ret; if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM)) return -ENODEV; lockdep_assert_cpus_held(); mutex_lock(&tdx_module_lock); switch (tdx_module_status) { case TDX_MODULE_UNINITIALIZED: ret = __tdx_enable(); break; case TDX_MODULE_INITIALIZED: /* Already initialized, great, tell the caller. */ ret = 0; break; default: /* Failed to initialize in the previous attempts */ ret = -EINVAL; break; } mutex_unlock(&tdx_module_lock); return ret; } EXPORT_SYMBOL_GPL(tdx_enable); static bool is_pamt_page(unsigned long phys) { struct tdmr_info_list *tdmr_list = &tdx_tdmr_list; int i; /* Ensure that all remote 'tdmr_list' writes are visible: */ smp_rmb(); /* * The TDX module is no longer returning TDX_SYS_NOT_READY and * is initialized. The 'tdmr_list' was initialized long ago * and is now read-only. */ for (i = 0; i < tdmr_list->nr_consumed_tdmrs; i++) { unsigned long base, size; tdmr_get_pamt(tdmr_entry(tdmr_list, i), &base, &size); if (phys >= base && phys < (base + size)) return true; } return false; } /* * Return whether the memory page at the given physical address is TDX * private memory or not. * * This can be imprecise for two known reasons: * 1. PAMTs are private memory and exist before the TDX module is * ready and TDH_PHYMEM_PAGE_RDMD works. This is a relatively * short window that occurs once per boot. * 2. TDH_PHYMEM_PAGE_RDMD reflects the TDX module's knowledge of the * page. However, the page can still cause #MC until it has been * fully converted to shared using 64-byte writes like MOVDIR64B. * Buggy hosts might still leave #MC-causing memory in place which * this function can not detect. */ static bool paddr_is_tdx_private(unsigned long phys) { struct tdx_module_args args = { .rcx = phys & PAGE_MASK, }; u64 sret; if (!boot_cpu_has(X86_FEATURE_TDX_HOST_PLATFORM)) return false; /* Get page type from the TDX module */ sret = __seamcall_ret(TDH_PHYMEM_PAGE_RDMD, &args); /* * The SEAMCALL will not return success unless there is a * working, "ready" TDX module. Assume an absence of TDX * private pages until SEAMCALL is working. */ if (sret) return false; /* * SEAMCALL was successful -- read page type (via RCX): * * - PT_NDA: Page is not used by the TDX module * - PT_RSVD: Reserved for Non-TDX use * - Others: Page is used by the TDX module * * Note PAMT pages are marked as PT_RSVD but they are also TDX * private memory. */ switch (args.rcx) { case PT_NDA: return false; case PT_RSVD: return is_pamt_page(phys); default: return true; } } /* * Some TDX-capable CPUs have an erratum. A write to TDX private * memory poisons that memory, and a subsequent read of that memory * triggers #MC. * * Help distinguish erratum-triggered #MCs from a normal hardware one. * Just print additional message to show such #MC may be result of the * erratum. */ const char *tdx_dump_mce_info(struct mce *m) { if (!m || !mce_is_memory_error(m) || !mce_usable_address(m)) return NULL; if (!paddr_is_tdx_private(m->addr)) return NULL; return "TDX private memory error. Possible kernel bug."; } static __init int record_keyid_partitioning(u32 *tdx_keyid_start, u32 *nr_tdx_keyids) { u32 _nr_mktme_keyids, _tdx_keyid_start, _nr_tdx_keyids; int ret; /* * IA32_MKTME_KEYID_PARTIONING: * Bit [31:0]: Number of MKTME KeyIDs. * Bit [63:32]: Number of TDX private KeyIDs. */ ret = rdmsr_safe(MSR_IA32_MKTME_KEYID_PARTITIONING, &_nr_mktme_keyids, &_nr_tdx_keyids); if (ret || !_nr_tdx_keyids) return -EINVAL; /* TDX KeyIDs start after the last MKTME KeyID. */ _tdx_keyid_start = _nr_mktme_keyids + 1; *tdx_keyid_start = _tdx_keyid_start; *nr_tdx_keyids = _nr_tdx_keyids; return 0; } static bool is_tdx_memory(unsigned long start_pfn, unsigned long end_pfn) { struct tdx_memblock *tmb; /* * This check assumes that the start_pfn<->end_pfn range does not * cross multiple @tdx_memlist entries. A single memory online * event across multiple memblocks (from which @tdx_memlist * entries are derived at the time of module initialization) is * not possible. This is because memory offline/online is done * on granularity of 'struct memory_block', and the hotpluggable * memory region (one memblock) must be multiple of memory_block. */ list_for_each_entry(tmb, &tdx_memlist, list) { if (start_pfn >= tmb->start_pfn && end_pfn <= tmb->end_pfn) return true; } return false; } static int tdx_memory_notifier(struct notifier_block *nb, unsigned long action, void *v) { struct memory_notify *mn = v; if (action != MEM_GOING_ONLINE) return NOTIFY_OK; /* * Empty list means TDX isn't enabled. Allow any memory * to go online. */ if (list_empty(&tdx_memlist)) return NOTIFY_OK; /* * The TDX memory configuration is static and can not be * changed. Reject onlining any memory which is outside of * the static configuration whether it supports TDX or not. */ if (is_tdx_memory(mn->start_pfn, mn->start_pfn + mn->nr_pages)) return NOTIFY_OK; return NOTIFY_BAD; } static struct notifier_block tdx_memory_nb = { .notifier_call = tdx_memory_notifier, }; static void __init check_tdx_erratum(void) { /* * These CPUs have an erratum. A partial write from non-TD * software (e.g. via MOVNTI variants or UC/WC mapping) to TDX * private memory poisons that memory, and a subsequent read of * that memory triggers #MC. */ switch (boot_cpu_data.x86_model) { case INTEL_FAM6_SAPPHIRERAPIDS_X: case INTEL_FAM6_EMERALDRAPIDS_X: setup_force_cpu_bug(X86_BUG_TDX_PW_MCE); } } void __init tdx_init(void) { u32 tdx_keyid_start, nr_tdx_keyids; int err; err = record_keyid_partitioning(&tdx_keyid_start, &nr_tdx_keyids); if (err) return; pr_info("BIOS enabled: private KeyID range [%u, %u)\n", tdx_keyid_start, tdx_keyid_start + nr_tdx_keyids); /* * The TDX module itself requires one 'global KeyID' to protect * its metadata. If there's only one TDX KeyID, there won't be * any left for TDX guests thus there's no point to enable TDX * at all. */ if (nr_tdx_keyids < 2) { pr_err("initialization failed: too few private KeyIDs available.\n"); return; } /* * At this point, hibernation_available() indicates whether or * not hibernation support has been permanently disabled. */ if (hibernation_available()) { pr_err("initialization failed: Hibernation support is enabled\n"); return; } err = register_memory_notifier(&tdx_memory_nb); if (err) { pr_err("initialization failed: register_memory_notifier() failed (%d)\n", err); return; } #if defined(CONFIG_ACPI) && defined(CONFIG_SUSPEND) pr_info("Disable ACPI S3. Turn off TDX in the BIOS to use ACPI S3.\n"); acpi_suspend_lowlevel = NULL; #endif /* * Just use the first TDX KeyID as the 'global KeyID' and * leave the rest for TDX guests. */ tdx_global_keyid = tdx_keyid_start; tdx_guest_keyid_start = tdx_keyid_start + 1; tdx_nr_guest_keyids = nr_tdx_keyids - 1; setup_force_cpu_cap(X86_FEATURE_TDX_HOST_PLATFORM); check_tdx_erratum(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1