Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Herbert Xu | 3478 | 62.71% | 28 | 41.79% |
Huang Ying | 756 | 13.63% | 6 | 8.96% |
Adrian Hoban | 408 | 7.36% | 1 | 1.49% |
Eric Biggers | 358 | 6.46% | 12 | 17.91% |
Loc Ho | 356 | 6.42% | 1 | 1.49% |
Stephan Mueller | 70 | 1.26% | 1 | 1.49% |
Jon Maxwell | 30 | 0.54% | 1 | 1.49% |
Chuhong Yuan | 21 | 0.38% | 1 | 1.49% |
Sebastian Andrzej Siewior | 9 | 0.16% | 1 | 1.49% |
James Morris | 9 | 0.16% | 1 | 1.49% |
Ard Biesheuvel | 8 | 0.14% | 1 | 1.49% |
Tejun Heo | 7 | 0.13% | 2 | 2.99% |
Jussi Kivilinna | 6 | 0.11% | 1 | 1.49% |
Rui Y Wang | 6 | 0.11% | 1 | 1.49% |
Kees Cook | 5 | 0.09% | 1 | 1.49% |
Vincent Whitchurch | 5 | 0.09% | 1 | 1.49% |
Steffen Klassert | 3 | 0.05% | 1 | 1.49% |
Mark D Rustad | 3 | 0.05% | 1 | 1.49% |
David Howells | 3 | 0.05% | 1 | 1.49% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.49% |
Colin Ian King | 1 | 0.02% | 1 | 1.49% |
Christoph Lameter | 1 | 0.02% | 1 | 1.49% |
Gilad Ben-Yossef | 1 | 0.02% | 1 | 1.49% |
Total | 5546 | 67 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Software async crypto daemon. * * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> * * Added AEAD support to cryptd. * Authors: Tadeusz Struk (tadeusz.struk@intel.com) * Adrian Hoban <adrian.hoban@intel.com> * Gabriele Paoloni <gabriele.paoloni@intel.com> * Aidan O'Mahony (aidan.o.mahony@intel.com) * Copyright (c) 2010, Intel Corporation. */ #include <crypto/internal/hash.h> #include <crypto/internal/aead.h> #include <crypto/internal/skcipher.h> #include <crypto/cryptd.h> #include <linux/refcount.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/scatterlist.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/workqueue.h> static unsigned int cryptd_max_cpu_qlen = 1000; module_param(cryptd_max_cpu_qlen, uint, 0); MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth"); static struct workqueue_struct *cryptd_wq; struct cryptd_cpu_queue { struct crypto_queue queue; struct work_struct work; }; struct cryptd_queue { /* * Protected by disabling BH to allow enqueueing from softinterrupt and * dequeuing from kworker (cryptd_queue_worker()). */ struct cryptd_cpu_queue __percpu *cpu_queue; }; struct cryptd_instance_ctx { struct crypto_spawn spawn; struct cryptd_queue *queue; }; struct skcipherd_instance_ctx { struct crypto_skcipher_spawn spawn; struct cryptd_queue *queue; }; struct hashd_instance_ctx { struct crypto_shash_spawn spawn; struct cryptd_queue *queue; }; struct aead_instance_ctx { struct crypto_aead_spawn aead_spawn; struct cryptd_queue *queue; }; struct cryptd_skcipher_ctx { refcount_t refcnt; struct crypto_skcipher *child; }; struct cryptd_skcipher_request_ctx { struct skcipher_request req; }; struct cryptd_hash_ctx { refcount_t refcnt; struct crypto_shash *child; }; struct cryptd_hash_request_ctx { crypto_completion_t complete; void *data; struct shash_desc desc; }; struct cryptd_aead_ctx { refcount_t refcnt; struct crypto_aead *child; }; struct cryptd_aead_request_ctx { struct aead_request req; }; static void cryptd_queue_worker(struct work_struct *work); static int cryptd_init_queue(struct cryptd_queue *queue, unsigned int max_cpu_qlen) { int cpu; struct cryptd_cpu_queue *cpu_queue; queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue); if (!queue->cpu_queue) return -ENOMEM; for_each_possible_cpu(cpu) { cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); INIT_WORK(&cpu_queue->work, cryptd_queue_worker); } pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen); return 0; } static void cryptd_fini_queue(struct cryptd_queue *queue) { int cpu; struct cryptd_cpu_queue *cpu_queue; for_each_possible_cpu(cpu) { cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); BUG_ON(cpu_queue->queue.qlen); } free_percpu(queue->cpu_queue); } static int cryptd_enqueue_request(struct cryptd_queue *queue, struct crypto_async_request *request) { int err; struct cryptd_cpu_queue *cpu_queue; refcount_t *refcnt; local_bh_disable(); cpu_queue = this_cpu_ptr(queue->cpu_queue); err = crypto_enqueue_request(&cpu_queue->queue, request); refcnt = crypto_tfm_ctx(request->tfm); if (err == -ENOSPC) goto out; queue_work_on(smp_processor_id(), cryptd_wq, &cpu_queue->work); if (!refcount_read(refcnt)) goto out; refcount_inc(refcnt); out: local_bh_enable(); return err; } /* Called in workqueue context, do one real cryption work (via * req->complete) and reschedule itself if there are more work to * do. */ static void cryptd_queue_worker(struct work_struct *work) { struct cryptd_cpu_queue *cpu_queue; struct crypto_async_request *req, *backlog; cpu_queue = container_of(work, struct cryptd_cpu_queue, work); /* * Only handle one request at a time to avoid hogging crypto workqueue. */ local_bh_disable(); backlog = crypto_get_backlog(&cpu_queue->queue); req = crypto_dequeue_request(&cpu_queue->queue); local_bh_enable(); if (!req) return; if (backlog) crypto_request_complete(backlog, -EINPROGRESS); crypto_request_complete(req, 0); if (cpu_queue->queue.qlen) queue_work(cryptd_wq, &cpu_queue->work); } static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm) { struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst); return ictx->queue; } static void cryptd_type_and_mask(struct crypto_attr_type *algt, u32 *type, u32 *mask) { /* * cryptd is allowed to wrap internal algorithms, but in that case the * resulting cryptd instance will be marked as internal as well. */ *type = algt->type & CRYPTO_ALG_INTERNAL; *mask = algt->mask & CRYPTO_ALG_INTERNAL; /* No point in cryptd wrapping an algorithm that's already async. */ *mask |= CRYPTO_ALG_ASYNC; *mask |= crypto_algt_inherited_mask(algt); } static int cryptd_init_instance(struct crypto_instance *inst, struct crypto_alg *alg) { if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) return -ENAMETOOLONG; memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); inst->alg.cra_priority = alg->cra_priority + 50; inst->alg.cra_blocksize = alg->cra_blocksize; inst->alg.cra_alignmask = alg->cra_alignmask; return 0; } static int cryptd_skcipher_setkey(struct crypto_skcipher *parent, const u8 *key, unsigned int keylen) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent); struct crypto_skcipher *child = ctx->child; crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & CRYPTO_TFM_REQ_MASK); return crypto_skcipher_setkey(child, key, keylen); } static struct skcipher_request *cryptd_skcipher_prepare( struct skcipher_request *req, int err) { struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); struct skcipher_request *subreq = &rctx->req; struct cryptd_skcipher_ctx *ctx; struct crypto_skcipher *child; req->base.complete = subreq->base.complete; req->base.data = subreq->base.data; if (unlikely(err == -EINPROGRESS)) return NULL; ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); child = ctx->child; skcipher_request_set_tfm(subreq, child); skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); return subreq; } static void cryptd_skcipher_complete(struct skcipher_request *req, int err, crypto_completion_t complete) { struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_request *subreq = &rctx->req; int refcnt = refcount_read(&ctx->refcnt); local_bh_disable(); skcipher_request_complete(req, err); local_bh_enable(); if (unlikely(err == -EINPROGRESS)) { subreq->base.complete = req->base.complete; subreq->base.data = req->base.data; req->base.complete = complete; req->base.data = req; } else if (refcnt && refcount_dec_and_test(&ctx->refcnt)) crypto_free_skcipher(tfm); } static void cryptd_skcipher_encrypt(void *data, int err) { struct skcipher_request *req = data; struct skcipher_request *subreq; subreq = cryptd_skcipher_prepare(req, err); if (likely(subreq)) err = crypto_skcipher_encrypt(subreq); cryptd_skcipher_complete(req, err, cryptd_skcipher_encrypt); } static void cryptd_skcipher_decrypt(void *data, int err) { struct skcipher_request *req = data; struct skcipher_request *subreq; subreq = cryptd_skcipher_prepare(req, err); if (likely(subreq)) err = crypto_skcipher_decrypt(subreq); cryptd_skcipher_complete(req, err, cryptd_skcipher_decrypt); } static int cryptd_skcipher_enqueue(struct skcipher_request *req, crypto_completion_t compl) { struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct skcipher_request *subreq = &rctx->req; struct cryptd_queue *queue; queue = cryptd_get_queue(crypto_skcipher_tfm(tfm)); subreq->base.complete = req->base.complete; subreq->base.data = req->base.data; req->base.complete = compl; req->base.data = req; return cryptd_enqueue_request(queue, &req->base); } static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req) { return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt); } static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req) { return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt); } static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm) { struct skcipher_instance *inst = skcipher_alg_instance(tfm); struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst); struct crypto_skcipher_spawn *spawn = &ictx->spawn; struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_skcipher *cipher; cipher = crypto_spawn_skcipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; crypto_skcipher_set_reqsize( tfm, sizeof(struct cryptd_skcipher_request_ctx) + crypto_skcipher_reqsize(cipher)); return 0; } static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_free_skcipher(ctx->child); } static void cryptd_skcipher_free(struct skcipher_instance *inst) { struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst); crypto_drop_skcipher(&ctx->spawn); kfree(inst); } static int cryptd_create_skcipher(struct crypto_template *tmpl, struct rtattr **tb, struct crypto_attr_type *algt, struct cryptd_queue *queue) { struct skcipherd_instance_ctx *ctx; struct skcipher_instance *inst; struct skcipher_alg_common *alg; u32 type; u32 mask; int err; cryptd_type_and_mask(algt, &type, &mask); inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = skcipher_instance_ctx(inst); ctx->queue = queue; err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst), crypto_attr_alg_name(tb[1]), type, mask); if (err) goto err_free_inst; alg = crypto_spawn_skcipher_alg_common(&ctx->spawn); err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base); if (err) goto err_free_inst; inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC | (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); inst->alg.ivsize = alg->ivsize; inst->alg.chunksize = alg->chunksize; inst->alg.min_keysize = alg->min_keysize; inst->alg.max_keysize = alg->max_keysize; inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx); inst->alg.init = cryptd_skcipher_init_tfm; inst->alg.exit = cryptd_skcipher_exit_tfm; inst->alg.setkey = cryptd_skcipher_setkey; inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue; inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue; inst->free = cryptd_skcipher_free; err = skcipher_register_instance(tmpl, inst); if (err) { err_free_inst: cryptd_skcipher_free(inst); } return err; } static int cryptd_hash_init_tfm(struct crypto_ahash *tfm) { struct ahash_instance *inst = ahash_alg_instance(tfm); struct hashd_instance_ctx *ictx = ahash_instance_ctx(inst); struct crypto_shash_spawn *spawn = &ictx->spawn; struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct crypto_shash *hash; hash = crypto_spawn_shash(spawn); if (IS_ERR(hash)) return PTR_ERR(hash); ctx->child = hash; crypto_ahash_set_reqsize(tfm, sizeof(struct cryptd_hash_request_ctx) + crypto_shash_descsize(hash)); return 0; } static int cryptd_hash_clone_tfm(struct crypto_ahash *ntfm, struct crypto_ahash *tfm) { struct cryptd_hash_ctx *nctx = crypto_ahash_ctx(ntfm); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct crypto_shash *hash; hash = crypto_clone_shash(ctx->child); if (IS_ERR(hash)) return PTR_ERR(hash); nctx->child = hash; return 0; } static void cryptd_hash_exit_tfm(struct crypto_ahash *tfm) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); crypto_free_shash(ctx->child); } static int cryptd_hash_setkey(struct crypto_ahash *parent, const u8 *key, unsigned int keylen) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); struct crypto_shash *child = ctx->child; crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) & CRYPTO_TFM_REQ_MASK); return crypto_shash_setkey(child, key, keylen); } static int cryptd_hash_enqueue(struct ahash_request *req, crypto_completion_t compl) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_queue *queue = cryptd_get_queue(crypto_ahash_tfm(tfm)); rctx->complete = req->base.complete; rctx->data = req->base.data; req->base.complete = compl; req->base.data = req; return cryptd_enqueue_request(queue, &req->base); } static struct shash_desc *cryptd_hash_prepare(struct ahash_request *req, int err) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); req->base.complete = rctx->complete; req->base.data = rctx->data; if (unlikely(err == -EINPROGRESS)) return NULL; return &rctx->desc; } static void cryptd_hash_complete(struct ahash_request *req, int err, crypto_completion_t complete) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); int refcnt = refcount_read(&ctx->refcnt); local_bh_disable(); ahash_request_complete(req, err); local_bh_enable(); if (err == -EINPROGRESS) { req->base.complete = complete; req->base.data = req; } else if (refcnt && refcount_dec_and_test(&ctx->refcnt)) crypto_free_ahash(tfm); } static void cryptd_hash_init(void *data, int err) { struct ahash_request *req = data; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct crypto_shash *child = ctx->child; struct shash_desc *desc; desc = cryptd_hash_prepare(req, err); if (unlikely(!desc)) goto out; desc->tfm = child; err = crypto_shash_init(desc); out: cryptd_hash_complete(req, err, cryptd_hash_init); } static int cryptd_hash_init_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_init); } static void cryptd_hash_update(void *data, int err) { struct ahash_request *req = data; struct shash_desc *desc; desc = cryptd_hash_prepare(req, err); if (likely(desc)) err = shash_ahash_update(req, desc); cryptd_hash_complete(req, err, cryptd_hash_update); } static int cryptd_hash_update_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_update); } static void cryptd_hash_final(void *data, int err) { struct ahash_request *req = data; struct shash_desc *desc; desc = cryptd_hash_prepare(req, err); if (likely(desc)) err = crypto_shash_final(desc, req->result); cryptd_hash_complete(req, err, cryptd_hash_final); } static int cryptd_hash_final_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_final); } static void cryptd_hash_finup(void *data, int err) { struct ahash_request *req = data; struct shash_desc *desc; desc = cryptd_hash_prepare(req, err); if (likely(desc)) err = shash_ahash_finup(req, desc); cryptd_hash_complete(req, err, cryptd_hash_finup); } static int cryptd_hash_finup_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_finup); } static void cryptd_hash_digest(void *data, int err) { struct ahash_request *req = data; struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct crypto_shash *child = ctx->child; struct shash_desc *desc; desc = cryptd_hash_prepare(req, err); if (unlikely(!desc)) goto out; desc->tfm = child; err = shash_ahash_digest(req, desc); out: cryptd_hash_complete(req, err, cryptd_hash_digest); } static int cryptd_hash_digest_enqueue(struct ahash_request *req) { return cryptd_hash_enqueue(req, cryptd_hash_digest); } static int cryptd_hash_export(struct ahash_request *req, void *out) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); return crypto_shash_export(&rctx->desc, out); } static int cryptd_hash_import(struct ahash_request *req, const void *in) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); struct shash_desc *desc = cryptd_shash_desc(req); desc->tfm = ctx->child; return crypto_shash_import(desc, in); } static void cryptd_hash_free(struct ahash_instance *inst) { struct hashd_instance_ctx *ctx = ahash_instance_ctx(inst); crypto_drop_shash(&ctx->spawn); kfree(inst); } static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, struct crypto_attr_type *algt, struct cryptd_queue *queue) { struct hashd_instance_ctx *ctx; struct ahash_instance *inst; struct shash_alg *alg; u32 type; u32 mask; int err; cryptd_type_and_mask(algt, &type, &mask); inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = ahash_instance_ctx(inst); ctx->queue = queue; err = crypto_grab_shash(&ctx->spawn, ahash_crypto_instance(inst), crypto_attr_alg_name(tb[1]), type, mask); if (err) goto err_free_inst; alg = crypto_spawn_shash_alg(&ctx->spawn); err = cryptd_init_instance(ahash_crypto_instance(inst), &alg->base); if (err) goto err_free_inst; inst->alg.halg.base.cra_flags |= CRYPTO_ALG_ASYNC | (alg->base.cra_flags & (CRYPTO_ALG_INTERNAL| CRYPTO_ALG_OPTIONAL_KEY)); inst->alg.halg.digestsize = alg->digestsize; inst->alg.halg.statesize = alg->statesize; inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx); inst->alg.init_tfm = cryptd_hash_init_tfm; inst->alg.clone_tfm = cryptd_hash_clone_tfm; inst->alg.exit_tfm = cryptd_hash_exit_tfm; inst->alg.init = cryptd_hash_init_enqueue; inst->alg.update = cryptd_hash_update_enqueue; inst->alg.final = cryptd_hash_final_enqueue; inst->alg.finup = cryptd_hash_finup_enqueue; inst->alg.export = cryptd_hash_export; inst->alg.import = cryptd_hash_import; if (crypto_shash_alg_has_setkey(alg)) inst->alg.setkey = cryptd_hash_setkey; inst->alg.digest = cryptd_hash_digest_enqueue; inst->free = cryptd_hash_free; err = ahash_register_instance(tmpl, inst); if (err) { err_free_inst: cryptd_hash_free(inst); } return err; } static int cryptd_aead_setkey(struct crypto_aead *parent, const u8 *key, unsigned int keylen) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); struct crypto_aead *child = ctx->child; return crypto_aead_setkey(child, key, keylen); } static int cryptd_aead_setauthsize(struct crypto_aead *parent, unsigned int authsize) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); struct crypto_aead *child = ctx->child; return crypto_aead_setauthsize(child, authsize); } static void cryptd_aead_crypt(struct aead_request *req, struct crypto_aead *child, int err, int (*crypt)(struct aead_request *req), crypto_completion_t compl) { struct cryptd_aead_request_ctx *rctx; struct aead_request *subreq; struct cryptd_aead_ctx *ctx; struct crypto_aead *tfm; int refcnt; rctx = aead_request_ctx(req); subreq = &rctx->req; req->base.complete = subreq->base.complete; req->base.data = subreq->base.data; tfm = crypto_aead_reqtfm(req); if (unlikely(err == -EINPROGRESS)) goto out; aead_request_set_tfm(subreq, child); aead_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, req->iv); aead_request_set_ad(subreq, req->assoclen); err = crypt(subreq); out: ctx = crypto_aead_ctx(tfm); refcnt = refcount_read(&ctx->refcnt); local_bh_disable(); aead_request_complete(req, err); local_bh_enable(); if (err == -EINPROGRESS) { subreq->base.complete = req->base.complete; subreq->base.data = req->base.data; req->base.complete = compl; req->base.data = req; } else if (refcnt && refcount_dec_and_test(&ctx->refcnt)) crypto_free_aead(tfm); } static void cryptd_aead_encrypt(void *data, int err) { struct aead_request *req = data; struct cryptd_aead_ctx *ctx; struct crypto_aead *child; ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); child = ctx->child; cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt, cryptd_aead_encrypt); } static void cryptd_aead_decrypt(void *data, int err) { struct aead_request *req = data; struct cryptd_aead_ctx *ctx; struct crypto_aead *child; ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); child = ctx->child; cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt, cryptd_aead_decrypt); } static int cryptd_aead_enqueue(struct aead_request *req, crypto_completion_t compl) { struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm)); struct aead_request *subreq = &rctx->req; subreq->base.complete = req->base.complete; subreq->base.data = req->base.data; req->base.complete = compl; req->base.data = req; return cryptd_enqueue_request(queue, &req->base); } static int cryptd_aead_encrypt_enqueue(struct aead_request *req) { return cryptd_aead_enqueue(req, cryptd_aead_encrypt ); } static int cryptd_aead_decrypt_enqueue(struct aead_request *req) { return cryptd_aead_enqueue(req, cryptd_aead_decrypt ); } static int cryptd_aead_init_tfm(struct crypto_aead *tfm) { struct aead_instance *inst = aead_alg_instance(tfm); struct aead_instance_ctx *ictx = aead_instance_ctx(inst); struct crypto_aead_spawn *spawn = &ictx->aead_spawn; struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); struct crypto_aead *cipher; cipher = crypto_spawn_aead(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; crypto_aead_set_reqsize( tfm, sizeof(struct cryptd_aead_request_ctx) + crypto_aead_reqsize(cipher)); return 0; } static void cryptd_aead_exit_tfm(struct crypto_aead *tfm) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); crypto_free_aead(ctx->child); } static void cryptd_aead_free(struct aead_instance *inst) { struct aead_instance_ctx *ctx = aead_instance_ctx(inst); crypto_drop_aead(&ctx->aead_spawn); kfree(inst); } static int cryptd_create_aead(struct crypto_template *tmpl, struct rtattr **tb, struct crypto_attr_type *algt, struct cryptd_queue *queue) { struct aead_instance_ctx *ctx; struct aead_instance *inst; struct aead_alg *alg; u32 type; u32 mask; int err; cryptd_type_and_mask(algt, &type, &mask); inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); if (!inst) return -ENOMEM; ctx = aead_instance_ctx(inst); ctx->queue = queue; err = crypto_grab_aead(&ctx->aead_spawn, aead_crypto_instance(inst), crypto_attr_alg_name(tb[1]), type, mask); if (err) goto err_free_inst; alg = crypto_spawn_aead_alg(&ctx->aead_spawn); err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base); if (err) goto err_free_inst; inst->alg.base.cra_flags |= CRYPTO_ALG_ASYNC | (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx); inst->alg.ivsize = crypto_aead_alg_ivsize(alg); inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg); inst->alg.init = cryptd_aead_init_tfm; inst->alg.exit = cryptd_aead_exit_tfm; inst->alg.setkey = cryptd_aead_setkey; inst->alg.setauthsize = cryptd_aead_setauthsize; inst->alg.encrypt = cryptd_aead_encrypt_enqueue; inst->alg.decrypt = cryptd_aead_decrypt_enqueue; inst->free = cryptd_aead_free; err = aead_register_instance(tmpl, inst); if (err) { err_free_inst: cryptd_aead_free(inst); } return err; } static struct cryptd_queue queue; static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb) { struct crypto_attr_type *algt; algt = crypto_get_attr_type(tb); if (IS_ERR(algt)) return PTR_ERR(algt); switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { case CRYPTO_ALG_TYPE_LSKCIPHER: return cryptd_create_skcipher(tmpl, tb, algt, &queue); case CRYPTO_ALG_TYPE_HASH: return cryptd_create_hash(tmpl, tb, algt, &queue); case CRYPTO_ALG_TYPE_AEAD: return cryptd_create_aead(tmpl, tb, algt, &queue); } return -EINVAL; } static struct crypto_template cryptd_tmpl = { .name = "cryptd", .create = cryptd_create, .module = THIS_MODULE, }; struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name, u32 type, u32 mask) { char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct cryptd_skcipher_ctx *ctx; struct crypto_skcipher *tfm; if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { crypto_free_skcipher(tfm); return ERR_PTR(-EINVAL); } ctx = crypto_skcipher_ctx(tfm); refcount_set(&ctx->refcnt, 1); return container_of(tfm, struct cryptd_skcipher, base); } EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher); struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); return ctx->child; } EXPORT_SYMBOL_GPL(cryptd_skcipher_child); bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); return refcount_read(&ctx->refcnt) - 1; } EXPORT_SYMBOL_GPL(cryptd_skcipher_queued); void cryptd_free_skcipher(struct cryptd_skcipher *tfm) { struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); if (refcount_dec_and_test(&ctx->refcnt)) crypto_free_skcipher(&tfm->base); } EXPORT_SYMBOL_GPL(cryptd_free_skcipher); struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name, u32 type, u32 mask) { char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct cryptd_hash_ctx *ctx; struct crypto_ahash *tfm; if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { crypto_free_ahash(tfm); return ERR_PTR(-EINVAL); } ctx = crypto_ahash_ctx(tfm); refcount_set(&ctx->refcnt, 1); return __cryptd_ahash_cast(tfm); } EXPORT_SYMBOL_GPL(cryptd_alloc_ahash); struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); return ctx->child; } EXPORT_SYMBOL_GPL(cryptd_ahash_child); struct shash_desc *cryptd_shash_desc(struct ahash_request *req) { struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); return &rctx->desc; } EXPORT_SYMBOL_GPL(cryptd_shash_desc); bool cryptd_ahash_queued(struct cryptd_ahash *tfm) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); return refcount_read(&ctx->refcnt) - 1; } EXPORT_SYMBOL_GPL(cryptd_ahash_queued); void cryptd_free_ahash(struct cryptd_ahash *tfm) { struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); if (refcount_dec_and_test(&ctx->refcnt)) crypto_free_ahash(&tfm->base); } EXPORT_SYMBOL_GPL(cryptd_free_ahash); struct cryptd_aead *cryptd_alloc_aead(const char *alg_name, u32 type, u32 mask) { char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; struct cryptd_aead_ctx *ctx; struct crypto_aead *tfm; if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) return ERR_PTR(-EINVAL); tfm = crypto_alloc_aead(cryptd_alg_name, type, mask); if (IS_ERR(tfm)) return ERR_CAST(tfm); if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { crypto_free_aead(tfm); return ERR_PTR(-EINVAL); } ctx = crypto_aead_ctx(tfm); refcount_set(&ctx->refcnt, 1); return __cryptd_aead_cast(tfm); } EXPORT_SYMBOL_GPL(cryptd_alloc_aead); struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm) { struct cryptd_aead_ctx *ctx; ctx = crypto_aead_ctx(&tfm->base); return ctx->child; } EXPORT_SYMBOL_GPL(cryptd_aead_child); bool cryptd_aead_queued(struct cryptd_aead *tfm) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); return refcount_read(&ctx->refcnt) - 1; } EXPORT_SYMBOL_GPL(cryptd_aead_queued); void cryptd_free_aead(struct cryptd_aead *tfm) { struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); if (refcount_dec_and_test(&ctx->refcnt)) crypto_free_aead(&tfm->base); } EXPORT_SYMBOL_GPL(cryptd_free_aead); static int __init cryptd_init(void) { int err; cryptd_wq = alloc_workqueue("cryptd", WQ_MEM_RECLAIM | WQ_CPU_INTENSIVE, 1); if (!cryptd_wq) return -ENOMEM; err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen); if (err) goto err_destroy_wq; err = crypto_register_template(&cryptd_tmpl); if (err) goto err_fini_queue; return 0; err_fini_queue: cryptd_fini_queue(&queue); err_destroy_wq: destroy_workqueue(cryptd_wq); return err; } static void __exit cryptd_exit(void) { destroy_workqueue(cryptd_wq); cryptd_fini_queue(&queue); crypto_unregister_template(&cryptd_tmpl); } subsys_initcall(cryptd_init); module_exit(cryptd_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Software async crypto daemon"); MODULE_ALIAS_CRYPTO("cryptd");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1