Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Baolin Wang | 1240 | 50.08% | 1 | 4.17% |
Herbert Xu | 720 | 29.08% | 6 | 25.00% |
Corentin Labbe | 296 | 11.95% | 5 | 20.83% |
Iuliana Prodan | 176 | 7.11% | 3 | 12.50% |
Prabhjot Khurana | 17 | 0.69% | 1 | 4.17% |
Petr Mladek | 14 | 0.57% | 2 | 8.33% |
Ingo Molnar | 3 | 0.12% | 1 | 4.17% |
Uwe Kleine-König | 3 | 0.12% | 1 | 4.17% |
Andreas Westin | 3 | 0.12% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.08% | 1 | 4.17% |
Li Yang | 1 | 0.04% | 1 | 4.17% |
Peter Zijlstra | 1 | 0.04% | 1 | 4.17% |
Total | 2476 | 24 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Handle async block request by crypto hardware engine. * * Copyright (C) 2016 Linaro, Inc. * * Author: Baolin Wang <baolin.wang@linaro.org> */ #include <crypto/internal/aead.h> #include <crypto/internal/akcipher.h> #include <crypto/internal/engine.h> #include <crypto/internal/hash.h> #include <crypto/internal/kpp.h> #include <crypto/internal/skcipher.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/module.h> #include <uapi/linux/sched/types.h> #include "internal.h" #define CRYPTO_ENGINE_MAX_QLEN 10 /* Temporary algorithm flag used to indicate an updated driver. */ #define CRYPTO_ALG_ENGINE 0x200 struct crypto_engine_alg { struct crypto_alg base; struct crypto_engine_op op; }; /** * crypto_finalize_request - finalize one request if the request is done * @engine: the hardware engine * @req: the request need to be finalized * @err: error number */ static void crypto_finalize_request(struct crypto_engine *engine, struct crypto_async_request *req, int err) { unsigned long flags; /* * If hardware cannot enqueue more requests * and retry mechanism is not supported * make sure we are completing the current request */ if (!engine->retry_support) { spin_lock_irqsave(&engine->queue_lock, flags); if (engine->cur_req == req) { engine->cur_req = NULL; } spin_unlock_irqrestore(&engine->queue_lock, flags); } lockdep_assert_in_softirq(); crypto_request_complete(req, err); kthread_queue_work(engine->kworker, &engine->pump_requests); } /** * crypto_pump_requests - dequeue one request from engine queue to process * @engine: the hardware engine * @in_kthread: true if we are in the context of the request pump thread * * This function checks if there is any request in the engine queue that * needs processing and if so call out to the driver to initialize hardware * and handle each request. */ static void crypto_pump_requests(struct crypto_engine *engine, bool in_kthread) { struct crypto_async_request *async_req, *backlog; struct crypto_engine_alg *alg; struct crypto_engine_op *op; unsigned long flags; bool was_busy = false; int ret; spin_lock_irqsave(&engine->queue_lock, flags); /* Make sure we are not already running a request */ if (!engine->retry_support && engine->cur_req) goto out; /* If another context is idling then defer */ if (engine->idling) { kthread_queue_work(engine->kworker, &engine->pump_requests); goto out; } /* Check if the engine queue is idle */ if (!crypto_queue_len(&engine->queue) || !engine->running) { if (!engine->busy) goto out; /* Only do teardown in the thread */ if (!in_kthread) { kthread_queue_work(engine->kworker, &engine->pump_requests); goto out; } engine->busy = false; engine->idling = true; spin_unlock_irqrestore(&engine->queue_lock, flags); if (engine->unprepare_crypt_hardware && engine->unprepare_crypt_hardware(engine)) dev_err(engine->dev, "failed to unprepare crypt hardware\n"); spin_lock_irqsave(&engine->queue_lock, flags); engine->idling = false; goto out; } start_request: /* Get the fist request from the engine queue to handle */ backlog = crypto_get_backlog(&engine->queue); async_req = crypto_dequeue_request(&engine->queue); if (!async_req) goto out; /* * If hardware doesn't support the retry mechanism, * keep track of the request we are processing now. * We'll need it on completion (crypto_finalize_request). */ if (!engine->retry_support) engine->cur_req = async_req; if (engine->busy) was_busy = true; else engine->busy = true; spin_unlock_irqrestore(&engine->queue_lock, flags); /* Until here we get the request need to be encrypted successfully */ if (!was_busy && engine->prepare_crypt_hardware) { ret = engine->prepare_crypt_hardware(engine); if (ret) { dev_err(engine->dev, "failed to prepare crypt hardware\n"); goto req_err_1; } } if (async_req->tfm->__crt_alg->cra_flags & CRYPTO_ALG_ENGINE) { alg = container_of(async_req->tfm->__crt_alg, struct crypto_engine_alg, base); op = &alg->op; } else { dev_err(engine->dev, "failed to do request\n"); ret = -EINVAL; goto req_err_1; } ret = op->do_one_request(engine, async_req); /* Request unsuccessfully executed by hardware */ if (ret < 0) { /* * If hardware queue is full (-ENOSPC), requeue request * regardless of backlog flag. * Otherwise, unprepare and complete the request. */ if (!engine->retry_support || (ret != -ENOSPC)) { dev_err(engine->dev, "Failed to do one request from queue: %d\n", ret); goto req_err_1; } spin_lock_irqsave(&engine->queue_lock, flags); /* * If hardware was unable to execute request, enqueue it * back in front of crypto-engine queue, to keep the order * of requests. */ crypto_enqueue_request_head(&engine->queue, async_req); kthread_queue_work(engine->kworker, &engine->pump_requests); goto out; } goto retry; req_err_1: crypto_request_complete(async_req, ret); retry: if (backlog) crypto_request_complete(backlog, -EINPROGRESS); /* If retry mechanism is supported, send new requests to engine */ if (engine->retry_support) { spin_lock_irqsave(&engine->queue_lock, flags); goto start_request; } return; out: spin_unlock_irqrestore(&engine->queue_lock, flags); /* * Batch requests is possible only if * hardware can enqueue multiple requests */ if (engine->do_batch_requests) { ret = engine->do_batch_requests(engine); if (ret) dev_err(engine->dev, "failed to do batch requests: %d\n", ret); } return; } static void crypto_pump_work(struct kthread_work *work) { struct crypto_engine *engine = container_of(work, struct crypto_engine, pump_requests); crypto_pump_requests(engine, true); } /** * crypto_transfer_request - transfer the new request into the engine queue * @engine: the hardware engine * @req: the request need to be listed into the engine queue * @need_pump: indicates whether queue the pump of request to kthread_work */ static int crypto_transfer_request(struct crypto_engine *engine, struct crypto_async_request *req, bool need_pump) { unsigned long flags; int ret; spin_lock_irqsave(&engine->queue_lock, flags); if (!engine->running) { spin_unlock_irqrestore(&engine->queue_lock, flags); return -ESHUTDOWN; } ret = crypto_enqueue_request(&engine->queue, req); if (!engine->busy && need_pump) kthread_queue_work(engine->kworker, &engine->pump_requests); spin_unlock_irqrestore(&engine->queue_lock, flags); return ret; } /** * crypto_transfer_request_to_engine - transfer one request to list * into the engine queue * @engine: the hardware engine * @req: the request need to be listed into the engine queue */ static int crypto_transfer_request_to_engine(struct crypto_engine *engine, struct crypto_async_request *req) { return crypto_transfer_request(engine, req, true); } /** * crypto_transfer_aead_request_to_engine - transfer one aead_request * to list into the engine queue * @engine: the hardware engine * @req: the request need to be listed into the engine queue */ int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine, struct aead_request *req) { return crypto_transfer_request_to_engine(engine, &req->base); } EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine); /** * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request * to list into the engine queue * @engine: the hardware engine * @req: the request need to be listed into the engine queue */ int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine, struct akcipher_request *req) { return crypto_transfer_request_to_engine(engine, &req->base); } EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine); /** * crypto_transfer_hash_request_to_engine - transfer one ahash_request * to list into the engine queue * @engine: the hardware engine * @req: the request need to be listed into the engine queue */ int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine, struct ahash_request *req) { return crypto_transfer_request_to_engine(engine, &req->base); } EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine); /** * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list * into the engine queue * @engine: the hardware engine * @req: the request need to be listed into the engine queue */ int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine, struct kpp_request *req) { return crypto_transfer_request_to_engine(engine, &req->base); } EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine); /** * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request * to list into the engine queue * @engine: the hardware engine * @req: the request need to be listed into the engine queue */ int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine, struct skcipher_request *req) { return crypto_transfer_request_to_engine(engine, &req->base); } EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine); /** * crypto_finalize_aead_request - finalize one aead_request if * the request is done * @engine: the hardware engine * @req: the request need to be finalized * @err: error number */ void crypto_finalize_aead_request(struct crypto_engine *engine, struct aead_request *req, int err) { return crypto_finalize_request(engine, &req->base, err); } EXPORT_SYMBOL_GPL(crypto_finalize_aead_request); /** * crypto_finalize_akcipher_request - finalize one akcipher_request if * the request is done * @engine: the hardware engine * @req: the request need to be finalized * @err: error number */ void crypto_finalize_akcipher_request(struct crypto_engine *engine, struct akcipher_request *req, int err) { return crypto_finalize_request(engine, &req->base, err); } EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request); /** * crypto_finalize_hash_request - finalize one ahash_request if * the request is done * @engine: the hardware engine * @req: the request need to be finalized * @err: error number */ void crypto_finalize_hash_request(struct crypto_engine *engine, struct ahash_request *req, int err) { return crypto_finalize_request(engine, &req->base, err); } EXPORT_SYMBOL_GPL(crypto_finalize_hash_request); /** * crypto_finalize_kpp_request - finalize one kpp_request if the request is done * @engine: the hardware engine * @req: the request need to be finalized * @err: error number */ void crypto_finalize_kpp_request(struct crypto_engine *engine, struct kpp_request *req, int err) { return crypto_finalize_request(engine, &req->base, err); } EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request); /** * crypto_finalize_skcipher_request - finalize one skcipher_request if * the request is done * @engine: the hardware engine * @req: the request need to be finalized * @err: error number */ void crypto_finalize_skcipher_request(struct crypto_engine *engine, struct skcipher_request *req, int err) { return crypto_finalize_request(engine, &req->base, err); } EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request); /** * crypto_engine_start - start the hardware engine * @engine: the hardware engine need to be started * * Return 0 on success, else on fail. */ int crypto_engine_start(struct crypto_engine *engine) { unsigned long flags; spin_lock_irqsave(&engine->queue_lock, flags); if (engine->running || engine->busy) { spin_unlock_irqrestore(&engine->queue_lock, flags); return -EBUSY; } engine->running = true; spin_unlock_irqrestore(&engine->queue_lock, flags); kthread_queue_work(engine->kworker, &engine->pump_requests); return 0; } EXPORT_SYMBOL_GPL(crypto_engine_start); /** * crypto_engine_stop - stop the hardware engine * @engine: the hardware engine need to be stopped * * Return 0 on success, else on fail. */ int crypto_engine_stop(struct crypto_engine *engine) { unsigned long flags; unsigned int limit = 500; int ret = 0; spin_lock_irqsave(&engine->queue_lock, flags); /* * If the engine queue is not empty or the engine is on busy state, * we need to wait for a while to pump the requests of engine queue. */ while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) { spin_unlock_irqrestore(&engine->queue_lock, flags); msleep(20); spin_lock_irqsave(&engine->queue_lock, flags); } if (crypto_queue_len(&engine->queue) || engine->busy) ret = -EBUSY; else engine->running = false; spin_unlock_irqrestore(&engine->queue_lock, flags); if (ret) dev_warn(engine->dev, "could not stop engine\n"); return ret; } EXPORT_SYMBOL_GPL(crypto_engine_stop); /** * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure * and initialize it by setting the maximum number of entries in the software * crypto-engine queue. * @dev: the device attached with one hardware engine * @retry_support: whether hardware has support for retry mechanism * @cbk_do_batch: pointer to a callback function to be invoked when executing * a batch of requests. * This has the form: * callback(struct crypto_engine *engine) * where: * engine: the crypto engine structure. * @rt: whether this queue is set to run as a realtime task * @qlen: maximum size of the crypto-engine queue * * This must be called from context that can sleep. * Return: the crypto engine structure on success, else NULL. */ struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev, bool retry_support, int (*cbk_do_batch)(struct crypto_engine *engine), bool rt, int qlen) { struct crypto_engine *engine; if (!dev) return NULL; engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL); if (!engine) return NULL; engine->dev = dev; engine->rt = rt; engine->running = false; engine->busy = false; engine->idling = false; engine->retry_support = retry_support; engine->priv_data = dev; /* * Batch requests is possible only if * hardware has support for retry mechanism. */ engine->do_batch_requests = retry_support ? cbk_do_batch : NULL; snprintf(engine->name, sizeof(engine->name), "%s-engine", dev_name(dev)); crypto_init_queue(&engine->queue, qlen); spin_lock_init(&engine->queue_lock); engine->kworker = kthread_create_worker(0, "%s", engine->name); if (IS_ERR(engine->kworker)) { dev_err(dev, "failed to create crypto request pump task\n"); return NULL; } kthread_init_work(&engine->pump_requests, crypto_pump_work); if (engine->rt) { dev_info(dev, "will run requests pump with realtime priority\n"); sched_set_fifo(engine->kworker->task); } return engine; } EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set); /** * crypto_engine_alloc_init - allocate crypto hardware engine structure and * initialize it. * @dev: the device attached with one hardware engine * @rt: whether this queue is set to run as a realtime task * * This must be called from context that can sleep. * Return: the crypto engine structure on success, else NULL. */ struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) { return crypto_engine_alloc_init_and_set(dev, false, NULL, rt, CRYPTO_ENGINE_MAX_QLEN); } EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); /** * crypto_engine_exit - free the resources of hardware engine when exit * @engine: the hardware engine need to be freed */ void crypto_engine_exit(struct crypto_engine *engine) { int ret; ret = crypto_engine_stop(engine); if (ret) return; kthread_destroy_worker(engine->kworker); } EXPORT_SYMBOL_GPL(crypto_engine_exit); int crypto_engine_register_aead(struct aead_engine_alg *alg) { if (!alg->op.do_one_request) return -EINVAL; alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; return crypto_register_aead(&alg->base); } EXPORT_SYMBOL_GPL(crypto_engine_register_aead); void crypto_engine_unregister_aead(struct aead_engine_alg *alg) { crypto_unregister_aead(&alg->base); } EXPORT_SYMBOL_GPL(crypto_engine_unregister_aead); int crypto_engine_register_aeads(struct aead_engine_alg *algs, int count) { int i, ret; for (i = 0; i < count; i++) { ret = crypto_engine_register_aead(&algs[i]); if (ret) goto err; } return 0; err: crypto_engine_unregister_aeads(algs, i); return ret; } EXPORT_SYMBOL_GPL(crypto_engine_register_aeads); void crypto_engine_unregister_aeads(struct aead_engine_alg *algs, int count) { int i; for (i = count - 1; i >= 0; --i) crypto_engine_unregister_aead(&algs[i]); } EXPORT_SYMBOL_GPL(crypto_engine_unregister_aeads); int crypto_engine_register_ahash(struct ahash_engine_alg *alg) { if (!alg->op.do_one_request) return -EINVAL; alg->base.halg.base.cra_flags |= CRYPTO_ALG_ENGINE; return crypto_register_ahash(&alg->base); } EXPORT_SYMBOL_GPL(crypto_engine_register_ahash); void crypto_engine_unregister_ahash(struct ahash_engine_alg *alg) { crypto_unregister_ahash(&alg->base); } EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahash); int crypto_engine_register_ahashes(struct ahash_engine_alg *algs, int count) { int i, ret; for (i = 0; i < count; i++) { ret = crypto_engine_register_ahash(&algs[i]); if (ret) goto err; } return 0; err: crypto_engine_unregister_ahashes(algs, i); return ret; } EXPORT_SYMBOL_GPL(crypto_engine_register_ahashes); void crypto_engine_unregister_ahashes(struct ahash_engine_alg *algs, int count) { int i; for (i = count - 1; i >= 0; --i) crypto_engine_unregister_ahash(&algs[i]); } EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahashes); int crypto_engine_register_akcipher(struct akcipher_engine_alg *alg) { if (!alg->op.do_one_request) return -EINVAL; alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; return crypto_register_akcipher(&alg->base); } EXPORT_SYMBOL_GPL(crypto_engine_register_akcipher); void crypto_engine_unregister_akcipher(struct akcipher_engine_alg *alg) { crypto_unregister_akcipher(&alg->base); } EXPORT_SYMBOL_GPL(crypto_engine_unregister_akcipher); int crypto_engine_register_kpp(struct kpp_engine_alg *alg) { if (!alg->op.do_one_request) return -EINVAL; alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; return crypto_register_kpp(&alg->base); } EXPORT_SYMBOL_GPL(crypto_engine_register_kpp); void crypto_engine_unregister_kpp(struct kpp_engine_alg *alg) { crypto_unregister_kpp(&alg->base); } EXPORT_SYMBOL_GPL(crypto_engine_unregister_kpp); int crypto_engine_register_skcipher(struct skcipher_engine_alg *alg) { if (!alg->op.do_one_request) return -EINVAL; alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE; return crypto_register_skcipher(&alg->base); } EXPORT_SYMBOL_GPL(crypto_engine_register_skcipher); void crypto_engine_unregister_skcipher(struct skcipher_engine_alg *alg) { return crypto_unregister_skcipher(&alg->base); } EXPORT_SYMBOL_GPL(crypto_engine_unregister_skcipher); int crypto_engine_register_skciphers(struct skcipher_engine_alg *algs, int count) { int i, ret; for (i = 0; i < count; i++) { ret = crypto_engine_register_skcipher(&algs[i]); if (ret) goto err; } return 0; err: crypto_engine_unregister_skciphers(algs, i); return ret; } EXPORT_SYMBOL_GPL(crypto_engine_register_skciphers); void crypto_engine_unregister_skciphers(struct skcipher_engine_alg *algs, int count) { int i; for (i = count - 1; i >= 0; --i) crypto_engine_unregister_skcipher(&algs[i]); } EXPORT_SYMBOL_GPL(crypto_engine_unregister_skciphers); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Crypto hardware engine framework");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1