Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 4708 | 40.31% | 82 | 32.16% |
Tomer Tayar | 1463 | 12.53% | 42 | 16.47% |
Ofir Bitton | 1217 | 10.42% | 32 | 12.55% |
Dani Liberman | 1035 | 8.86% | 16 | 6.27% |
Ohad Sharabi | 881 | 7.54% | 17 | 6.67% |
Dafna Hirschfeld | 582 | 4.98% | 11 | 4.31% |
farah kassabri | 394 | 3.37% | 8 | 3.14% |
Moti Haimovski | 349 | 2.99% | 4 | 1.57% |
Koby Elbaz | 254 | 2.17% | 12 | 4.71% |
Omer Shpigelman | 254 | 2.17% | 12 | 4.71% |
Tal Cohen | 212 | 1.82% | 5 | 1.96% |
Bharat Jauhari | 158 | 1.35% | 3 | 1.18% |
Sagiv Ozeri | 75 | 0.64% | 1 | 0.39% |
Yuri Nudelman | 53 | 0.45% | 6 | 2.35% |
Dalit Ben Zoor | 36 | 0.31% | 1 | 0.39% |
Alon Mizrahi | 4 | 0.03% | 1 | 0.39% |
Colin Ian King | 3 | 0.03% | 1 | 0.39% |
Tom Rix | 2 | 0.02% | 1 | 0.39% |
Total | 11680 | 255 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2022 HabanaLabs, Ltd. * All Rights Reserved. */ #define pr_fmt(fmt) "habanalabs: " fmt #include <uapi/drm/habanalabs_accel.h> #include "habanalabs.h" #include <linux/pci.h> #include <linux/hwmon.h> #include <linux/vmalloc.h> #include <drm/drm_accel.h> #include <drm/drm_drv.h> #include <trace/events/habanalabs.h> #define HL_RESET_DELAY_USEC 10000 /* 10ms */ #define HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC 30 enum dma_alloc_type { DMA_ALLOC_COHERENT, DMA_ALLOC_POOL, }; #define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788 /* * hl_set_dram_bar- sets the bar to allow later access to address * * @hdev: pointer to habanalabs device structure. * @addr: the address the caller wants to access. * @region: the PCI region. * @new_bar_region_base: the new BAR region base address. * * @return: the old BAR base address on success, U64_MAX for failure. * The caller should set it back to the old address after use. * * In case the bar space does not cover the whole address space, * the bar base address should be set to allow access to a given address. * This function can be called also if the bar doesn't need to be set, * in that case it just won't change the base. */ static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region, u64 *new_bar_region_base) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 bar_base_addr, old_base; if (is_power_of_2(prop->dram_pci_bar_size)) bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull); else bar_base_addr = region->region_base + div64_u64((addr - region->region_base), prop->dram_pci_bar_size) * prop->dram_pci_bar_size; old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr); /* in case of success we need to update the new BAR base */ if ((old_base != U64_MAX) && new_bar_region_base) *new_bar_region_base = bar_base_addr; return old_base; } int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val, enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar) { struct pci_mem_region *region = &hdev->pci_mem_region[region_type]; u64 old_base = 0, rc, bar_region_base = region->region_base; void __iomem *acc_addr; if (set_dram_bar) { old_base = hl_set_dram_bar(hdev, addr, region, &bar_region_base); if (old_base == U64_MAX) return -EIO; } acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar + (addr - bar_region_base); switch (acc_type) { case DEBUGFS_READ8: *val = readb(acc_addr); break; case DEBUGFS_WRITE8: writeb(*val, acc_addr); break; case DEBUGFS_READ32: *val = readl(acc_addr); break; case DEBUGFS_WRITE32: writel(*val, acc_addr); break; case DEBUGFS_READ64: *val = readq(acc_addr); break; case DEBUGFS_WRITE64: writeq(*val, acc_addr); break; } if (set_dram_bar) { rc = hl_set_dram_bar(hdev, old_base, region, NULL); if (rc == U64_MAX) return -EIO; } return 0; } static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, gfp_t flag, enum dma_alloc_type alloc_type, const char *caller) { void *ptr = NULL; switch (alloc_type) { case DMA_ALLOC_COHERENT: ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag); break; case DMA_ALLOC_POOL: ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle); break; } if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr)) trace_habanalabs_dma_alloc(hdev->dev, (u64) (uintptr_t) ptr, *dma_handle, size, caller); return ptr; } static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr, dma_addr_t dma_handle, enum dma_alloc_type alloc_type, const char *caller) { /* this is needed to avoid warning on using freed pointer */ u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr; switch (alloc_type) { case DMA_ALLOC_COHERENT: hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle); break; case DMA_ALLOC_POOL: hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle); break; } trace_habanalabs_dma_free(hdev->dev, store_cpu_addr, dma_handle, size, caller); } void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle, gfp_t flag, const char *caller) { return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller); } void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr, dma_addr_t dma_handle, const char *caller) { hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller); } void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags, dma_addr_t *dma_handle, const char *caller) { return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller); } void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr, const char *caller) { hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller); } void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle) { return hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle); } void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr) { hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, vaddr); } int hl_dma_map_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir, const char *caller) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct scatterlist *sg; int rc, i; rc = hdev->asic_funcs->dma_map_sgtable(hdev, sgt, dir); if (rc) return rc; if (!trace_habanalabs_dma_map_page_enabled()) return 0; for_each_sgtable_dma_sg(sgt, sg, i) trace_habanalabs_dma_map_page(hdev->dev, page_to_phys(sg_page(sg)), sg->dma_address - prop->device_dma_offset_for_host_access, #ifdef CONFIG_NEED_SG_DMA_LENGTH sg->dma_length, #else sg->length, #endif dir, caller); return 0; } int hl_asic_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct scatterlist *sg; int rc, i; rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0); if (rc) return rc; /* Shift to the device's base physical address of host memory if necessary */ if (prop->device_dma_offset_for_host_access) for_each_sgtable_dma_sg(sgt, sg, i) sg->dma_address += prop->device_dma_offset_for_host_access; return 0; } void hl_dma_unmap_sgtable_caller(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir, const char *caller) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct scatterlist *sg; int i; hdev->asic_funcs->dma_unmap_sgtable(hdev, sgt, dir); if (trace_habanalabs_dma_unmap_page_enabled()) { for_each_sgtable_dma_sg(sgt, sg, i) trace_habanalabs_dma_unmap_page(hdev->dev, page_to_phys(sg_page(sg)), sg->dma_address - prop->device_dma_offset_for_host_access, #ifdef CONFIG_NEED_SG_DMA_LENGTH sg->dma_length, #else sg->length, #endif dir, caller); } } void hl_asic_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct scatterlist *sg; int i; /* Cancel the device's base physical address of host memory if necessary */ if (prop->device_dma_offset_for_host_access) for_each_sgtable_dma_sg(sgt, sg, i) sg->dma_address -= prop->device_dma_offset_for_host_access; dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0); } /* * hl_access_cfg_region - access the config region * * @hdev: pointer to habanalabs device structure * @addr: the address to access * @val: the value to write from or read to * @acc_type: the type of access (read/write 64/32) */ int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val, enum debugfs_access_type acc_type) { struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG]; u32 val_h, val_l; if (!IS_ALIGNED(addr, sizeof(u32))) { dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32)); return -EINVAL; } switch (acc_type) { case DEBUGFS_READ32: *val = RREG32(addr - cfg_region->region_base); break; case DEBUGFS_WRITE32: WREG32(addr - cfg_region->region_base, *val); break; case DEBUGFS_READ64: val_l = RREG32(addr - cfg_region->region_base); val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base); *val = (((u64) val_h) << 32) | val_l; break; case DEBUGFS_WRITE64: WREG32(addr - cfg_region->region_base, lower_32_bits(*val)); WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val)); break; default: dev_err(hdev->dev, "access type %d is not supported\n", acc_type); return -EOPNOTSUPP; } return 0; } /* * hl_access_dev_mem - access device memory * * @hdev: pointer to habanalabs device structure * @region_type: the type of the region the address belongs to * @addr: the address to access * @val: the value to write from or read to * @acc_type: the type of access (r/w, 32/64) */ int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type, u64 addr, u64 *val, enum debugfs_access_type acc_type) { switch (region_type) { case PCI_REGION_CFG: return hl_access_cfg_region(hdev, addr, val, acc_type); case PCI_REGION_SRAM: case PCI_REGION_DRAM: return hl_access_sram_dram_region(hdev, addr, val, acc_type, region_type, (region_type == PCI_REGION_DRAM)); default: return -EFAULT; } return 0; } void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...) { va_list args; int str_size; va_start(args, fmt); /* Calculate formatted string length. Assuming each string is null terminated, hence * increment result by 1 */ str_size = vsnprintf(NULL, 0, fmt, args) + 1; va_end(args); if ((e->actual_size + str_size) < e->allocated_buf_size) { va_start(args, fmt); vsnprintf(e->buf + e->actual_size, str_size, fmt, args); va_end(args); } /* Need to update the size even when not updating destination buffer to get the exact size * of all input strings */ e->actual_size += str_size; } enum hl_device_status hl_device_status(struct hl_device *hdev) { enum hl_device_status status; if (hdev->device_fini_pending) { status = HL_DEVICE_STATUS_MALFUNCTION; } else if (hdev->reset_info.in_reset) { if (hdev->reset_info.in_compute_reset) status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE; else status = HL_DEVICE_STATUS_IN_RESET; } else if (hdev->reset_info.needs_reset) { status = HL_DEVICE_STATUS_NEEDS_RESET; } else if (hdev->disabled) { status = HL_DEVICE_STATUS_MALFUNCTION; } else if (!hdev->init_done) { status = HL_DEVICE_STATUS_IN_DEVICE_CREATION; } else { status = HL_DEVICE_STATUS_OPERATIONAL; } return status; } bool hl_device_operational(struct hl_device *hdev, enum hl_device_status *status) { enum hl_device_status current_status; current_status = hl_device_status(hdev); if (status) *status = current_status; switch (current_status) { case HL_DEVICE_STATUS_MALFUNCTION: case HL_DEVICE_STATUS_IN_RESET: case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: case HL_DEVICE_STATUS_NEEDS_RESET: return false; case HL_DEVICE_STATUS_OPERATIONAL: case HL_DEVICE_STATUS_IN_DEVICE_CREATION: default: return true; } } bool hl_ctrl_device_operational(struct hl_device *hdev, enum hl_device_status *status) { enum hl_device_status current_status; current_status = hl_device_status(hdev); if (status) *status = current_status; switch (current_status) { case HL_DEVICE_STATUS_MALFUNCTION: return false; case HL_DEVICE_STATUS_IN_RESET: case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: case HL_DEVICE_STATUS_NEEDS_RESET: case HL_DEVICE_STATUS_OPERATIONAL: case HL_DEVICE_STATUS_IN_DEVICE_CREATION: default: return true; } } static void print_idle_status_mask(struct hl_device *hdev, const char *message, u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE]) { if (idle_mask[3]) dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx_%016llx)\n", message, idle_mask[3], idle_mask[2], idle_mask[1], idle_mask[0]); else if (idle_mask[2]) dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx)\n", message, idle_mask[2], idle_mask[1], idle_mask[0]); else if (idle_mask[1]) dev_err(hdev->dev, "%s (mask %#llx_%016llx)\n", message, idle_mask[1], idle_mask[0]); else dev_err(hdev->dev, "%s (mask %#llx)\n", message, idle_mask[0]); } static void hpriv_release(struct kref *ref) { u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0}; bool reset_device, device_is_idle = true; struct hl_fpriv *hpriv; struct hl_device *hdev; hpriv = container_of(ref, struct hl_fpriv, refcount); hdev = hpriv->hdev; hdev->asic_funcs->send_device_activity(hdev, false); hl_debugfs_remove_file(hpriv); mutex_destroy(&hpriv->ctx_lock); mutex_destroy(&hpriv->restore_phase_mutex); /* There should be no memory buffers at this point and handles IDR can be destroyed */ hl_mem_mgr_idr_destroy(&hpriv->mem_mgr); /* Device should be reset if reset-upon-device-release is enabled, or if there is a pending * reset that waits for device release. */ reset_device = hdev->reset_upon_device_release || hdev->reset_info.watchdog_active; /* Check the device idle status and reset if not idle. * Skip it if already in reset, or if device is going to be reset in any case. */ if (!hdev->reset_info.in_reset && !reset_device && !hdev->pldm) device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask, HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL); if (!device_is_idle) { print_idle_status_mask(hdev, "device is not idle after user context is closed", idle_mask); reset_device = true; } /* We need to remove the user from the list to make sure the reset process won't * try to kill the user process. Because, if we got here, it means there are no * more driver/device resources that the user process is occupying so there is * no need to kill it * * However, we can't set the compute_ctx to NULL at this stage. This is to prevent * a race between the release and opening the device again. We don't want to let * a user open the device while there a reset is about to happen. */ mutex_lock(&hdev->fpriv_list_lock); list_del(&hpriv->dev_node); mutex_unlock(&hdev->fpriv_list_lock); put_pid(hpriv->taskpid); if (reset_device) { hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE); } else { /* Scrubbing is handled within hl_device_reset(), so here need to do it directly */ int rc = hdev->asic_funcs->scrub_device_mem(hdev); if (rc) { dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc); hl_device_reset(hdev, HL_DRV_RESET_HARD); } } /* Now we can mark the compute_ctx as not active. Even if a reset is running in a different * thread, we don't care because the in_reset is marked so if a user will try to open * the device it will fail on that, even if compute_ctx is false. */ mutex_lock(&hdev->fpriv_list_lock); hdev->is_compute_ctx_active = false; mutex_unlock(&hdev->fpriv_list_lock); hdev->compute_ctx_in_release = 0; /* release the eventfd */ if (hpriv->notifier_event.eventfd) eventfd_ctx_put(hpriv->notifier_event.eventfd); mutex_destroy(&hpriv->notifier_event.lock); kfree(hpriv); } void hl_hpriv_get(struct hl_fpriv *hpriv) { kref_get(&hpriv->refcount); } int hl_hpriv_put(struct hl_fpriv *hpriv) { return kref_put(&hpriv->refcount, hpriv_release); } static void print_device_in_use_info(struct hl_device *hdev, const char *message) { u32 active_cs_num, dmabuf_export_cnt; bool unknown_reason = true; char buf[128]; size_t size; int offset; size = sizeof(buf); offset = 0; active_cs_num = hl_get_active_cs_num(hdev); if (active_cs_num) { unknown_reason = false; offset += scnprintf(buf + offset, size - offset, " [%u active CS]", active_cs_num); } dmabuf_export_cnt = atomic_read(&hdev->dmabuf_export_cnt); if (dmabuf_export_cnt) { unknown_reason = false; offset += scnprintf(buf + offset, size - offset, " [%u exported dma-buf]", dmabuf_export_cnt); } if (unknown_reason) scnprintf(buf + offset, size - offset, " [unknown reason]"); dev_notice(hdev->dev, "%s%s\n", message, buf); } /* * hl_device_release() - release function for habanalabs device. * @ddev: pointer to DRM device structure. * @file: pointer to DRM file private data structure. * * Called when process closes an habanalabs device */ void hl_device_release(struct drm_device *ddev, struct drm_file *file_priv) { struct hl_fpriv *hpriv = file_priv->driver_priv; struct hl_device *hdev = to_hl_device(ddev); if (!hdev) { pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n"); put_pid(hpriv->taskpid); } hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr); /* Memory buffers might be still in use at this point and thus the handles IDR destruction * is postponed to hpriv_release(). */ hl_mem_mgr_fini(&hpriv->mem_mgr); hdev->compute_ctx_in_release = 1; if (!hl_hpriv_put(hpriv)) { print_device_in_use_info(hdev, "User process closed FD but device still in use"); hl_device_reset(hdev, HL_DRV_RESET_HARD); } hdev->last_open_session_duration_jif = jiffies - hdev->last_successful_open_jif; } static int hl_device_release_ctrl(struct inode *inode, struct file *filp) { struct hl_fpriv *hpriv = filp->private_data; struct hl_device *hdev = hpriv->hdev; filp->private_data = NULL; if (!hdev) { pr_err("Closing FD after device was removed\n"); goto out; } mutex_lock(&hdev->fpriv_ctrl_list_lock); list_del(&hpriv->dev_node); mutex_unlock(&hdev->fpriv_ctrl_list_lock); out: put_pid(hpriv->taskpid); kfree(hpriv); return 0; } static int __hl_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma) { struct hl_device *hdev = hpriv->hdev; unsigned long vm_pgoff; if (!hdev) { pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n"); return -ENODEV; } vm_pgoff = vma->vm_pgoff; switch (vm_pgoff & HL_MMAP_TYPE_MASK) { case HL_MMAP_TYPE_BLOCK: vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff); return hl_hw_block_mmap(hpriv, vma); case HL_MMAP_TYPE_CB: case HL_MMAP_TYPE_TS_BUFF: return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL); } return -EINVAL; } /* * hl_mmap - mmap function for habanalabs device * * @*filp: pointer to file structure * @*vma: pointer to vm_area_struct of the process * * Called when process does an mmap on habanalabs device. Call the relevant mmap * function at the end of the common code. */ int hl_mmap(struct file *filp, struct vm_area_struct *vma) { struct drm_file *file_priv = filp->private_data; struct hl_fpriv *hpriv = file_priv->driver_priv; return __hl_mmap(hpriv, vma); } static const struct file_operations hl_ctrl_ops = { .owner = THIS_MODULE, .open = hl_device_open_ctrl, .release = hl_device_release_ctrl, .unlocked_ioctl = hl_ioctl_control, .compat_ioctl = hl_ioctl_control }; static void device_release_func(struct device *dev) { kfree(dev); } /* * device_init_cdev - Initialize cdev and device for habanalabs device * * @hdev: pointer to habanalabs device structure * @class: pointer to the class object of the device * @minor: minor number of the specific device * @fops: file operations to install for this device * @name: name of the device as it will appear in the filesystem * @cdev: pointer to the char device object that will be initialized * @dev: pointer to the device object that will be initialized * * Initialize a cdev and a Linux device for habanalabs's device. */ static int device_init_cdev(struct hl_device *hdev, const struct class *class, int minor, const struct file_operations *fops, char *name, struct cdev *cdev, struct device **dev) { cdev_init(cdev, fops); cdev->owner = THIS_MODULE; *dev = kzalloc(sizeof(**dev), GFP_KERNEL); if (!*dev) return -ENOMEM; device_initialize(*dev); (*dev)->devt = MKDEV(hdev->major, minor); (*dev)->class = class; (*dev)->release = device_release_func; dev_set_drvdata(*dev, hdev); dev_set_name(*dev, "%s", name); return 0; } static int cdev_sysfs_debugfs_add(struct hl_device *hdev) { const struct class *accel_class = hdev->drm.accel->kdev->class; char name[32]; int rc; hdev->cdev_idx = hdev->drm.accel->index; /* Initialize cdev and device structures for the control device */ snprintf(name, sizeof(name), "accel_controlD%d", hdev->cdev_idx); rc = device_init_cdev(hdev, accel_class, hdev->cdev_idx, &hl_ctrl_ops, name, &hdev->cdev_ctrl, &hdev->dev_ctrl); if (rc) return rc; rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl); if (rc) { dev_err(hdev->dev_ctrl, "failed to add an accel control char device to the system\n"); goto free_ctrl_device; } rc = hl_sysfs_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize sysfs\n"); goto delete_ctrl_cdev_device; } hl_debugfs_add_device(hdev); hdev->cdev_sysfs_debugfs_created = true; return 0; delete_ctrl_cdev_device: cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl); free_ctrl_device: put_device(hdev->dev_ctrl); return rc; } static void cdev_sysfs_debugfs_remove(struct hl_device *hdev) { if (!hdev->cdev_sysfs_debugfs_created) return; hl_sysfs_fini(hdev); cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl); put_device(hdev->dev_ctrl); } static void device_hard_reset_pending(struct work_struct *work) { struct hl_device_reset_work *device_reset_work = container_of(work, struct hl_device_reset_work, reset_work.work); struct hl_device *hdev = device_reset_work->hdev; u32 flags; int rc; flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR; rc = hl_device_reset(hdev, flags); if ((rc == -EBUSY) && !hdev->device_fini_pending) { struct hl_ctx *ctx = hl_get_compute_ctx(hdev); if (ctx) { /* The read refcount value should subtracted by one, because the read is * protected with hl_get_compute_ctx(). */ dev_info(hdev->dev, "Could not reset device (compute_ctx refcount %u). will try again in %u seconds", kref_read(&ctx->refcount) - 1, HL_PENDING_RESET_PER_SEC); hl_ctx_put(ctx); } else { dev_info(hdev->dev, "Could not reset device. will try again in %u seconds", HL_PENDING_RESET_PER_SEC); } queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work, msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000)); } } static void device_release_watchdog_func(struct work_struct *work) { struct hl_device_reset_work *watchdog_work = container_of(work, struct hl_device_reset_work, reset_work.work); struct hl_device *hdev = watchdog_work->hdev; u32 flags; dev_dbg(hdev->dev, "Device wasn't released in time. Initiate hard-reset.\n"); flags = watchdog_work->flags | HL_DRV_RESET_HARD | HL_DRV_RESET_FROM_WD_THR; hl_device_reset(hdev, flags); } /* * device_early_init - do some early initialization for the habanalabs device * * @hdev: pointer to habanalabs device structure * * Install the relevant function pointers and call the early_init function, * if such a function exists */ static int device_early_init(struct hl_device *hdev) { int i, rc; char workq_name[32]; switch (hdev->asic_type) { case ASIC_GOYA: goya_set_asic_funcs(hdev); strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name)); break; case ASIC_GAUDI: gaudi_set_asic_funcs(hdev); strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name)); break; case ASIC_GAUDI_SEC: gaudi_set_asic_funcs(hdev); strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name)); break; case ASIC_GAUDI2: gaudi2_set_asic_funcs(hdev); strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name)); break; case ASIC_GAUDI2B: gaudi2_set_asic_funcs(hdev); strscpy(hdev->asic_name, "GAUDI2B", sizeof(hdev->asic_name)); break; case ASIC_GAUDI2C: gaudi2_set_asic_funcs(hdev); strscpy(hdev->asic_name, "GAUDI2C", sizeof(hdev->asic_name)); break; default: dev_err(hdev->dev, "Unrecognized ASIC type %d\n", hdev->asic_type); return -EINVAL; } rc = hdev->asic_funcs->early_init(hdev); if (rc) return rc; rc = hl_asid_init(hdev); if (rc) goto early_fini; if (hdev->asic_prop.completion_queues_count) { hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count, sizeof(struct workqueue_struct *), GFP_KERNEL); if (!hdev->cq_wq) { rc = -ENOMEM; goto asid_fini; } } for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) { snprintf(workq_name, 32, "hl%u-free-jobs-%u", hdev->cdev_idx, (u32) i); hdev->cq_wq[i] = create_singlethread_workqueue(workq_name); if (hdev->cq_wq[i] == NULL) { dev_err(hdev->dev, "Failed to allocate CQ workqueue\n"); rc = -ENOMEM; goto free_cq_wq; } } snprintf(workq_name, 32, "hl%u-events", hdev->cdev_idx); hdev->eq_wq = create_singlethread_workqueue(workq_name); if (hdev->eq_wq == NULL) { dev_err(hdev->dev, "Failed to allocate EQ workqueue\n"); rc = -ENOMEM; goto free_cq_wq; } snprintf(workq_name, 32, "hl%u-cs-completions", hdev->cdev_idx); hdev->cs_cmplt_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0); if (!hdev->cs_cmplt_wq) { dev_err(hdev->dev, "Failed to allocate CS completions workqueue\n"); rc = -ENOMEM; goto free_eq_wq; } snprintf(workq_name, 32, "hl%u-ts-free-obj", hdev->cdev_idx); hdev->ts_free_obj_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0); if (!hdev->ts_free_obj_wq) { dev_err(hdev->dev, "Failed to allocate Timestamp registration free workqueue\n"); rc = -ENOMEM; goto free_cs_cmplt_wq; } snprintf(workq_name, 32, "hl%u-prefetch", hdev->cdev_idx); hdev->prefetch_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0); if (!hdev->prefetch_wq) { dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n"); rc = -ENOMEM; goto free_ts_free_wq; } hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info), GFP_KERNEL); if (!hdev->hl_chip_info) { rc = -ENOMEM; goto free_prefetch_wq; } rc = hl_mmu_if_set_funcs(hdev); if (rc) goto free_chip_info; hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr); snprintf(workq_name, 32, "hl%u_device_reset", hdev->cdev_idx); hdev->reset_wq = create_singlethread_workqueue(workq_name); if (!hdev->reset_wq) { rc = -ENOMEM; dev_err(hdev->dev, "Failed to create device reset WQ\n"); goto free_cb_mgr; } INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work, device_hard_reset_pending); hdev->device_reset_work.hdev = hdev; hdev->device_fini_pending = 0; INIT_DELAYED_WORK(&hdev->device_release_watchdog_work.reset_work, device_release_watchdog_func); hdev->device_release_watchdog_work.hdev = hdev; mutex_init(&hdev->send_cpu_message_lock); mutex_init(&hdev->debug_lock); INIT_LIST_HEAD(&hdev->cs_mirror_list); spin_lock_init(&hdev->cs_mirror_lock); spin_lock_init(&hdev->reset_info.lock); INIT_LIST_HEAD(&hdev->fpriv_list); INIT_LIST_HEAD(&hdev->fpriv_ctrl_list); mutex_init(&hdev->fpriv_list_lock); mutex_init(&hdev->fpriv_ctrl_list_lock); mutex_init(&hdev->clk_throttling.lock); return 0; free_cb_mgr: hl_mem_mgr_fini(&hdev->kernel_mem_mgr); hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr); free_chip_info: kfree(hdev->hl_chip_info); free_prefetch_wq: destroy_workqueue(hdev->prefetch_wq); free_ts_free_wq: destroy_workqueue(hdev->ts_free_obj_wq); free_cs_cmplt_wq: destroy_workqueue(hdev->cs_cmplt_wq); free_eq_wq: destroy_workqueue(hdev->eq_wq); free_cq_wq: for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) if (hdev->cq_wq[i]) destroy_workqueue(hdev->cq_wq[i]); kfree(hdev->cq_wq); asid_fini: hl_asid_fini(hdev); early_fini: if (hdev->asic_funcs->early_fini) hdev->asic_funcs->early_fini(hdev); return rc; } /* * device_early_fini - finalize all that was done in device_early_init * * @hdev: pointer to habanalabs device structure * */ static void device_early_fini(struct hl_device *hdev) { int i; mutex_destroy(&hdev->debug_lock); mutex_destroy(&hdev->send_cpu_message_lock); mutex_destroy(&hdev->fpriv_list_lock); mutex_destroy(&hdev->fpriv_ctrl_list_lock); mutex_destroy(&hdev->clk_throttling.lock); hl_mem_mgr_fini(&hdev->kernel_mem_mgr); hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr); kfree(hdev->hl_chip_info); destroy_workqueue(hdev->prefetch_wq); destroy_workqueue(hdev->ts_free_obj_wq); destroy_workqueue(hdev->cs_cmplt_wq); destroy_workqueue(hdev->eq_wq); destroy_workqueue(hdev->reset_wq); for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) destroy_workqueue(hdev->cq_wq[i]); kfree(hdev->cq_wq); hl_asid_fini(hdev); if (hdev->asic_funcs->early_fini) hdev->asic_funcs->early_fini(hdev); } static bool is_pci_link_healthy(struct hl_device *hdev) { u16 device_id; if (!hdev->pdev) return false; pci_read_config_word(hdev->pdev, PCI_DEVICE_ID, &device_id); return (device_id == hdev->pdev->device); } static int hl_device_eq_heartbeat_check(struct hl_device *hdev) { struct asic_fixed_properties *prop = &hdev->asic_prop; if (!prop->cpucp_info.eq_health_check_supported) return 0; if (hdev->eq_heartbeat_received) { hdev->eq_heartbeat_received = false; } else { dev_err(hdev->dev, "EQ heartbeat event was not received!\n"); return -EIO; } return 0; } static void hl_device_heartbeat(struct work_struct *work) { struct hl_device *hdev = container_of(work, struct hl_device, work_heartbeat.work); struct hl_info_fw_err_info info = {0}; u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE; /* Start heartbeat checks only after driver has enabled events from FW */ if (!hl_device_operational(hdev, NULL) || !hdev->init_done) goto reschedule; /* * For EQ health check need to check if driver received the heartbeat eq event * in order to validate the eq is working. * Only if both the EQ is healthy and we managed to send the next heartbeat reschedule. */ if ((!hl_device_eq_heartbeat_check(hdev)) && (!hdev->asic_funcs->send_heartbeat(hdev))) goto reschedule; if (hl_device_operational(hdev, NULL)) dev_err(hdev->dev, "Device heartbeat failed! PCI link is %s\n", is_pci_link_healthy(hdev) ? "healthy" : "broken"); info.err_type = HL_INFO_FW_HEARTBEAT_ERR; info.event_mask = &event_mask; hl_handle_fw_err(hdev, &info); hl_device_cond_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT, event_mask); return; reschedule: /* * prev_reset_trigger tracks consecutive fatal h/w errors until first * heartbeat immediately post reset. * If control reached here, then at least one heartbeat work has been * scheduled since last reset/init cycle. * So if the device is not already in reset cycle, reset the flag * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR * status for at least one heartbeat. From this point driver restarts * tracking future consecutive fatal errors. */ if (!hdev->reset_info.in_reset) hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT; schedule_delayed_work(&hdev->work_heartbeat, usecs_to_jiffies(HL_HEARTBEAT_PER_USEC)); } /* * device_late_init - do late stuff initialization for the habanalabs device * * @hdev: pointer to habanalabs device structure * * Do stuff that either needs the device H/W queues to be active or needs * to happen after all the rest of the initialization is finished */ static int device_late_init(struct hl_device *hdev) { int rc; if (hdev->asic_funcs->late_init) { rc = hdev->asic_funcs->late_init(hdev); if (rc) { dev_err(hdev->dev, "failed late initialization for the H/W\n"); return rc; } } hdev->high_pll = hdev->asic_prop.high_pll; if (hdev->heartbeat) { /* * Before scheduling the heartbeat driver will check if eq event has received. * for the first schedule we need to set the indication as true then for the next * one this indication will be true only if eq event was sent by FW. */ hdev->eq_heartbeat_received = true; INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat); schedule_delayed_work(&hdev->work_heartbeat, usecs_to_jiffies(HL_HEARTBEAT_PER_USEC)); } hdev->late_init_done = true; return 0; } /* * device_late_fini - finalize all that was done in device_late_init * * @hdev: pointer to habanalabs device structure * */ static void device_late_fini(struct hl_device *hdev) { if (!hdev->late_init_done) return; if (hdev->heartbeat) cancel_delayed_work_sync(&hdev->work_heartbeat); if (hdev->asic_funcs->late_fini) hdev->asic_funcs->late_fini(hdev); hdev->late_init_done = false; } int hl_device_utilization(struct hl_device *hdev, u32 *utilization) { u64 max_power, curr_power, dc_power, dividend, divisor; int rc; max_power = hdev->max_power; dc_power = hdev->asic_prop.dc_power_default; divisor = max_power - dc_power; if (!divisor) { dev_warn(hdev->dev, "device utilization is not supported\n"); return -EOPNOTSUPP; } rc = hl_fw_cpucp_power_get(hdev, &curr_power); if (rc) return rc; curr_power = clamp(curr_power, dc_power, max_power); dividend = (curr_power - dc_power) * 100; *utilization = (u32) div_u64(dividend, divisor); return 0; } int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable) { int rc = 0; mutex_lock(&hdev->debug_lock); if (!enable) { if (!hdev->in_debug) { dev_err(hdev->dev, "Failed to disable debug mode because device was not in debug mode\n"); rc = -EFAULT; goto out; } if (!hdev->reset_info.hard_reset_pending) hdev->asic_funcs->halt_coresight(hdev, ctx); hdev->in_debug = 0; goto out; } if (hdev->in_debug) { dev_err(hdev->dev, "Failed to enable debug mode because device is already in debug mode\n"); rc = -EFAULT; goto out; } hdev->in_debug = 1; out: mutex_unlock(&hdev->debug_lock); return rc; } static void take_release_locks(struct hl_device *hdev) { /* Flush anyone that is inside the critical section of enqueue * jobs to the H/W */ hdev->asic_funcs->hw_queues_lock(hdev); hdev->asic_funcs->hw_queues_unlock(hdev); /* Flush processes that are sending message to CPU */ mutex_lock(&hdev->send_cpu_message_lock); mutex_unlock(&hdev->send_cpu_message_lock); /* Flush anyone that is inside device open */ mutex_lock(&hdev->fpriv_list_lock); mutex_unlock(&hdev->fpriv_list_lock); mutex_lock(&hdev->fpriv_ctrl_list_lock); mutex_unlock(&hdev->fpriv_ctrl_list_lock); } static void hl_abort_waiting_for_completions(struct hl_device *hdev) { hl_abort_waiting_for_cs_completions(hdev); /* Release all pending user interrupts, each pending user interrupt * holds a reference to a user context. */ hl_release_pending_user_interrupts(hdev); } static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset, bool skip_wq_flush) { if (hard_reset) device_late_fini(hdev); /* * Halt the engines and disable interrupts so we won't get any more * completions from H/W and we won't have any accesses from the * H/W to the host machine */ hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset); /* Go over all the queues, release all CS and their jobs */ hl_cs_rollback_all(hdev, skip_wq_flush); /* flush the MMU prefetch workqueue */ flush_workqueue(hdev->prefetch_wq); hl_abort_waiting_for_completions(hdev); } /* * hl_device_suspend - initiate device suspend * * @hdev: pointer to habanalabs device structure * * Puts the hw in the suspend state (all asics). * Returns 0 for success or an error on failure. * Called at driver suspend. */ int hl_device_suspend(struct hl_device *hdev) { int rc; pci_save_state(hdev->pdev); /* Block future CS/VM/JOB completion operations */ spin_lock(&hdev->reset_info.lock); if (hdev->reset_info.in_reset) { spin_unlock(&hdev->reset_info.lock); dev_err(hdev->dev, "Can't suspend while in reset\n"); return -EIO; } hdev->reset_info.in_reset = 1; spin_unlock(&hdev->reset_info.lock); /* This blocks all other stuff that is not blocked by in_reset */ hdev->disabled = true; take_release_locks(hdev); rc = hdev->asic_funcs->suspend(hdev); if (rc) dev_err(hdev->dev, "Failed to disable PCI access of device CPU\n"); /* Shut down the device */ pci_disable_device(hdev->pdev); pci_set_power_state(hdev->pdev, PCI_D3hot); return 0; } /* * hl_device_resume - initiate device resume * * @hdev: pointer to habanalabs device structure * * Bring the hw back to operating state (all asics). * Returns 0 for success or an error on failure. * Called at driver resume. */ int hl_device_resume(struct hl_device *hdev) { int rc; pci_set_power_state(hdev->pdev, PCI_D0); pci_restore_state(hdev->pdev); rc = pci_enable_device_mem(hdev->pdev); if (rc) { dev_err(hdev->dev, "Failed to enable PCI device in resume\n"); return rc; } pci_set_master(hdev->pdev); rc = hdev->asic_funcs->resume(hdev); if (rc) { dev_err(hdev->dev, "Failed to resume device after suspend\n"); goto disable_device; } /* 'in_reset' was set to true during suspend, now we must clear it in order * for hard reset to be performed */ spin_lock(&hdev->reset_info.lock); hdev->reset_info.in_reset = 0; spin_unlock(&hdev->reset_info.lock); rc = hl_device_reset(hdev, HL_DRV_RESET_HARD); if (rc) { dev_err(hdev->dev, "Failed to reset device during resume\n"); goto disable_device; } return 0; disable_device: pci_disable_device(hdev->pdev); return rc; } static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev) { struct task_struct *task = NULL; struct list_head *hpriv_list; struct hl_fpriv *hpriv; struct mutex *hpriv_lock; u32 pending_cnt; hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock; hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list; /* Giving time for user to close FD, and for processes that are inside * hl_device_open to finish */ if (!list_empty(hpriv_list)) ssleep(1); if (timeout) { pending_cnt = timeout; } else { if (hdev->process_kill_trial_cnt) { /* Processes have been already killed */ pending_cnt = 1; goto wait_for_processes; } else { /* Wait a small period after process kill */ pending_cnt = HL_PENDING_RESET_PER_SEC; } } mutex_lock(hpriv_lock); /* This section must be protected because we are dereferencing * pointers that are freed if the process exits */ list_for_each_entry(hpriv, hpriv_list, dev_node) { task = get_pid_task(hpriv->taskpid, PIDTYPE_PID); if (task) { dev_info(hdev->dev, "Killing user process pid=%d\n", task_pid_nr(task)); send_sig(SIGKILL, task, 1); usleep_range(1000, 10000); put_task_struct(task); } else { dev_dbg(hdev->dev, "Can't get task struct for user process %d, process was killed from outside the driver\n", pid_nr(hpriv->taskpid)); } } mutex_unlock(hpriv_lock); /* * We killed the open users, but that doesn't mean they are closed. * It could be that they are running a long cleanup phase in the driver * e.g. MMU unmappings, or running other long teardown flow even before * our cleanup. * Therefore we need to wait again to make sure they are closed before * continuing with the reset. */ wait_for_processes: while ((!list_empty(hpriv_list)) && (pending_cnt)) { dev_dbg(hdev->dev, "Waiting for all unmap operations to finish before hard reset\n"); pending_cnt--; ssleep(1); } /* All processes exited successfully */ if (list_empty(hpriv_list)) return 0; /* Give up waiting for processes to exit */ if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS) return -ETIME; hdev->process_kill_trial_cnt++; return -EBUSY; } static void device_disable_open_processes(struct hl_device *hdev, bool control_dev) { struct list_head *hpriv_list; struct hl_fpriv *hpriv; struct mutex *hpriv_lock; hpriv_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock; hpriv_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list; mutex_lock(hpriv_lock); list_for_each_entry(hpriv, hpriv_list, dev_node) hpriv->hdev = NULL; mutex_unlock(hpriv_lock); } static void send_disable_pci_access(struct hl_device *hdev, u32 flags) { /* If reset is due to heartbeat, device CPU is no responsive in * which case no point sending PCI disable message to it. */ if ((flags & HL_DRV_RESET_HARD) && !(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) { /* Disable PCI access from device F/W so he won't send * us additional interrupts. We disable MSI/MSI-X at * the halt_engines function and we can't have the F/W * sending us interrupts after that. We need to disable * the access here because if the device is marked * disable, the message won't be send. Also, in case * of heartbeat, the device CPU is marked as disable * so this message won't be sent */ if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0)) { dev_warn(hdev->dev, "Failed to disable FW's PCI access\n"); return; } /* verify that last EQs are handled before disabled is set */ if (hdev->cpu_queues_enable) synchronize_irq(pci_irq_vector(hdev->pdev, hdev->asic_prop.eq_interrupt_id)); } } static void handle_reset_trigger(struct hl_device *hdev, u32 flags) { u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT; /* No consecutive mechanism when user context exists */ if (hdev->is_compute_ctx_active) return; /* * 'reset cause' is being updated here, because getting here * means that it's the 1st time and the last time we're here * ('in_reset' makes sure of it). This makes sure that * 'reset_cause' will continue holding its 1st recorded reason! */ if (flags & HL_DRV_RESET_HEARTBEAT) { hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT; cur_reset_trigger = HL_DRV_RESET_HEARTBEAT; } else if (flags & HL_DRV_RESET_TDR) { hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR; cur_reset_trigger = HL_DRV_RESET_TDR; } else if (flags & HL_DRV_RESET_FW_FATAL_ERR) { hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN; cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR; } else { hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN; } /* * If reset cause is same twice, then reset_trigger_repeated * is set and if this reset is due to a fatal FW error * device is set to an unstable state. */ if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) { hdev->reset_info.prev_reset_trigger = cur_reset_trigger; hdev->reset_info.reset_trigger_repeated = 0; } else { hdev->reset_info.reset_trigger_repeated = 1; } } /* * hl_device_reset - reset the device * * @hdev: pointer to habanalabs device structure * @flags: reset flags. * * Block future CS and wait for pending CS to be enqueued * Call ASIC H/W fini * Flush all completions * Re-initialize all internal data structures * Call ASIC H/W init, late_init * Test queues * Enable device * * Returns 0 for success or an error on failure. */ int hl_device_reset(struct hl_device *hdev, u32 flags) { bool hard_reset, from_hard_reset_thread, fw_reset, reset_upon_device_release, schedule_hard_reset = false, delay_reset, from_dev_release, from_watchdog_thread; u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0}; struct hl_ctx *ctx; int i, rc, hw_fini_rc; if (!hdev->init_done) { dev_err(hdev->dev, "Can't reset before initialization is done\n"); return 0; } hard_reset = !!(flags & HL_DRV_RESET_HARD); from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR); fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW); from_dev_release = !!(flags & HL_DRV_RESET_DEV_RELEASE); delay_reset = !!(flags & HL_DRV_RESET_DELAY); from_watchdog_thread = !!(flags & HL_DRV_RESET_FROM_WD_THR); reset_upon_device_release = hdev->reset_upon_device_release && from_dev_release; if (!hard_reset && (hl_device_status(hdev) == HL_DEVICE_STATUS_MALFUNCTION)) { dev_dbg(hdev->dev, "soft-reset isn't supported on a malfunctioning device\n"); return 0; } if (!hard_reset && !hdev->asic_prop.supports_compute_reset) { dev_dbg(hdev->dev, "asic doesn't support compute reset - do hard-reset instead\n"); hard_reset = true; } if (reset_upon_device_release) { if (hard_reset) { dev_crit(hdev->dev, "Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n"); return -EINVAL; } goto do_reset; } if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) { dev_dbg(hdev->dev, "asic doesn't allow inference soft reset - do hard-reset instead\n"); hard_reset = true; } do_reset: /* Re-entry of reset thread */ if (from_hard_reset_thread && hdev->process_kill_trial_cnt) goto kill_processes; /* * Prevent concurrency in this function - only one reset should be * done at any given time. We need to perform this only if we didn't * get here from a dedicated hard reset thread. */ if (!from_hard_reset_thread) { /* Block future CS/VM/JOB completion operations */ spin_lock(&hdev->reset_info.lock); if (hdev->reset_info.in_reset) { /* We allow scheduling of a hard reset only during a compute reset */ if (hard_reset && hdev->reset_info.in_compute_reset) hdev->reset_info.hard_reset_schedule_flags = flags; spin_unlock(&hdev->reset_info.lock); return 0; } /* This still allows the completion of some KDMA ops * Update this before in_reset because in_compute_reset implies we are in reset */ hdev->reset_info.in_compute_reset = !hard_reset; hdev->reset_info.in_reset = 1; spin_unlock(&hdev->reset_info.lock); /* Cancel the device release watchdog work if required. * In case of reset-upon-device-release while the release watchdog work is * scheduled due to a hard-reset, do hard-reset instead of compute-reset. */ if ((hard_reset || from_dev_release) && hdev->reset_info.watchdog_active) { struct hl_device_reset_work *watchdog_work = &hdev->device_release_watchdog_work; hdev->reset_info.watchdog_active = 0; if (!from_watchdog_thread) cancel_delayed_work_sync(&watchdog_work->reset_work); if (from_dev_release && (watchdog_work->flags & HL_DRV_RESET_HARD)) { hdev->reset_info.in_compute_reset = 0; flags |= HL_DRV_RESET_HARD; flags &= ~HL_DRV_RESET_DEV_RELEASE; hard_reset = true; } } if (delay_reset) usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1); escalate_reset_flow: handle_reset_trigger(hdev, flags); send_disable_pci_access(hdev, flags); /* This also blocks future CS/VM/JOB completion operations */ hdev->disabled = true; take_release_locks(hdev); if (hard_reset) dev_info(hdev->dev, "Going to reset device\n"); else if (reset_upon_device_release) dev_dbg(hdev->dev, "Going to reset device after release by user\n"); else dev_dbg(hdev->dev, "Going to reset engines of inference device\n"); } if ((hard_reset) && (!from_hard_reset_thread)) { hdev->reset_info.hard_reset_pending = true; hdev->process_kill_trial_cnt = 0; hdev->device_reset_work.flags = flags; /* * Because the reset function can't run from heartbeat work, * we need to call the reset function from a dedicated work. */ queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0); return 0; } cleanup_resources(hdev, hard_reset, fw_reset, from_dev_release); kill_processes: if (hard_reset) { /* Kill processes here after CS rollback. This is because the * process can't really exit until all its CSs are done, which * is what we do in cs rollback */ rc = device_kill_open_processes(hdev, 0, false); if (rc == -EBUSY) { if (hdev->device_fini_pending) { dev_crit(hdev->dev, "%s Failed to kill all open processes, stopping hard reset\n", dev_name(&(hdev)->pdev->dev)); goto out_err; } /* signal reset thread to reschedule */ return rc; } if (rc) { dev_crit(hdev->dev, "%s Failed to kill all open processes, stopping hard reset\n", dev_name(&(hdev)->pdev->dev)); goto out_err; } /* Flush the Event queue workers to make sure no other thread is * reading or writing to registers during the reset */ flush_workqueue(hdev->eq_wq); } /* Reset the H/W. It will be in idle state after this returns */ hw_fini_rc = hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset); if (hard_reset) { hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE; /* Release kernel context */ if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1) hdev->kernel_ctx = NULL; hl_vm_fini(hdev); hl_mmu_fini(hdev); hl_eq_reset(hdev, &hdev->event_queue); } /* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */ hl_hw_queue_reset(hdev, hard_reset); for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) hl_cq_reset(hdev, &hdev->completion_queue[i]); /* Make sure the context switch phase will run again */ ctx = hl_get_compute_ctx(hdev); if (ctx) { atomic_set(&ctx->thread_ctx_switch_token, 1); ctx->thread_ctx_switch_wait_token = 0; hl_ctx_put(ctx); } if (hw_fini_rc) { rc = hw_fini_rc; goto out_err; } /* Finished tear-down, starting to re-initialize */ if (hard_reset) { hdev->device_cpu_disabled = false; hdev->reset_info.hard_reset_pending = false; /* * Put the device in an unusable state if there are 2 back to back resets due to * fatal errors. */ if (hdev->reset_info.reset_trigger_repeated && (hdev->reset_info.prev_reset_trigger == HL_DRV_RESET_FW_FATAL_ERR || hdev->reset_info.prev_reset_trigger == HL_DRV_RESET_HEARTBEAT)) { dev_crit(hdev->dev, "%s Consecutive fatal errors, stopping hard reset\n", dev_name(&(hdev)->pdev->dev)); rc = -EIO; goto out_err; } if (hdev->kernel_ctx) { dev_crit(hdev->dev, "%s kernel ctx was alive during hard reset, something is terribly wrong\n", dev_name(&(hdev)->pdev->dev)); rc = -EBUSY; goto out_err; } rc = hl_mmu_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to initialize MMU S/W after hard reset\n"); goto out_err; } /* Allocate the kernel context */ hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL); if (!hdev->kernel_ctx) { rc = -ENOMEM; hl_mmu_fini(hdev); goto out_err; } hdev->is_compute_ctx_active = false; rc = hl_ctx_init(hdev, hdev->kernel_ctx, true); if (rc) { dev_err(hdev->dev, "failed to init kernel ctx in hard reset\n"); kfree(hdev->kernel_ctx); hdev->kernel_ctx = NULL; hl_mmu_fini(hdev); goto out_err; } } /* Device is now enabled as part of the initialization requires * communication with the device firmware to get information that * is required for the initialization itself */ hdev->disabled = false; /* F/W security enabled indication might be updated after hard-reset */ if (hard_reset) { rc = hl_fw_read_preboot_status(hdev); if (rc) goto out_err; } rc = hdev->asic_funcs->hw_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize the H/W after reset\n"); goto out_err; } /* If device is not idle fail the reset process */ if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask, HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) { print_idle_status_mask(hdev, "device is not idle after reset", idle_mask); rc = -EIO; goto out_err; } /* Check that the communication with the device is working */ rc = hdev->asic_funcs->test_queues(hdev); if (rc) { dev_err(hdev->dev, "Failed to detect if device is alive after reset\n"); goto out_err; } if (hard_reset) { rc = device_late_init(hdev); if (rc) { dev_err(hdev->dev, "Failed late init after hard reset\n"); goto out_err; } rc = hl_vm_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to init memory module after hard reset\n"); goto out_err; } if (!hdev->asic_prop.fw_security_enabled) hl_fw_set_max_power(hdev); } else { rc = hdev->asic_funcs->compute_reset_late_init(hdev); if (rc) { if (reset_upon_device_release) dev_err(hdev->dev, "Failed late init in reset after device release\n"); else dev_err(hdev->dev, "Failed late init after compute reset\n"); goto out_err; } } rc = hdev->asic_funcs->scrub_device_mem(hdev); if (rc) { dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc); goto out_err; } spin_lock(&hdev->reset_info.lock); hdev->reset_info.in_compute_reset = 0; /* Schedule hard reset only if requested and if not already in hard reset. * We keep 'in_reset' enabled, so no other reset can go in during the hard * reset schedule */ if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags) schedule_hard_reset = true; else hdev->reset_info.in_reset = 0; spin_unlock(&hdev->reset_info.lock); hdev->reset_info.needs_reset = false; if (hard_reset) dev_info(hdev->dev, "Successfully finished resetting the %s device\n", dev_name(&(hdev)->pdev->dev)); else dev_dbg(hdev->dev, "Successfully finished resetting the %s device\n", dev_name(&(hdev)->pdev->dev)); if (hard_reset) { hdev->reset_info.hard_reset_cnt++; /* After reset is done, we are ready to receive events from * the F/W. We can't do it before because we will ignore events * and if those events are fatal, we won't know about it and * the device will be operational although it shouldn't be */ hdev->asic_funcs->enable_events_from_fw(hdev); } else { if (!reset_upon_device_release) hdev->reset_info.compute_reset_cnt++; if (schedule_hard_reset) { dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n"); flags = hdev->reset_info.hard_reset_schedule_flags; hdev->reset_info.hard_reset_schedule_flags = 0; hard_reset = true; goto escalate_reset_flow; } } return 0; out_err: hdev->disabled = true; spin_lock(&hdev->reset_info.lock); hdev->reset_info.in_compute_reset = 0; if (hard_reset) { dev_err(hdev->dev, "%s Failed to reset! Device is NOT usable\n", dev_name(&(hdev)->pdev->dev)); hdev->reset_info.hard_reset_cnt++; } else { if (reset_upon_device_release) { dev_err(hdev->dev, "Failed to reset device after user release\n"); flags &= ~HL_DRV_RESET_DEV_RELEASE; } else { dev_err(hdev->dev, "Failed to do compute reset\n"); hdev->reset_info.compute_reset_cnt++; } spin_unlock(&hdev->reset_info.lock); flags |= HL_DRV_RESET_HARD; hard_reset = true; goto escalate_reset_flow; } hdev->reset_info.in_reset = 0; spin_unlock(&hdev->reset_info.lock); return rc; } /* * hl_device_cond_reset() - conditionally reset the device. * @hdev: pointer to habanalabs device structure. * @reset_flags: reset flags. * @event_mask: events to notify user about. * * Conditionally reset the device, or alternatively schedule a watchdog work to reset the device * unless another reset precedes it. */ int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask) { struct hl_ctx *ctx = NULL; /* F/W reset cannot be postponed */ if (flags & HL_DRV_RESET_BYPASS_REQ_TO_FW) goto device_reset; /* Device release watchdog is relevant only if user exists and gets a reset notification */ if (!(event_mask & HL_NOTIFIER_EVENT_DEVICE_RESET)) { dev_err(hdev->dev, "Resetting device without a reset indication to user\n"); goto device_reset; } ctx = hl_get_compute_ctx(hdev); if (!ctx) goto device_reset; /* * There is no point in postponing the reset if user is not registered for events. * However if no eventfd_ctx exists but the device release watchdog is already scheduled, it * just implies that user has unregistered as part of handling a previous event. In this * case an immediate reset is not required. */ if (!ctx->hpriv->notifier_event.eventfd && !hdev->reset_info.watchdog_active) goto device_reset; /* Schedule the device release watchdog work unless reset is already in progress or if the * work is already scheduled. */ spin_lock(&hdev->reset_info.lock); if (hdev->reset_info.in_reset) { spin_unlock(&hdev->reset_info.lock); goto device_reset; } if (hdev->reset_info.watchdog_active) { hdev->device_release_watchdog_work.flags |= flags; goto out; } hdev->device_release_watchdog_work.flags = flags; dev_dbg(hdev->dev, "Device is going to be hard-reset in %u sec unless being released\n", hdev->device_release_watchdog_timeout_sec); schedule_delayed_work(&hdev->device_release_watchdog_work.reset_work, msecs_to_jiffies(hdev->device_release_watchdog_timeout_sec * 1000)); hdev->reset_info.watchdog_active = 1; out: spin_unlock(&hdev->reset_info.lock); hl_notifier_event_send_all(hdev, event_mask); hl_ctx_put(ctx); hl_abort_waiting_for_completions(hdev); return 0; device_reset: if (event_mask) hl_notifier_event_send_all(hdev, event_mask); if (ctx) hl_ctx_put(ctx); return hl_device_reset(hdev, flags | HL_DRV_RESET_HARD); } static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask) { mutex_lock(¬ifier_event->lock); notifier_event->events_mask |= event_mask; if (notifier_event->eventfd) eventfd_signal(notifier_event->eventfd); mutex_unlock(¬ifier_event->lock); } /* * hl_notifier_event_send_all - notify all user processes via eventfd * * @hdev: pointer to habanalabs device structure * @event_mask: the occurred event/s * Returns 0 for success or an error on failure. */ void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask) { struct hl_fpriv *hpriv; if (!event_mask) { dev_warn(hdev->dev, "Skip sending zero event"); return; } mutex_lock(&hdev->fpriv_list_lock); list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node) hl_notifier_event_send(&hpriv->notifier_event, event_mask); mutex_unlock(&hdev->fpriv_list_lock); } /* * hl_device_init - main initialization function for habanalabs device * * @hdev: pointer to habanalabs device structure * * Allocate an id for the device, do early initialization and then call the * ASIC specific initialization functions. Finally, create the cdev and the * Linux device to expose it to the user */ int hl_device_init(struct hl_device *hdev) { int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt; struct hl_ts_free_jobs *free_jobs_data; bool expose_interfaces_on_err = false; void *p; /* Initialize ASIC function pointers and perform early init */ rc = device_early_init(hdev); if (rc) goto out_disabled; user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count + hdev->asic_prop.user_interrupt_count; if (user_interrupt_cnt) { hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt), GFP_KERNEL); if (!hdev->user_interrupt) { rc = -ENOMEM; goto early_fini; } /* Timestamp records supported only if CQ supported in device */ if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) { for (i = 0 ; i < user_interrupt_cnt ; i++) { p = vzalloc(TIMESTAMP_FREE_NODES_NUM * sizeof(struct timestamp_reg_free_node)); if (!p) { rc = -ENOMEM; goto free_usr_intr_mem; } free_jobs_data = &hdev->user_interrupt[i].ts_free_jobs_data; free_jobs_data->free_nodes_pool = p; free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM; free_jobs_data->next_avail_free_node_idx = 0; } } } free_jobs_data = &hdev->common_user_cq_interrupt.ts_free_jobs_data; p = vzalloc(TIMESTAMP_FREE_NODES_NUM * sizeof(struct timestamp_reg_free_node)); if (!p) { rc = -ENOMEM; goto free_usr_intr_mem; } free_jobs_data->free_nodes_pool = p; free_jobs_data->free_nodes_length = TIMESTAMP_FREE_NODES_NUM; free_jobs_data->next_avail_free_node_idx = 0; /* * Start calling ASIC initialization. First S/W then H/W and finally * late init */ rc = hdev->asic_funcs->sw_init(hdev); if (rc) goto free_common_usr_intr_mem; /* initialize completion structure for multi CS wait */ hl_multi_cs_completion_init(hdev); /* * Initialize the H/W queues. Must be done before hw_init, because * there the addresses of the kernel queue are being written to the * registers of the device */ rc = hl_hw_queues_create(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize kernel queues\n"); goto sw_fini; } cq_cnt = hdev->asic_prop.completion_queues_count; /* * Initialize the completion queues. Must be done before hw_init, * because there the addresses of the completion queues are being * passed as arguments to request_irq */ if (cq_cnt) { hdev->completion_queue = kcalloc(cq_cnt, sizeof(*hdev->completion_queue), GFP_KERNEL); if (!hdev->completion_queue) { dev_err(hdev->dev, "failed to allocate completion queues\n"); rc = -ENOMEM; goto hw_queues_destroy; } } for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) { rc = hl_cq_init(hdev, &hdev->completion_queue[i], hdev->asic_funcs->get_queue_id_for_cq(hdev, i)); if (rc) { dev_err(hdev->dev, "failed to initialize completion queue\n"); goto cq_fini; } hdev->completion_queue[i].cq_idx = i; } hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs, sizeof(struct hl_cs *), GFP_KERNEL); if (!hdev->shadow_cs_queue) { rc = -ENOMEM; goto cq_fini; } /* * Initialize the event queue. Must be done before hw_init, * because there the address of the event queue is being * passed as argument to request_irq */ rc = hl_eq_init(hdev, &hdev->event_queue); if (rc) { dev_err(hdev->dev, "failed to initialize event queue\n"); goto free_shadow_cs_queue; } /* MMU S/W must be initialized before kernel context is created */ rc = hl_mmu_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n"); goto eq_fini; } /* Allocate the kernel context */ hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL); if (!hdev->kernel_ctx) { rc = -ENOMEM; goto mmu_fini; } hdev->is_compute_ctx_active = false; hdev->asic_funcs->state_dump_init(hdev); hdev->device_release_watchdog_timeout_sec = HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC; hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL; rc = hl_debugfs_device_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize debugfs entry structure\n"); kfree(hdev->kernel_ctx); goto mmu_fini; } /* The debugfs entry structure is accessed in hl_ctx_init(), so it must be called after * hl_debugfs_device_init(). */ rc = hl_ctx_init(hdev, hdev->kernel_ctx, true); if (rc) { dev_err(hdev->dev, "failed to initialize kernel context\n"); kfree(hdev->kernel_ctx); goto debugfs_device_fini; } rc = hl_cb_pool_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize CB pool\n"); goto release_ctx; } rc = hl_dec_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to initialize the decoder module\n"); goto cb_pool_fini; } /* * From this point, override rc (=0) in case of an error to allow debugging * (by adding char devices and creating sysfs/debugfs files as part of the error flow). */ expose_interfaces_on_err = true; /* Device is now enabled as part of the initialization requires * communication with the device firmware to get information that * is required for the initialization itself */ hdev->disabled = false; rc = hdev->asic_funcs->hw_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize the H/W\n"); rc = 0; goto out_disabled; } /* Check that the communication with the device is working */ rc = hdev->asic_funcs->test_queues(hdev); if (rc) { dev_err(hdev->dev, "Failed to detect if device is alive\n"); rc = 0; goto out_disabled; } rc = device_late_init(hdev); if (rc) { dev_err(hdev->dev, "Failed late initialization\n"); rc = 0; goto out_disabled; } dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n", hdev->asic_name, hdev->asic_prop.dram_size / SZ_1G); rc = hl_vm_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to initialize memory module\n"); rc = 0; goto out_disabled; } /* * Expose devices and sysfs/debugfs files to user. * From here there is no need to expose them in case of an error. */ expose_interfaces_on_err = false; rc = drm_dev_register(&hdev->drm, 0); if (rc) { dev_err(hdev->dev, "Failed to register DRM device, rc %d\n", rc); rc = 0; goto out_disabled; } rc = cdev_sysfs_debugfs_add(hdev); if (rc) { dev_err(hdev->dev, "Failed to add char devices and sysfs/debugfs files\n"); rc = 0; goto out_disabled; } /* Need to call this again because the max power might change, * depending on card type for certain ASICs */ if (hdev->asic_prop.set_max_power_on_device_init && !hdev->asic_prop.fw_security_enabled) hl_fw_set_max_power(hdev); /* * hl_hwmon_init() must be called after device_late_init(), because only * there we get the information from the device about which * hwmon-related sensors the device supports. * Furthermore, it must be done after adding the device to the system. */ rc = hl_hwmon_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to initialize hwmon\n"); rc = 0; goto out_disabled; } dev_notice(hdev->dev, "Successfully added device %s to habanalabs driver\n", dev_name(&(hdev)->pdev->dev)); /* After initialization is done, we are ready to receive events from * the F/W. We can't do it before because we will ignore events and if * those events are fatal, we won't know about it and the device will * be operational although it shouldn't be */ hdev->asic_funcs->enable_events_from_fw(hdev); hdev->init_done = true; return 0; cb_pool_fini: hl_cb_pool_fini(hdev); release_ctx: if (hl_ctx_put(hdev->kernel_ctx) != 1) dev_err(hdev->dev, "kernel ctx is still alive on initialization failure\n"); debugfs_device_fini: hl_debugfs_device_fini(hdev); mmu_fini: hl_mmu_fini(hdev); eq_fini: hl_eq_fini(hdev, &hdev->event_queue); free_shadow_cs_queue: kfree(hdev->shadow_cs_queue); cq_fini: for (i = 0 ; i < cq_ready_cnt ; i++) hl_cq_fini(hdev, &hdev->completion_queue[i]); kfree(hdev->completion_queue); hw_queues_destroy: hl_hw_queues_destroy(hdev); sw_fini: hdev->asic_funcs->sw_fini(hdev); free_common_usr_intr_mem: vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool); free_usr_intr_mem: if (user_interrupt_cnt) { for (i = 0 ; i < user_interrupt_cnt ; i++) { if (!hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool) break; vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool); } kfree(hdev->user_interrupt); } early_fini: device_early_fini(hdev); out_disabled: hdev->disabled = true; if (expose_interfaces_on_err) { drm_dev_register(&hdev->drm, 0); cdev_sysfs_debugfs_add(hdev); } pr_err("Failed to initialize accel%d. Device %s is NOT usable!\n", hdev->cdev_idx, dev_name(&hdev->pdev->dev)); return rc; } /* * hl_device_fini - main tear-down function for habanalabs device * * @hdev: pointer to habanalabs device structure * * Destroy the device, call ASIC fini functions and release the id */ void hl_device_fini(struct hl_device *hdev) { u32 user_interrupt_cnt; bool device_in_reset; ktime_t timeout; u64 reset_sec; int i, rc; dev_info(hdev->dev, "Removing device %s\n", dev_name(&(hdev)->pdev->dev)); hdev->device_fini_pending = 1; flush_delayed_work(&hdev->device_reset_work.reset_work); if (hdev->pldm) reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT; else reset_sec = HL_HARD_RESET_MAX_TIMEOUT; /* * This function is competing with the reset function, so try to * take the reset atomic and if we are already in middle of reset, * wait until reset function is finished. Reset function is designed * to always finish. However, in Gaudi, because of all the network * ports, the hard reset could take between 10-30 seconds */ timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000); spin_lock(&hdev->reset_info.lock); device_in_reset = !!hdev->reset_info.in_reset; if (!device_in_reset) hdev->reset_info.in_reset = 1; spin_unlock(&hdev->reset_info.lock); while (device_in_reset) { usleep_range(50, 200); spin_lock(&hdev->reset_info.lock); device_in_reset = !!hdev->reset_info.in_reset; if (!device_in_reset) hdev->reset_info.in_reset = 1; spin_unlock(&hdev->reset_info.lock); if (ktime_compare(ktime_get(), timeout) > 0) { dev_crit(hdev->dev, "%s Failed to remove device because reset function did not finish\n", dev_name(&(hdev)->pdev->dev)); return; } } cancel_delayed_work_sync(&hdev->device_release_watchdog_work.reset_work); /* Disable PCI access from device F/W so it won't send us additional * interrupts. We disable MSI/MSI-X at the halt_engines function and we * can't have the F/W sending us interrupts after that. We need to * disable the access here because if the device is marked disable, the * message won't be send. Also, in case of heartbeat, the device CPU is * marked as disable so this message won't be sent */ hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0); /* Mark device as disabled */ hdev->disabled = true; take_release_locks(hdev); hdev->reset_info.hard_reset_pending = true; hl_hwmon_fini(hdev); cleanup_resources(hdev, true, false, false); /* Kill processes here after CS rollback. This is because the process * can't really exit until all its CSs are done, which is what we * do in cs rollback */ dev_info(hdev->dev, "Waiting for all processes to exit (timeout of %u seconds)", HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI); hdev->process_kill_trial_cnt = 0; rc = device_kill_open_processes(hdev, HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI, false); if (rc) { dev_crit(hdev->dev, "Failed to kill all open processes (%d)\n", rc); device_disable_open_processes(hdev, false); } hdev->process_kill_trial_cnt = 0; rc = device_kill_open_processes(hdev, 0, true); if (rc) { dev_crit(hdev->dev, "Failed to kill all control device open processes (%d)\n", rc); device_disable_open_processes(hdev, true); } hl_cb_pool_fini(hdev); /* Reset the H/W. It will be in idle state after this returns */ rc = hdev->asic_funcs->hw_fini(hdev, true, false); if (rc) dev_err(hdev->dev, "hw_fini failed in device fini while removing device %d\n", rc); hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE; /* Release kernel context */ if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1)) dev_err(hdev->dev, "kernel ctx is still alive\n"); hl_dec_fini(hdev); hl_vm_fini(hdev); hl_mmu_fini(hdev); vfree(hdev->captured_err_info.page_fault_info.user_mappings); hl_eq_fini(hdev, &hdev->event_queue); kfree(hdev->shadow_cs_queue); for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) hl_cq_fini(hdev, &hdev->completion_queue[i]); kfree(hdev->completion_queue); user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count + hdev->asic_prop.user_interrupt_count; if (user_interrupt_cnt) { if (hdev->asic_prop.first_available_cq[0] != USHRT_MAX) { for (i = 0 ; i < user_interrupt_cnt ; i++) vfree(hdev->user_interrupt[i].ts_free_jobs_data.free_nodes_pool); } kfree(hdev->user_interrupt); } vfree(hdev->common_user_cq_interrupt.ts_free_jobs_data.free_nodes_pool); hl_hw_queues_destroy(hdev); /* Call ASIC S/W finalize function */ hdev->asic_funcs->sw_fini(hdev); device_early_fini(hdev); /* Hide devices and sysfs/debugfs files from user */ cdev_sysfs_debugfs_remove(hdev); drm_dev_unregister(&hdev->drm); hl_debugfs_device_fini(hdev); pr_info("removed device successfully\n"); } /* * MMIO register access helper functions. */ /* * hl_rreg - Read an MMIO register * * @hdev: pointer to habanalabs device structure * @reg: MMIO register offset (in bytes) * * Returns the value of the MMIO register we are asked to read * */ inline u32 hl_rreg(struct hl_device *hdev, u32 reg) { u32 val = readl(hdev->rmmio + reg); if (unlikely(trace_habanalabs_rreg32_enabled())) trace_habanalabs_rreg32(hdev->dev, reg, val); return val; } /* * hl_wreg - Write to an MMIO register * * @hdev: pointer to habanalabs device structure * @reg: MMIO register offset (in bytes) * @val: 32-bit value * * Writes the 32-bit value into the MMIO register * */ inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val) { if (unlikely(trace_habanalabs_wreg32_enabled())) trace_habanalabs_wreg32(hdev->dev, reg, val); writel(val, hdev->rmmio + reg); } void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, u8 flags) { struct razwi_info *razwi_info = &hdev->captured_err_info.razwi_info; if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) { dev_err(hdev->dev, "Number of possible razwi initiators (%u) exceeded limit (%u)\n", num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR); return; } /* In case it's the first razwi since the device was opened, capture its parameters */ if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info.razwi_detected, 0, 1)) return; razwi_info->razwi.timestamp = ktime_to_ns(ktime_get()); razwi_info->razwi.addr = addr; razwi_info->razwi.num_of_possible_engines = num_of_engines; memcpy(&razwi_info->razwi.engine_id[0], &engine_id[0], num_of_engines * sizeof(u16)); razwi_info->razwi.flags = flags; razwi_info->razwi_info_available = true; } void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines, u8 flags, u64 *event_mask) { hl_capture_razwi(hdev, addr, engine_id, num_of_engines, flags); if (event_mask) *event_mask |= HL_NOTIFIER_EVENT_RAZWI; } static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu) { struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info; struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; struct hl_vm_hash_node *hnode; struct hl_userptr *userptr; enum vm_type *vm_type; struct hl_ctx *ctx; u32 map_idx = 0; int i; /* Reset previous session count*/ pgf_info->num_of_user_mappings = 0; ctx = hl_get_compute_ctx(hdev); if (!ctx) { dev_err(hdev->dev, "Can't get user context for user mappings\n"); return; } mutex_lock(&ctx->mem_hash_lock); hash_for_each(ctx->mem_hash, i, hnode, node) { vm_type = hnode->ptr; if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) || ((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu)) pgf_info->num_of_user_mappings++; } if (!pgf_info->num_of_user_mappings) goto finish; /* In case we already allocated in previous session, need to release it before * allocating new buffer. */ vfree(pgf_info->user_mappings); pgf_info->user_mappings = vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping)); if (!pgf_info->user_mappings) { pgf_info->num_of_user_mappings = 0; goto finish; } hash_for_each(ctx->mem_hash, i, hnode, node) { vm_type = hnode->ptr; if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) { userptr = hnode->ptr; pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr; pgf_info->user_mappings[map_idx].size = userptr->size; map_idx++; } else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) { phys_pg_pack = hnode->ptr; pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr; pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size; map_idx++; } } finish: mutex_unlock(&ctx->mem_hash_lock); hl_ctx_put(ctx); } void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu) { struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info; /* Capture only the first page fault */ if (atomic_cmpxchg(&pgf_info->page_fault_detected, 0, 1)) return; pgf_info->page_fault.timestamp = ktime_to_ns(ktime_get()); pgf_info->page_fault.addr = addr; pgf_info->page_fault.engine_id = eng_id; hl_capture_user_mappings(hdev, is_pmmu); pgf_info->page_fault_info_available = true; } void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu, u64 *event_mask) { hl_capture_page_fault(hdev, addr, eng_id, is_pmmu); if (event_mask) *event_mask |= HL_NOTIFIER_EVENT_PAGE_FAULT; } static void hl_capture_hw_err(struct hl_device *hdev, u16 event_id) { struct hw_err_info *info = &hdev->captured_err_info.hw_err; /* Capture only the first HW err */ if (atomic_cmpxchg(&info->event_detected, 0, 1)) return; info->event.timestamp = ktime_to_ns(ktime_get()); info->event.event_id = event_id; info->event_info_available = true; } void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask) { hl_capture_hw_err(hdev, event_id); if (event_mask) *event_mask |= HL_NOTIFIER_EVENT_CRITICL_HW_ERR; } static void hl_capture_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *fw_info) { struct fw_err_info *info = &hdev->captured_err_info.fw_err; /* Capture only the first FW error */ if (atomic_cmpxchg(&info->event_detected, 0, 1)) return; info->event.timestamp = ktime_to_ns(ktime_get()); info->event.err_type = fw_info->err_type; if (fw_info->err_type == HL_INFO_FW_REPORTED_ERR) info->event.event_id = fw_info->event_id; info->event_info_available = true; } void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info) { hl_capture_fw_err(hdev, info); if (info->event_mask) *info->event_mask |= HL_NOTIFIER_EVENT_CRITICL_FW_ERR; } void hl_capture_engine_err(struct hl_device *hdev, u16 engine_id, u16 error_count) { struct engine_err_info *info = &hdev->captured_err_info.engine_err; /* Capture only the first engine error */ if (atomic_cmpxchg(&info->event_detected, 0, 1)) return; info->event.timestamp = ktime_to_ns(ktime_get()); info->event.engine_id = engine_id; info->event.error_count = error_count; info->event_info_available = true; } void hl_enable_err_info_capture(struct hl_error_info *captured_err_info) { vfree(captured_err_info->page_fault_info.user_mappings); memset(captured_err_info, 0, sizeof(struct hl_error_info)); atomic_set(&captured_err_info->cs_timeout.write_enable, 1); captured_err_info->undef_opcode.write_enable = true; } void hl_init_cpu_for_irq(struct hl_device *hdev) { #ifdef CONFIG_NUMA struct cpumask *available_mask = &hdev->irq_affinity_mask; int numa_node = hdev->pdev->dev.numa_node, i; static struct cpumask cpu_mask; if (numa_node < 0) return; if (!cpumask_and(&cpu_mask, cpumask_of_node(numa_node), cpu_online_mask)) { dev_err(hdev->dev, "No available affinities in current numa node\n"); return; } /* Remove HT siblings */ for_each_cpu(i, &cpu_mask) cpumask_set_cpu(cpumask_first(topology_sibling_cpumask(i)), available_mask); #endif } void hl_set_irq_affinity(struct hl_device *hdev, int irq) { if (cpumask_empty(&hdev->irq_affinity_mask)) { dev_dbg(hdev->dev, "affinity mask is empty\n"); return; } if (irq_set_affinity_and_hint(irq, &hdev->irq_affinity_mask)) dev_err(hdev->dev, "Failed setting irq %d affinity\n", irq); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1