Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeff Garzik | 4162 | 22.54% | 62 | 15.20% |
Tejun Heo | 2827 | 15.31% | 81 | 19.85% |
Hannes Reinecke | 2638 | 14.29% | 30 | 7.35% |
Damien Le Moal | 1541 | 8.35% | 34 | 8.33% |
Christoph Hellwig | 935 | 5.06% | 21 | 5.15% |
Paolo Bonzini | 845 | 4.58% | 2 | 0.49% |
Alan Cox | 564 | 3.05% | 7 | 1.72% |
Douglas Gilbert | 512 | 2.77% | 6 | 1.47% |
Albert Lee | 508 | 2.75% | 14 | 3.43% |
Shaun Tancheff | 478 | 2.59% | 3 | 0.74% |
Elias Oltmanns | 263 | 1.42% | 2 | 0.49% |
Bartlomiej Zolnierkiewicz | 246 | 1.33% | 8 | 1.96% |
Minwoo Im | 240 | 1.30% | 2 | 0.49% |
Grant Grundler | 235 | 1.27% | 1 | 0.25% |
Eran Tromer | 193 | 1.05% | 1 | 0.25% |
Martin K. Petersen | 187 | 1.01% | 6 | 1.47% |
Mark Lord | 166 | 0.90% | 7 | 1.72% |
Kristen Carlson Accardi | 161 | 0.87% | 3 | 0.74% |
Linus Walleij | 142 | 0.77% | 2 | 0.49% |
David Milburn | 132 | 0.71% | 1 | 0.25% |
Brian King | 124 | 0.67% | 4 | 0.98% |
John Garry | 122 | 0.66% | 3 | 0.74% |
Matthew Wilcox | 122 | 0.66% | 2 | 0.49% |
Jens Axboe | 112 | 0.61% | 5 | 1.23% |
Niklas Svensson (Niklas Cassel) | 81 | 0.44% | 5 | 1.23% |
Tom Yan | 73 | 0.40% | 9 | 2.21% |
Marc Carino | 73 | 0.40% | 1 | 0.25% |
Michael Christie | 66 | 0.36% | 2 | 0.49% |
James Bottomley | 58 | 0.31% | 3 | 0.74% |
Bart Van Assche | 49 | 0.27% | 4 | 0.98% |
Sergey Shtylyov | 47 | 0.25% | 4 | 0.98% |
Arnd Bergmann | 42 | 0.23% | 2 | 0.49% |
Ye Bin | 38 | 0.21% | 1 | 0.25% |
Keith Busch | 37 | 0.20% | 1 | 0.25% |
Eric Biggers | 31 | 0.17% | 2 | 0.49% |
George Kennedy | 31 | 0.17% | 1 | 0.25% |
Vinayak Kale | 29 | 0.16% | 2 | 0.49% |
Kees Cook | 28 | 0.15% | 1 | 0.25% |
Adam Manzanares | 27 | 0.15% | 2 | 0.49% |
Gwendal Grignou | 22 | 0.12% | 3 | 0.74% |
zhao, forrest | 18 | 0.10% | 1 | 0.25% |
Boaz Harrosh | 17 | 0.09% | 1 | 0.25% |
Wenchao Hao | 17 | 0.09% | 1 | 0.25% |
Lin Ming | 15 | 0.08% | 3 | 0.74% |
Shaohua Li | 13 | 0.07% | 2 | 0.49% |
David Howells | 13 | 0.07% | 1 | 0.25% |
Aaron Lu | 12 | 0.06% | 2 | 0.49% |
Brett M Russ | 12 | 0.06% | 1 | 0.25% |
Changcheng Deng | 11 | 0.06% | 1 | 0.25% |
Linus Torvalds | 10 | 0.05% | 2 | 0.49% |
Tony Battersby | 10 | 0.05% | 1 | 0.25% |
Arne Fitzenreiter | 9 | 0.05% | 1 | 0.25% |
Shin'ichiro Kawasaki | 9 | 0.05% | 1 | 0.25% |
Randy Dunlap | 8 | 0.04% | 4 | 0.98% |
Philip Pokorny | 8 | 0.04% | 1 | 0.25% |
Tony Jones | 8 | 0.04% | 1 | 0.25% |
Joe Perches | 7 | 0.04% | 1 | 0.25% |
Reimar Döffinger | 7 | 0.04% | 1 | 0.25% |
Jingoo Han | 6 | 0.03% | 1 | 0.25% |
Arjan van de Ven | 6 | 0.03% | 2 | 0.49% |
Nicolai Stange | 6 | 0.03% | 1 | 0.25% |
Colin Ian King | 5 | 0.03% | 1 | 0.25% |
Kay Sievers | 4 | 0.02% | 1 | 0.25% |
Yani Ioannou | 4 | 0.02% | 1 | 0.25% |
Krzysztof Mazur | 4 | 0.02% | 1 | 0.25% |
Rafael J. Wysocki | 3 | 0.02% | 1 | 0.25% |
Ondrej Zary | 3 | 0.02% | 1 | 0.25% |
Gustavo A. R. Silva | 3 | 0.02% | 1 | 0.25% |
Paul Gortmaker | 3 | 0.02% | 1 | 0.25% |
Linus Torvalds (pre-git) | 3 | 0.02% | 2 | 0.49% |
Jeff Raubitschek | 3 | 0.02% | 1 | 0.25% |
Mauro Carvalho Chehab | 2 | 0.01% | 2 | 0.49% |
Adrian Bunk | 2 | 0.01% | 1 | 0.25% |
Darrick J. Wong | 2 | 0.01% | 1 | 0.25% |
John W. Linville | 2 | 0.01% | 1 | 0.25% |
Nathan Chancellor | 2 | 0.01% | 1 | 0.25% |
Nicholas Krause | 1 | 0.01% | 1 | 0.25% |
FUJITA Tomonori | 1 | 0.01% | 1 | 0.25% |
Patrick Mochel | 1 | 0.01% | 1 | 0.25% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.25% |
Mike Anderson | 1 | 0.01% | 1 | 0.25% |
Tyler Erickson | 1 | 0.01% | 1 | 0.25% |
Al Viro | 1 | 0.01% | 1 | 0.25% |
Dan Carpenter | 1 | 0.01% | 1 | 0.25% |
Harvey Harrison | 1 | 0.01% | 1 | 0.25% |
Chengguang Xu | 1 | 0.01% | 1 | 0.25% |
Lucas De Marchi | 1 | 0.01% | 1 | 0.25% |
Total | 18465 | 408 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * libata-scsi.c - helper library for ATA * * Copyright 2003-2004 Red Hat, Inc. All rights reserved. * Copyright 2003-2004 Jeff Garzik * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/driver-api/libata.rst * * Hardware documentation available from * - http://www.t10.org/ * - http://www.t13.org/ */ #include <linux/compat.h> #include <linux/slab.h> #include <linux/kernel.h> #include <linux/blkdev.h> #include <linux/spinlock.h> #include <linux/export.h> #include <scsi/scsi.h> #include <scsi/scsi_host.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_device.h> #include <scsi/scsi_tcq.h> #include <scsi/scsi_transport.h> #include <linux/libata.h> #include <linux/hdreg.h> #include <linux/uaccess.h> #include <linux/suspend.h> #include <asm/unaligned.h> #include <linux/ioprio.h> #include <linux/of.h> #include "libata.h" #include "libata-transport.h" #define ATA_SCSI_RBUF_SIZE 2048 static DEFINE_SPINLOCK(ata_scsi_rbuf_lock); static u8 ata_scsi_rbuf[ATA_SCSI_RBUF_SIZE]; typedef unsigned int (*ata_xlat_func_t)(struct ata_queued_cmd *qc); static struct ata_device *__ata_scsi_find_dev(struct ata_port *ap, const struct scsi_device *scsidev); #define RW_RECOVERY_MPAGE 0x1 #define RW_RECOVERY_MPAGE_LEN 12 #define CACHE_MPAGE 0x8 #define CACHE_MPAGE_LEN 20 #define CONTROL_MPAGE 0xa #define CONTROL_MPAGE_LEN 12 #define ALL_MPAGES 0x3f #define ALL_SUB_MPAGES 0xff #define CDL_T2A_SUB_MPAGE 0x07 #define CDL_T2B_SUB_MPAGE 0x08 #define CDL_T2_SUB_MPAGE_LEN 232 #define ATA_FEATURE_SUB_MPAGE 0xf2 #define ATA_FEATURE_SUB_MPAGE_LEN 16 static const u8 def_rw_recovery_mpage[RW_RECOVERY_MPAGE_LEN] = { RW_RECOVERY_MPAGE, RW_RECOVERY_MPAGE_LEN - 2, (1 << 7), /* AWRE */ 0, /* read retry count */ 0, 0, 0, 0, 0, /* write retry count */ 0, 0, 0 }; static const u8 def_cache_mpage[CACHE_MPAGE_LEN] = { CACHE_MPAGE, CACHE_MPAGE_LEN - 2, 0, /* contains WCE, needs to be 0 for logic */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* contains DRA, needs to be 0 for logic */ 0, 0, 0, 0, 0, 0, 0 }; static const u8 def_control_mpage[CONTROL_MPAGE_LEN] = { CONTROL_MPAGE, CONTROL_MPAGE_LEN - 2, 2, /* DSENSE=0, GLTSD=1 */ 0, /* [QAM+QERR may be 1, see 05-359r1] */ 0, 0, 0, 0, 0xff, 0xff, 0, 30 /* extended self test time, see 05-359r1 */ }; static ssize_t ata_scsi_park_show(struct device *device, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(device); struct ata_port *ap; struct ata_link *link; struct ata_device *dev; unsigned long now; unsigned int msecs; int rc = 0; ap = ata_shost_to_port(sdev->host); spin_lock_irq(ap->lock); dev = ata_scsi_find_dev(ap, sdev); if (!dev) { rc = -ENODEV; goto unlock; } if (dev->flags & ATA_DFLAG_NO_UNLOAD) { rc = -EOPNOTSUPP; goto unlock; } link = dev->link; now = jiffies; if (ap->pflags & ATA_PFLAG_EH_IN_PROGRESS && link->eh_context.unloaded_mask & (1 << dev->devno) && time_after(dev->unpark_deadline, now)) msecs = jiffies_to_msecs(dev->unpark_deadline - now); else msecs = 0; unlock: spin_unlock_irq(ap->lock); return rc ? rc : sysfs_emit(buf, "%u\n", msecs); } static ssize_t ata_scsi_park_store(struct device *device, struct device_attribute *attr, const char *buf, size_t len) { struct scsi_device *sdev = to_scsi_device(device); struct ata_port *ap; struct ata_device *dev; int input; unsigned long flags; int rc; rc = kstrtoint(buf, 10, &input); if (rc) return rc; if (input < -2) return -EINVAL; if (input > ATA_TMOUT_MAX_PARK) { rc = -EOVERFLOW; input = ATA_TMOUT_MAX_PARK; } ap = ata_shost_to_port(sdev->host); spin_lock_irqsave(ap->lock, flags); dev = ata_scsi_find_dev(ap, sdev); if (unlikely(!dev)) { rc = -ENODEV; goto unlock; } if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) { rc = -EOPNOTSUPP; goto unlock; } if (input >= 0) { if (dev->flags & ATA_DFLAG_NO_UNLOAD) { rc = -EOPNOTSUPP; goto unlock; } dev->unpark_deadline = ata_deadline(jiffies, input); dev->link->eh_info.dev_action[dev->devno] |= ATA_EH_PARK; ata_port_schedule_eh(ap); complete(&ap->park_req_pending); } else { switch (input) { case -1: dev->flags &= ~ATA_DFLAG_NO_UNLOAD; break; case -2: dev->flags |= ATA_DFLAG_NO_UNLOAD; break; } } unlock: spin_unlock_irqrestore(ap->lock, flags); return rc ? rc : len; } DEVICE_ATTR(unload_heads, S_IRUGO | S_IWUSR, ata_scsi_park_show, ata_scsi_park_store); EXPORT_SYMBOL_GPL(dev_attr_unload_heads); bool ata_scsi_sense_is_valid(u8 sk, u8 asc, u8 ascq) { /* * If sk == NO_SENSE, and asc + ascq == NO ADDITIONAL SENSE INFORMATION, * then there is no sense data to add. */ if (sk == 0 && asc == 0 && ascq == 0) return false; /* If sk > COMPLETED, sense data is bogus. */ if (sk > COMPLETED) return false; return true; } void ata_scsi_set_sense(struct ata_device *dev, struct scsi_cmnd *cmd, u8 sk, u8 asc, u8 ascq) { bool d_sense = (dev->flags & ATA_DFLAG_D_SENSE); scsi_build_sense(cmd, d_sense, sk, asc, ascq); } void ata_scsi_set_sense_information(struct ata_device *dev, struct scsi_cmnd *cmd, const struct ata_taskfile *tf) { u64 information; information = ata_tf_read_block(tf, dev); if (information == U64_MAX) return; scsi_set_sense_information(cmd->sense_buffer, SCSI_SENSE_BUFFERSIZE, information); } static void ata_scsi_set_invalid_field(struct ata_device *dev, struct scsi_cmnd *cmd, u16 field, u8 bit) { ata_scsi_set_sense(dev, cmd, ILLEGAL_REQUEST, 0x24, 0x0); /* "Invalid field in CDB" */ scsi_set_sense_field_pointer(cmd->sense_buffer, SCSI_SENSE_BUFFERSIZE, field, bit, 1); } static void ata_scsi_set_invalid_parameter(struct ata_device *dev, struct scsi_cmnd *cmd, u16 field) { /* "Invalid field in parameter list" */ ata_scsi_set_sense(dev, cmd, ILLEGAL_REQUEST, 0x26, 0x0); scsi_set_sense_field_pointer(cmd->sense_buffer, SCSI_SENSE_BUFFERSIZE, field, 0xff, 0); } static struct attribute *ata_common_sdev_attrs[] = { &dev_attr_unload_heads.attr, NULL }; static const struct attribute_group ata_common_sdev_attr_group = { .attrs = ata_common_sdev_attrs }; const struct attribute_group *ata_common_sdev_groups[] = { &ata_common_sdev_attr_group, NULL }; EXPORT_SYMBOL_GPL(ata_common_sdev_groups); /** * ata_std_bios_param - generic bios head/sector/cylinder calculator used by sd. * @sdev: SCSI device for which BIOS geometry is to be determined * @bdev: block device associated with @sdev * @capacity: capacity of SCSI device * @geom: location to which geometry will be output * * Generic bios head/sector/cylinder calculator * used by sd. Most BIOSes nowadays expect a XXX/255/16 (CHS) * mapping. Some situations may arise where the disk is not * bootable if this is not used. * * LOCKING: * Defined by the SCSI layer. We don't really care. * * RETURNS: * Zero. */ int ata_std_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int geom[]) { geom[0] = 255; geom[1] = 63; sector_div(capacity, 255*63); geom[2] = capacity; return 0; } EXPORT_SYMBOL_GPL(ata_std_bios_param); /** * ata_scsi_unlock_native_capacity - unlock native capacity * @sdev: SCSI device to adjust device capacity for * * This function is called if a partition on @sdev extends beyond * the end of the device. It requests EH to unlock HPA. * * LOCKING: * Defined by the SCSI layer. Might sleep. */ void ata_scsi_unlock_native_capacity(struct scsi_device *sdev) { struct ata_port *ap = ata_shost_to_port(sdev->host); struct ata_device *dev; unsigned long flags; spin_lock_irqsave(ap->lock, flags); dev = ata_scsi_find_dev(ap, sdev); if (dev && dev->n_sectors < dev->n_native_sectors) { dev->flags |= ATA_DFLAG_UNLOCK_HPA; dev->link->eh_info.action |= ATA_EH_RESET; ata_port_schedule_eh(ap); } spin_unlock_irqrestore(ap->lock, flags); ata_port_wait_eh(ap); } EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity); /** * ata_get_identity - Handler for HDIO_GET_IDENTITY ioctl * @ap: target port * @sdev: SCSI device to get identify data for * @arg: User buffer area for identify data * * LOCKING: * Defined by the SCSI layer. We don't really care. * * RETURNS: * Zero on success, negative errno on error. */ static int ata_get_identity(struct ata_port *ap, struct scsi_device *sdev, void __user *arg) { struct ata_device *dev = ata_scsi_find_dev(ap, sdev); u16 __user *dst = arg; char buf[40]; if (!dev) return -ENOMSG; if (copy_to_user(dst, dev->id, ATA_ID_WORDS * sizeof(u16))) return -EFAULT; ata_id_string(dev->id, buf, ATA_ID_PROD, ATA_ID_PROD_LEN); if (copy_to_user(dst + ATA_ID_PROD, buf, ATA_ID_PROD_LEN)) return -EFAULT; ata_id_string(dev->id, buf, ATA_ID_FW_REV, ATA_ID_FW_REV_LEN); if (copy_to_user(dst + ATA_ID_FW_REV, buf, ATA_ID_FW_REV_LEN)) return -EFAULT; ata_id_string(dev->id, buf, ATA_ID_SERNO, ATA_ID_SERNO_LEN); if (copy_to_user(dst + ATA_ID_SERNO, buf, ATA_ID_SERNO_LEN)) return -EFAULT; return 0; } /** * ata_cmd_ioctl - Handler for HDIO_DRIVE_CMD ioctl * @scsidev: Device to which we are issuing command * @arg: User provided data for issuing command * * LOCKING: * Defined by the SCSI layer. We don't really care. * * RETURNS: * Zero on success, negative errno on error. */ int ata_cmd_ioctl(struct scsi_device *scsidev, void __user *arg) { int rc = 0; u8 sensebuf[SCSI_SENSE_BUFFERSIZE]; u8 scsi_cmd[MAX_COMMAND_SIZE]; u8 args[4], *argbuf = NULL; int argsize = 0; struct scsi_sense_hdr sshdr; const struct scsi_exec_args exec_args = { .sshdr = &sshdr, .sense = sensebuf, .sense_len = sizeof(sensebuf), }; int cmd_result; if (arg == NULL) return -EINVAL; if (copy_from_user(args, arg, sizeof(args))) return -EFAULT; memset(sensebuf, 0, sizeof(sensebuf)); memset(scsi_cmd, 0, sizeof(scsi_cmd)); if (args[3]) { argsize = ATA_SECT_SIZE * args[3]; argbuf = kmalloc(argsize, GFP_KERNEL); if (argbuf == NULL) { rc = -ENOMEM; goto error; } scsi_cmd[1] = (4 << 1); /* PIO Data-in */ scsi_cmd[2] = 0x0e; /* no off.line or cc, read from dev, block count in sector count field */ } else { scsi_cmd[1] = (3 << 1); /* Non-data */ scsi_cmd[2] = 0x20; /* cc but no off.line or data xfer */ } scsi_cmd[0] = ATA_16; scsi_cmd[4] = args[2]; if (args[0] == ATA_CMD_SMART) { /* hack -- ide driver does this too */ scsi_cmd[6] = args[3]; scsi_cmd[8] = args[1]; scsi_cmd[10] = ATA_SMART_LBAM_PASS; scsi_cmd[12] = ATA_SMART_LBAH_PASS; } else { scsi_cmd[6] = args[1]; } scsi_cmd[14] = args[0]; /* Good values for timeout and retries? Values below from scsi_ioctl_send_command() for default case... */ cmd_result = scsi_execute_cmd(scsidev, scsi_cmd, REQ_OP_DRV_IN, argbuf, argsize, 10 * HZ, 5, &exec_args); if (cmd_result < 0) { rc = cmd_result; goto error; } if (scsi_sense_valid(&sshdr)) {/* sense data available */ u8 *desc = sensebuf + 8; /* If we set cc then ATA pass-through will cause a * check condition even if no error. Filter that. */ if (scsi_status_is_check_condition(cmd_result)) { if (sshdr.sense_key == RECOVERED_ERROR && sshdr.asc == 0 && sshdr.ascq == 0x1d) cmd_result &= ~SAM_STAT_CHECK_CONDITION; } /* Send userspace a few ATA registers (same as drivers/ide) */ if (sensebuf[0] == 0x72 && /* format is "descriptor" */ desc[0] == 0x09) { /* code is "ATA Descriptor" */ args[0] = desc[13]; /* status */ args[1] = desc[3]; /* error */ args[2] = desc[5]; /* sector count (0:7) */ if (copy_to_user(arg, args, sizeof(args))) rc = -EFAULT; } } if (cmd_result) { rc = -EIO; goto error; } if ((argbuf) && copy_to_user(arg + sizeof(args), argbuf, argsize)) rc = -EFAULT; error: kfree(argbuf); return rc; } /** * ata_task_ioctl - Handler for HDIO_DRIVE_TASK ioctl * @scsidev: Device to which we are issuing command * @arg: User provided data for issuing command * * LOCKING: * Defined by the SCSI layer. We don't really care. * * RETURNS: * Zero on success, negative errno on error. */ int ata_task_ioctl(struct scsi_device *scsidev, void __user *arg) { int rc = 0; u8 sensebuf[SCSI_SENSE_BUFFERSIZE]; u8 scsi_cmd[MAX_COMMAND_SIZE]; u8 args[7]; struct scsi_sense_hdr sshdr; int cmd_result; const struct scsi_exec_args exec_args = { .sshdr = &sshdr, .sense = sensebuf, .sense_len = sizeof(sensebuf), }; if (arg == NULL) return -EINVAL; if (copy_from_user(args, arg, sizeof(args))) return -EFAULT; memset(sensebuf, 0, sizeof(sensebuf)); memset(scsi_cmd, 0, sizeof(scsi_cmd)); scsi_cmd[0] = ATA_16; scsi_cmd[1] = (3 << 1); /* Non-data */ scsi_cmd[2] = 0x20; /* cc but no off.line or data xfer */ scsi_cmd[4] = args[1]; scsi_cmd[6] = args[2]; scsi_cmd[8] = args[3]; scsi_cmd[10] = args[4]; scsi_cmd[12] = args[5]; scsi_cmd[13] = args[6] & 0x4f; scsi_cmd[14] = args[0]; /* Good values for timeout and retries? Values below from scsi_ioctl_send_command() for default case... */ cmd_result = scsi_execute_cmd(scsidev, scsi_cmd, REQ_OP_DRV_IN, NULL, 0, 10 * HZ, 5, &exec_args); if (cmd_result < 0) { rc = cmd_result; goto error; } if (scsi_sense_valid(&sshdr)) {/* sense data available */ u8 *desc = sensebuf + 8; /* If we set cc then ATA pass-through will cause a * check condition even if no error. Filter that. */ if (cmd_result & SAM_STAT_CHECK_CONDITION) { if (sshdr.sense_key == RECOVERED_ERROR && sshdr.asc == 0 && sshdr.ascq == 0x1d) cmd_result &= ~SAM_STAT_CHECK_CONDITION; } /* Send userspace ATA registers */ if (sensebuf[0] == 0x72 && /* format is "descriptor" */ desc[0] == 0x09) {/* code is "ATA Descriptor" */ args[0] = desc[13]; /* status */ args[1] = desc[3]; /* error */ args[2] = desc[5]; /* sector count (0:7) */ args[3] = desc[7]; /* lbal */ args[4] = desc[9]; /* lbam */ args[5] = desc[11]; /* lbah */ args[6] = desc[12]; /* select */ if (copy_to_user(arg, args, sizeof(args))) rc = -EFAULT; } } if (cmd_result) { rc = -EIO; goto error; } error: return rc; } static bool ata_ioc32(struct ata_port *ap) { if (ap->flags & ATA_FLAG_PIO_DMA) return true; if (ap->pflags & ATA_PFLAG_PIO32) return true; return false; } /* * This handles both native and compat commands, so anything added * here must have a compatible argument, or check in_compat_syscall() */ int ata_sas_scsi_ioctl(struct ata_port *ap, struct scsi_device *scsidev, unsigned int cmd, void __user *arg) { unsigned long val; int rc = -EINVAL; unsigned long flags; switch (cmd) { case HDIO_GET_32BIT: spin_lock_irqsave(ap->lock, flags); val = ata_ioc32(ap); spin_unlock_irqrestore(ap->lock, flags); #ifdef CONFIG_COMPAT if (in_compat_syscall()) return put_user(val, (compat_ulong_t __user *)arg); #endif return put_user(val, (unsigned long __user *)arg); case HDIO_SET_32BIT: val = (unsigned long) arg; rc = 0; spin_lock_irqsave(ap->lock, flags); if (ap->pflags & ATA_PFLAG_PIO32CHANGE) { if (val) ap->pflags |= ATA_PFLAG_PIO32; else ap->pflags &= ~ATA_PFLAG_PIO32; } else { if (val != ata_ioc32(ap)) rc = -EINVAL; } spin_unlock_irqrestore(ap->lock, flags); return rc; case HDIO_GET_IDENTITY: return ata_get_identity(ap, scsidev, arg); case HDIO_DRIVE_CMD: if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; return ata_cmd_ioctl(scsidev, arg); case HDIO_DRIVE_TASK: if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO)) return -EACCES; return ata_task_ioctl(scsidev, arg); default: rc = -ENOTTY; break; } return rc; } EXPORT_SYMBOL_GPL(ata_sas_scsi_ioctl); int ata_scsi_ioctl(struct scsi_device *scsidev, unsigned int cmd, void __user *arg) { return ata_sas_scsi_ioctl(ata_shost_to_port(scsidev->host), scsidev, cmd, arg); } EXPORT_SYMBOL_GPL(ata_scsi_ioctl); /** * ata_scsi_qc_new - acquire new ata_queued_cmd reference * @dev: ATA device to which the new command is attached * @cmd: SCSI command that originated this ATA command * * Obtain a reference to an unused ata_queued_cmd structure, * which is the basic libata structure representing a single * ATA command sent to the hardware. * * If a command was available, fill in the SCSI-specific * portions of the structure with information on the * current command. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Command allocated, or %NULL if none available. */ static struct ata_queued_cmd *ata_scsi_qc_new(struct ata_device *dev, struct scsi_cmnd *cmd) { struct ata_port *ap = dev->link->ap; struct ata_queued_cmd *qc; int tag; if (unlikely(ata_port_is_frozen(ap))) goto fail; if (ap->flags & ATA_FLAG_SAS_HOST) { /* * SAS hosts may queue > ATA_MAX_QUEUE commands so use * unique per-device budget token as a tag. */ if (WARN_ON_ONCE(cmd->budget_token >= ATA_MAX_QUEUE)) goto fail; tag = cmd->budget_token; } else { tag = scsi_cmd_to_rq(cmd)->tag; } qc = __ata_qc_from_tag(ap, tag); qc->tag = qc->hw_tag = tag; qc->ap = ap; qc->dev = dev; ata_qc_reinit(qc); qc->scsicmd = cmd; qc->scsidone = scsi_done; qc->sg = scsi_sglist(cmd); qc->n_elem = scsi_sg_count(cmd); if (scsi_cmd_to_rq(cmd)->rq_flags & RQF_QUIET) qc->flags |= ATA_QCFLAG_QUIET; return qc; fail: set_host_byte(cmd, DID_OK); set_status_byte(cmd, SAM_STAT_TASK_SET_FULL); scsi_done(cmd); return NULL; } static void ata_qc_set_pc_nbytes(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; qc->extrabytes = scmd->extra_len; qc->nbytes = scsi_bufflen(scmd) + qc->extrabytes; } /** * ata_to_sense_error - convert ATA error to SCSI error * @id: ATA device number * @drv_stat: value contained in ATA status register * @drv_err: value contained in ATA error register * @sk: the sense key we'll fill out * @asc: the additional sense code we'll fill out * @ascq: the additional sense code qualifier we'll fill out * * Converts an ATA error into a SCSI error. Fill out pointers to * SK, ASC, and ASCQ bytes for later use in fixed or descriptor * format sense blocks. * * LOCKING: * spin_lock_irqsave(host lock) */ static void ata_to_sense_error(unsigned id, u8 drv_stat, u8 drv_err, u8 *sk, u8 *asc, u8 *ascq) { int i; /* Based on the 3ware driver translation table */ static const unsigned char sense_table[][4] = { /* BBD|ECC|ID|MAR */ {0xd1, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command /* BBD|ECC|ID */ {0xd0, ABORTED_COMMAND, 0x00, 0x00}, // Device busy Aborted command /* ECC|MC|MARK */ {0x61, HARDWARE_ERROR, 0x00, 0x00}, // Device fault Hardware error /* ICRC|ABRT */ /* NB: ICRC & !ABRT is BBD */ {0x84, ABORTED_COMMAND, 0x47, 0x00}, // Data CRC error SCSI parity error /* MC|ID|ABRT|TRK0|MARK */ {0x37, NOT_READY, 0x04, 0x00}, // Unit offline Not ready /* MCR|MARK */ {0x09, NOT_READY, 0x04, 0x00}, // Unrecovered disk error Not ready /* Bad address mark */ {0x01, MEDIUM_ERROR, 0x13, 0x00}, // Address mark not found for data field /* TRK0 - Track 0 not found */ {0x02, HARDWARE_ERROR, 0x00, 0x00}, // Hardware error /* Abort: 0x04 is not translated here, see below */ /* Media change request */ {0x08, NOT_READY, 0x04, 0x00}, // FIXME: faking offline /* SRV/IDNF - ID not found */ {0x10, ILLEGAL_REQUEST, 0x21, 0x00}, // Logical address out of range /* MC - Media Changed */ {0x20, UNIT_ATTENTION, 0x28, 0x00}, // Not ready to ready change, medium may have changed /* ECC - Uncorrectable ECC error */ {0x40, MEDIUM_ERROR, 0x11, 0x04}, // Unrecovered read error /* BBD - block marked bad */ {0x80, MEDIUM_ERROR, 0x11, 0x04}, // Block marked bad Medium error, unrecovered read error {0xFF, 0xFF, 0xFF, 0xFF}, // END mark }; static const unsigned char stat_table[][4] = { /* Must be first because BUSY means no other bits valid */ {0x80, ABORTED_COMMAND, 0x47, 0x00}, // Busy, fake parity for now {0x40, ILLEGAL_REQUEST, 0x21, 0x04}, // Device ready, unaligned write command {0x20, HARDWARE_ERROR, 0x44, 0x00}, // Device fault, internal target failure {0x08, ABORTED_COMMAND, 0x47, 0x00}, // Timed out in xfer, fake parity for now {0x04, RECOVERED_ERROR, 0x11, 0x00}, // Recovered ECC error Medium error, recovered {0xFF, 0xFF, 0xFF, 0xFF}, // END mark }; /* * Is this an error we can process/parse */ if (drv_stat & ATA_BUSY) { drv_err = 0; /* Ignore the err bits, they're invalid */ } if (drv_err) { /* Look for drv_err */ for (i = 0; sense_table[i][0] != 0xFF; i++) { /* Look for best matches first */ if ((sense_table[i][0] & drv_err) == sense_table[i][0]) { *sk = sense_table[i][1]; *asc = sense_table[i][2]; *ascq = sense_table[i][3]; return; } } } /* * Fall back to interpreting status bits. Note that if the drv_err * has only the ABRT bit set, we decode drv_stat. ABRT by itself * is not descriptive enough. */ for (i = 0; stat_table[i][0] != 0xFF; i++) { if (stat_table[i][0] & drv_stat) { *sk = stat_table[i][1]; *asc = stat_table[i][2]; *ascq = stat_table[i][3]; return; } } /* * We need a sensible error return here, which is tricky, and one * that won't cause people to do things like return a disk wrongly. */ *sk = ABORTED_COMMAND; *asc = 0x00; *ascq = 0x00; } /* * ata_gen_passthru_sense - Generate check condition sense block. * @qc: Command that completed. * * This function is specific to the ATA descriptor format sense * block specified for the ATA pass through commands. Regardless * of whether the command errored or not, return a sense * block. Copy all controller registers into the sense * block. If there was no error, we get the request from an ATA * passthrough command, so we use the following sense data: * sk = RECOVERED ERROR * asc,ascq = ATA PASS-THROUGH INFORMATION AVAILABLE * * * LOCKING: * None. */ static void ata_gen_passthru_sense(struct ata_queued_cmd *qc) { struct scsi_cmnd *cmd = qc->scsicmd; struct ata_taskfile *tf = &qc->result_tf; unsigned char *sb = cmd->sense_buffer; unsigned char *desc = sb + 8; u8 sense_key, asc, ascq; memset(sb, 0, SCSI_SENSE_BUFFERSIZE); /* * Use ata_to_sense_error() to map status register bits * onto sense key, asc & ascq. */ if (qc->err_mask || tf->status & (ATA_BUSY | ATA_DF | ATA_ERR | ATA_DRQ)) { ata_to_sense_error(qc->ap->print_id, tf->status, tf->error, &sense_key, &asc, &ascq); ata_scsi_set_sense(qc->dev, cmd, sense_key, asc, ascq); } else { /* * ATA PASS-THROUGH INFORMATION AVAILABLE * Always in descriptor format sense. */ scsi_build_sense(cmd, 1, RECOVERED_ERROR, 0, 0x1D); } if ((cmd->sense_buffer[0] & 0x7f) >= 0x72) { u8 len; /* descriptor format */ len = sb[7]; desc = (char *)scsi_sense_desc_find(sb, len + 8, 9); if (!desc) { if (SCSI_SENSE_BUFFERSIZE < len + 14) return; sb[7] = len + 14; desc = sb + 8 + len; } desc[0] = 9; desc[1] = 12; /* * Copy registers into sense buffer. */ desc[2] = 0x00; desc[3] = tf->error; desc[5] = tf->nsect; desc[7] = tf->lbal; desc[9] = tf->lbam; desc[11] = tf->lbah; desc[12] = tf->device; desc[13] = tf->status; /* * Fill in Extend bit, and the high order bytes * if applicable. */ if (tf->flags & ATA_TFLAG_LBA48) { desc[2] |= 0x01; desc[4] = tf->hob_nsect; desc[6] = tf->hob_lbal; desc[8] = tf->hob_lbam; desc[10] = tf->hob_lbah; } } else { /* Fixed sense format */ desc[0] = tf->error; desc[1] = tf->status; desc[2] = tf->device; desc[3] = tf->nsect; desc[7] = 0; if (tf->flags & ATA_TFLAG_LBA48) { desc[8] |= 0x80; if (tf->hob_nsect) desc[8] |= 0x40; if (tf->hob_lbal || tf->hob_lbam || tf->hob_lbah) desc[8] |= 0x20; } desc[9] = tf->lbal; desc[10] = tf->lbam; desc[11] = tf->lbah; } } /** * ata_gen_ata_sense - generate a SCSI fixed sense block * @qc: Command that we are erroring out * * Generate sense block for a failed ATA command @qc. Descriptor * format is used to accommodate LBA48 block address. * * LOCKING: * None. */ static void ata_gen_ata_sense(struct ata_queued_cmd *qc) { struct ata_device *dev = qc->dev; struct scsi_cmnd *cmd = qc->scsicmd; struct ata_taskfile *tf = &qc->result_tf; unsigned char *sb = cmd->sense_buffer; u64 block; u8 sense_key, asc, ascq; memset(sb, 0, SCSI_SENSE_BUFFERSIZE); if (ata_dev_disabled(dev)) { /* Device disabled after error recovery */ /* LOGICAL UNIT NOT READY, HARD RESET REQUIRED */ ata_scsi_set_sense(dev, cmd, NOT_READY, 0x04, 0x21); return; } /* Use ata_to_sense_error() to map status register bits * onto sense key, asc & ascq. */ if (qc->err_mask || tf->status & (ATA_BUSY | ATA_DF | ATA_ERR | ATA_DRQ)) { ata_to_sense_error(qc->ap->print_id, tf->status, tf->error, &sense_key, &asc, &ascq); ata_scsi_set_sense(dev, cmd, sense_key, asc, ascq); } else { /* Could not decode error */ ata_dev_warn(dev, "could not decode error status 0x%x err_mask 0x%x\n", tf->status, qc->err_mask); ata_scsi_set_sense(dev, cmd, ABORTED_COMMAND, 0, 0); return; } block = ata_tf_read_block(&qc->result_tf, dev); if (block == U64_MAX) return; scsi_set_sense_information(sb, SCSI_SENSE_BUFFERSIZE, block); } void ata_scsi_sdev_config(struct scsi_device *sdev) { sdev->use_10_for_rw = 1; sdev->use_10_for_ms = 1; sdev->no_write_same = 1; /* Schedule policy is determined by ->qc_defer() callback and * it needs to see every deferred qc. Set dev_blocked to 1 to * prevent SCSI midlayer from automatically deferring * requests. */ sdev->max_device_blocked = 1; } /** * ata_scsi_dma_need_drain - Check whether data transfer may overflow * @rq: request to be checked * * ATAPI commands which transfer variable length data to host * might overflow due to application error or hardware bug. This * function checks whether overflow should be drained and ignored * for @request. * * LOCKING: * None. * * RETURNS: * 1 if ; otherwise, 0. */ bool ata_scsi_dma_need_drain(struct request *rq) { struct scsi_cmnd *scmd = blk_mq_rq_to_pdu(rq); return atapi_cmd_type(scmd->cmnd[0]) == ATAPI_MISC; } EXPORT_SYMBOL_GPL(ata_scsi_dma_need_drain); int ata_scsi_dev_config(struct scsi_device *sdev, struct queue_limits *lim, struct ata_device *dev) { struct request_queue *q = sdev->request_queue; int depth = 1; if (!ata_id_has_unload(dev->id)) dev->flags |= ATA_DFLAG_NO_UNLOAD; /* configure max sectors */ dev->max_sectors = min(dev->max_sectors, sdev->host->max_sectors); lim->max_hw_sectors = dev->max_sectors; if (dev->class == ATA_DEV_ATAPI) { sdev->sector_size = ATA_SECT_SIZE; /* set DMA padding */ blk_queue_update_dma_pad(q, ATA_DMA_PAD_SZ - 1); /* make room for appending the drain */ lim->max_segments--; sdev->dma_drain_len = ATAPI_MAX_DRAIN; sdev->dma_drain_buf = kmalloc(sdev->dma_drain_len, GFP_NOIO); if (!sdev->dma_drain_buf) { ata_dev_err(dev, "drain buffer allocation failed\n"); return -ENOMEM; } } else { sdev->sector_size = ata_id_logical_sector_size(dev->id); /* * Ask the sd driver to issue START STOP UNIT on runtime suspend * and resume and shutdown only. For system level suspend/resume, * devices power state is handled directly by libata EH. * Given that disks are always spun up on system resume, also * make sure that the sd driver forces runtime suspended disks * to be resumed to correctly reflect the power state of the * device. */ sdev->manage_runtime_start_stop = 1; sdev->manage_shutdown = 1; sdev->force_runtime_start_on_system_start = 1; } /* * ata_pio_sectors() expects buffer for each sector to not cross * page boundary. Enforce it by requiring buffers to be sector * aligned, which works iff sector_size is not larger than * PAGE_SIZE. ATAPI devices also need the alignment as * IDENTIFY_PACKET is executed as ATA_PROT_PIO. */ if (sdev->sector_size > PAGE_SIZE) ata_dev_warn(dev, "sector_size=%u > PAGE_SIZE, PIO may malfunction\n", sdev->sector_size); lim->dma_alignment = sdev->sector_size - 1; if (dev->flags & ATA_DFLAG_AN) set_bit(SDEV_EVT_MEDIA_CHANGE, sdev->supported_events); if (ata_ncq_supported(dev)) depth = min(sdev->host->can_queue, ata_id_queue_depth(dev->id)); depth = min(ATA_MAX_QUEUE, depth); scsi_change_queue_depth(sdev, depth); if (dev->flags & ATA_DFLAG_TRUSTED) sdev->security_supported = 1; dev->sdev = sdev; return 0; } /** * ata_scsi_slave_alloc - Early setup of SCSI device * @sdev: SCSI device to examine * * This is called from scsi_alloc_sdev() when the scsi device * associated with an ATA device is scanned on a port. * * LOCKING: * Defined by SCSI layer. We don't really care. */ int ata_scsi_slave_alloc(struct scsi_device *sdev) { struct ata_port *ap = ata_shost_to_port(sdev->host); struct device_link *link; ata_scsi_sdev_config(sdev); /* * Create a link from the ata_port device to the scsi device to ensure * that PM does suspend/resume in the correct order: the scsi device is * consumer (child) and the ata port the supplier (parent). */ link = device_link_add(&sdev->sdev_gendev, &ap->tdev, DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); if (!link) { ata_port_err(ap, "Failed to create link to scsi device %s\n", dev_name(&sdev->sdev_gendev)); return -ENODEV; } return 0; } EXPORT_SYMBOL_GPL(ata_scsi_slave_alloc); /** * ata_scsi_device_configure - Set SCSI device attributes * @sdev: SCSI device to examine * @lim: queue limits * * This is called before we actually start reading * and writing to the device, to configure certain * SCSI mid-layer behaviors. * * LOCKING: * Defined by SCSI layer. We don't really care. */ int ata_scsi_device_configure(struct scsi_device *sdev, struct queue_limits *lim) { struct ata_port *ap = ata_shost_to_port(sdev->host); struct ata_device *dev = __ata_scsi_find_dev(ap, sdev); if (dev) return ata_scsi_dev_config(sdev, lim, dev); return 0; } EXPORT_SYMBOL_GPL(ata_scsi_device_configure); /** * ata_scsi_slave_destroy - SCSI device is about to be destroyed * @sdev: SCSI device to be destroyed * * @sdev is about to be destroyed for hot/warm unplugging. If * this unplugging was initiated by libata as indicated by NULL * dev->sdev, this function doesn't have to do anything. * Otherwise, SCSI layer initiated warm-unplug is in progress. * Clear dev->sdev, schedule the device for ATA detach and invoke * EH. * * LOCKING: * Defined by SCSI layer. We don't really care. */ void ata_scsi_slave_destroy(struct scsi_device *sdev) { struct ata_port *ap = ata_shost_to_port(sdev->host); unsigned long flags; struct ata_device *dev; device_link_remove(&sdev->sdev_gendev, &ap->tdev); spin_lock_irqsave(ap->lock, flags); dev = __ata_scsi_find_dev(ap, sdev); if (dev && dev->sdev) { /* SCSI device already in CANCEL state, no need to offline it */ dev->sdev = NULL; dev->flags |= ATA_DFLAG_DETACH; ata_port_schedule_eh(ap); } spin_unlock_irqrestore(ap->lock, flags); kfree(sdev->dma_drain_buf); } EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy); /** * ata_scsi_start_stop_xlat - Translate SCSI START STOP UNIT command * @qc: Storage for translated ATA taskfile * * Sets up an ATA taskfile to issue STANDBY (to stop) or READ VERIFY * (to start). Perhaps these commands should be preceded by * CHECK POWER MODE to see what power mode the device is already in. * [See SAT revision 5 at www.t10.org] * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_start_stop_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; const u8 *cdb = scmd->cmnd; u16 fp; u8 bp = 0xff; if (scmd->cmd_len < 5) { fp = 4; goto invalid_fld; } /* LOEJ bit set not supported */ if (cdb[4] & 0x2) { fp = 4; bp = 1; goto invalid_fld; } /* Power conditions not supported */ if (((cdb[4] >> 4) & 0xf) != 0) { fp = 4; bp = 3; goto invalid_fld; } /* Ignore IMMED bit (cdb[1] & 0x1), violates sat-r05 */ if (!ata_dev_power_init_tf(qc->dev, &qc->tf, cdb[4] & 0x1)) { ata_scsi_set_sense(qc->dev, scmd, ABORTED_COMMAND, 0, 0); return 1; } /* * Standby and Idle condition timers could be implemented but that * would require libata to implement the Power condition mode page * and allow the user to change it. Changing mode pages requires * MODE SELECT to be implemented. */ return 0; invalid_fld: ata_scsi_set_invalid_field(qc->dev, scmd, fp, bp); return 1; } /** * ata_scsi_flush_xlat - Translate SCSI SYNCHRONIZE CACHE command * @qc: Storage for translated ATA taskfile * * Sets up an ATA taskfile to issue FLUSH CACHE or * FLUSH CACHE EXT. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_flush_xlat(struct ata_queued_cmd *qc) { struct ata_taskfile *tf = &qc->tf; tf->flags |= ATA_TFLAG_DEVICE; tf->protocol = ATA_PROT_NODATA; if (qc->dev->flags & ATA_DFLAG_FLUSH_EXT) tf->command = ATA_CMD_FLUSH_EXT; else tf->command = ATA_CMD_FLUSH; /* flush is critical for IO integrity, consider it an IO command */ qc->flags |= ATA_QCFLAG_IO; return 0; } /** * scsi_6_lba_len - Get LBA and transfer length * @cdb: SCSI command to translate * * Calculate LBA and transfer length for 6-byte commands. * * RETURNS: * @plba: the LBA * @plen: the transfer length */ static void scsi_6_lba_len(const u8 *cdb, u64 *plba, u32 *plen) { u64 lba = 0; u32 len; lba |= ((u64)(cdb[1] & 0x1f)) << 16; lba |= ((u64)cdb[2]) << 8; lba |= ((u64)cdb[3]); len = cdb[4]; *plba = lba; *plen = len; } /** * scsi_10_lba_len - Get LBA and transfer length * @cdb: SCSI command to translate * * Calculate LBA and transfer length for 10-byte commands. * * RETURNS: * @plba: the LBA * @plen: the transfer length */ static inline void scsi_10_lba_len(const u8 *cdb, u64 *plba, u32 *plen) { *plba = get_unaligned_be32(&cdb[2]); *plen = get_unaligned_be16(&cdb[7]); } /** * scsi_16_lba_len - Get LBA and transfer length * @cdb: SCSI command to translate * * Calculate LBA and transfer length for 16-byte commands. * * RETURNS: * @plba: the LBA * @plen: the transfer length */ static inline void scsi_16_lba_len(const u8 *cdb, u64 *plba, u32 *plen) { *plba = get_unaligned_be64(&cdb[2]); *plen = get_unaligned_be32(&cdb[10]); } /** * scsi_dld - Get duration limit descriptor index * @cdb: SCSI command to translate * * Returns the dld bits indicating the index of a command duration limit * descriptor. */ static inline int scsi_dld(const u8 *cdb) { return ((cdb[1] & 0x01) << 2) | ((cdb[14] >> 6) & 0x03); } /** * ata_scsi_verify_xlat - Translate SCSI VERIFY command into an ATA one * @qc: Storage for translated ATA taskfile * * Converts SCSI VERIFY command to an ATA READ VERIFY command. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_verify_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; struct ata_taskfile *tf = &qc->tf; struct ata_device *dev = qc->dev; u64 dev_sectors = qc->dev->n_sectors; const u8 *cdb = scmd->cmnd; u64 block; u32 n_block; u16 fp; tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; tf->protocol = ATA_PROT_NODATA; switch (cdb[0]) { case VERIFY: if (scmd->cmd_len < 10) { fp = 9; goto invalid_fld; } scsi_10_lba_len(cdb, &block, &n_block); break; case VERIFY_16: if (scmd->cmd_len < 16) { fp = 15; goto invalid_fld; } scsi_16_lba_len(cdb, &block, &n_block); break; default: fp = 0; goto invalid_fld; } if (!n_block) goto nothing_to_do; if (block >= dev_sectors) goto out_of_range; if ((block + n_block) > dev_sectors) goto out_of_range; if (dev->flags & ATA_DFLAG_LBA) { tf->flags |= ATA_TFLAG_LBA; if (lba_28_ok(block, n_block)) { /* use LBA28 */ tf->command = ATA_CMD_VERIFY; tf->device |= (block >> 24) & 0xf; } else if (lba_48_ok(block, n_block)) { if (!(dev->flags & ATA_DFLAG_LBA48)) goto out_of_range; /* use LBA48 */ tf->flags |= ATA_TFLAG_LBA48; tf->command = ATA_CMD_VERIFY_EXT; tf->hob_nsect = (n_block >> 8) & 0xff; tf->hob_lbah = (block >> 40) & 0xff; tf->hob_lbam = (block >> 32) & 0xff; tf->hob_lbal = (block >> 24) & 0xff; } else /* request too large even for LBA48 */ goto out_of_range; tf->nsect = n_block & 0xff; tf->lbah = (block >> 16) & 0xff; tf->lbam = (block >> 8) & 0xff; tf->lbal = block & 0xff; tf->device |= ATA_LBA; } else { /* CHS */ u32 sect, head, cyl, track; if (!lba_28_ok(block, n_block)) goto out_of_range; /* Convert LBA to CHS */ track = (u32)block / dev->sectors; cyl = track / dev->heads; head = track % dev->heads; sect = (u32)block % dev->sectors + 1; /* Check whether the converted CHS can fit. Cylinder: 0-65535 Head: 0-15 Sector: 1-255*/ if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) goto out_of_range; tf->command = ATA_CMD_VERIFY; tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ tf->lbal = sect; tf->lbam = cyl; tf->lbah = cyl >> 8; tf->device |= head; } return 0; invalid_fld: ata_scsi_set_invalid_field(qc->dev, scmd, fp, 0xff); return 1; out_of_range: ata_scsi_set_sense(qc->dev, scmd, ILLEGAL_REQUEST, 0x21, 0x0); /* "Logical Block Address out of range" */ return 1; nothing_to_do: scmd->result = SAM_STAT_GOOD; return 1; } static bool ata_check_nblocks(struct scsi_cmnd *scmd, u32 n_blocks) { struct request *rq = scsi_cmd_to_rq(scmd); u32 req_blocks; if (!blk_rq_is_passthrough(rq)) return true; req_blocks = blk_rq_bytes(rq) / scmd->device->sector_size; if (n_blocks > req_blocks) return false; return true; } /** * ata_scsi_rw_xlat - Translate SCSI r/w command into an ATA one * @qc: Storage for translated ATA taskfile * * Converts any of six SCSI read/write commands into the * ATA counterpart, including starting sector (LBA), * sector count, and taking into account the device's LBA48 * support. * * Commands %READ_6, %READ_10, %READ_16, %WRITE_6, %WRITE_10, and * %WRITE_16 are currently supported. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, non-zero on error. */ static unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; const u8 *cdb = scmd->cmnd; struct request *rq = scsi_cmd_to_rq(scmd); int class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq)); unsigned int tf_flags = 0; int dld = 0; u64 block; u32 n_block; int rc; u16 fp = 0; switch (cdb[0]) { case WRITE_6: case WRITE_10: case WRITE_16: tf_flags |= ATA_TFLAG_WRITE; break; } /* Calculate the SCSI LBA, transfer length and FUA. */ switch (cdb[0]) { case READ_10: case WRITE_10: if (unlikely(scmd->cmd_len < 10)) { fp = 9; goto invalid_fld; } scsi_10_lba_len(cdb, &block, &n_block); if (cdb[1] & (1 << 3)) tf_flags |= ATA_TFLAG_FUA; if (!ata_check_nblocks(scmd, n_block)) goto invalid_fld; break; case READ_6: case WRITE_6: if (unlikely(scmd->cmd_len < 6)) { fp = 5; goto invalid_fld; } scsi_6_lba_len(cdb, &block, &n_block); /* for 6-byte r/w commands, transfer length 0 * means 256 blocks of data, not 0 block. */ if (!n_block) n_block = 256; if (!ata_check_nblocks(scmd, n_block)) goto invalid_fld; break; case READ_16: case WRITE_16: if (unlikely(scmd->cmd_len < 16)) { fp = 15; goto invalid_fld; } scsi_16_lba_len(cdb, &block, &n_block); dld = scsi_dld(cdb); if (cdb[1] & (1 << 3)) tf_flags |= ATA_TFLAG_FUA; if (!ata_check_nblocks(scmd, n_block)) goto invalid_fld; break; default: fp = 0; goto invalid_fld; } /* Check and compose ATA command */ if (!n_block) /* For 10-byte and 16-byte SCSI R/W commands, transfer * length 0 means transfer 0 block of data. * However, for ATA R/W commands, sector count 0 means * 256 or 65536 sectors, not 0 sectors as in SCSI. * * WARNING: one or two older ATA drives treat 0 as 0... */ goto nothing_to_do; qc->flags |= ATA_QCFLAG_IO; qc->nbytes = n_block * scmd->device->sector_size; rc = ata_build_rw_tf(qc, block, n_block, tf_flags, dld, class); if (likely(rc == 0)) return 0; if (rc == -ERANGE) goto out_of_range; /* treat all other errors as -EINVAL, fall through */ invalid_fld: ata_scsi_set_invalid_field(qc->dev, scmd, fp, 0xff); return 1; out_of_range: ata_scsi_set_sense(qc->dev, scmd, ILLEGAL_REQUEST, 0x21, 0x0); /* "Logical Block Address out of range" */ return 1; nothing_to_do: scmd->result = SAM_STAT_GOOD; return 1; } static void ata_qc_done(struct ata_queued_cmd *qc) { struct scsi_cmnd *cmd = qc->scsicmd; void (*done)(struct scsi_cmnd *) = qc->scsidone; ata_qc_free(qc); done(cmd); } static void ata_scsi_qc_complete(struct ata_queued_cmd *qc) { struct scsi_cmnd *cmd = qc->scsicmd; u8 *cdb = cmd->cmnd; int need_sense = (qc->err_mask != 0) && !(qc->flags & ATA_QCFLAG_SENSE_VALID); /* For ATA pass thru (SAT) commands, generate a sense block if * user mandated it or if there's an error. Note that if we * generate because the user forced us to [CK_COND =1], a check * condition is generated and the ATA register values are returned * whether the command completed successfully or not. If there * was no error, we use the following sense data: * sk = RECOVERED ERROR * asc,ascq = ATA PASS-THROUGH INFORMATION AVAILABLE */ if (((cdb[0] == ATA_16) || (cdb[0] == ATA_12)) && ((cdb[2] & 0x20) || need_sense)) ata_gen_passthru_sense(qc); else if (need_sense) ata_gen_ata_sense(qc); else /* Keep the SCSI ML and status byte, clear host byte. */ cmd->result &= 0x0000ffff; ata_qc_done(qc); } /** * ata_scsi_translate - Translate then issue SCSI command to ATA device * @dev: ATA device to which the command is addressed * @cmd: SCSI command to execute * @xlat_func: Actor which translates @cmd to an ATA taskfile * * Our ->queuecommand() function has decided that the SCSI * command issued can be directly translated into an ATA * command, rather than handled internally. * * This function sets up an ata_queued_cmd structure for the * SCSI command, and sends that ata_queued_cmd to the hardware. * * The xlat_func argument (actor) returns 0 if ready to execute * ATA command, else 1 to finish translation. If 1 is returned * then cmd->result (and possibly cmd->sense_buffer) are assumed * to be set reflecting an error condition or clean (early) * termination. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * 0 on success, SCSI_ML_QUEUE_DEVICE_BUSY if the command * needs to be deferred. */ static int ata_scsi_translate(struct ata_device *dev, struct scsi_cmnd *cmd, ata_xlat_func_t xlat_func) { struct ata_port *ap = dev->link->ap; struct ata_queued_cmd *qc; int rc; qc = ata_scsi_qc_new(dev, cmd); if (!qc) goto err_mem; /* data is present; dma-map it */ if (cmd->sc_data_direction == DMA_FROM_DEVICE || cmd->sc_data_direction == DMA_TO_DEVICE) { if (unlikely(scsi_bufflen(cmd) < 1)) { ata_dev_warn(dev, "WARNING: zero len r/w req\n"); goto err_did; } ata_sg_init(qc, scsi_sglist(cmd), scsi_sg_count(cmd)); qc->dma_dir = cmd->sc_data_direction; } qc->complete_fn = ata_scsi_qc_complete; if (xlat_func(qc)) goto early_finish; if (ap->ops->qc_defer) { if ((rc = ap->ops->qc_defer(qc))) goto defer; } /* select device, send command to hardware */ ata_qc_issue(qc); return 0; early_finish: ata_qc_free(qc); scsi_done(cmd); return 0; err_did: ata_qc_free(qc); cmd->result = (DID_ERROR << 16); scsi_done(cmd); err_mem: return 0; defer: ata_qc_free(qc); if (rc == ATA_DEFER_LINK) return SCSI_MLQUEUE_DEVICE_BUSY; else return SCSI_MLQUEUE_HOST_BUSY; } struct ata_scsi_args { struct ata_device *dev; u16 *id; struct scsi_cmnd *cmd; }; /** * ata_scsi_rbuf_fill - wrapper for SCSI command simulators * @args: device IDENTIFY data / SCSI command of interest. * @actor: Callback hook for desired SCSI command simulator * * Takes care of the hard work of simulating a SCSI command... * Mapping the response buffer, calling the command's handler, * and handling the handler's return value. This return value * indicates whether the handler wishes the SCSI command to be * completed successfully (0), or not (in which case cmd->result * and sense buffer are assumed to be set). * * LOCKING: * spin_lock_irqsave(host lock) */ static void ata_scsi_rbuf_fill(struct ata_scsi_args *args, unsigned int (*actor)(struct ata_scsi_args *args, u8 *rbuf)) { unsigned int rc; struct scsi_cmnd *cmd = args->cmd; unsigned long flags; spin_lock_irqsave(&ata_scsi_rbuf_lock, flags); memset(ata_scsi_rbuf, 0, ATA_SCSI_RBUF_SIZE); rc = actor(args, ata_scsi_rbuf); if (rc == 0) sg_copy_from_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), ata_scsi_rbuf, ATA_SCSI_RBUF_SIZE); spin_unlock_irqrestore(&ata_scsi_rbuf_lock, flags); if (rc == 0) cmd->result = SAM_STAT_GOOD; } /** * ata_scsiop_inq_std - Simulate INQUIRY command * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Returns standard device identification data associated * with non-VPD INQUIRY command output. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_inq_std(struct ata_scsi_args *args, u8 *rbuf) { static const u8 versions[] = { 0x00, 0x60, /* SAM-3 (no version claimed) */ 0x03, 0x20, /* SBC-2 (no version claimed) */ 0x03, 0x00 /* SPC-3 (no version claimed) */ }; static const u8 versions_zbc[] = { 0x00, 0xA0, /* SAM-5 (no version claimed) */ 0x06, 0x00, /* SBC-4 (no version claimed) */ 0x05, 0xC0, /* SPC-5 (no version claimed) */ 0x60, 0x24, /* ZBC r05 */ }; u8 hdr[] = { TYPE_DISK, 0, 0x5, /* claim SPC-3 version compatibility */ 2, 95 - 4, 0, 0, 2 }; /* * Set the SCSI Removable Media Bit (RMB) if the ATA removable media * device bit (obsolete since ATA-8 ACS) is set. */ if (ata_id_removable(args->id)) hdr[1] |= (1 << 7); if (args->dev->class == ATA_DEV_ZAC) { hdr[0] = TYPE_ZBC; hdr[2] = 0x7; /* claim SPC-5 version compatibility */ } if (args->dev->flags & ATA_DFLAG_CDL) hdr[2] = 0xd; /* claim SPC-6 version compatibility */ memcpy(rbuf, hdr, sizeof(hdr)); memcpy(&rbuf[8], "ATA ", 8); ata_id_string(args->id, &rbuf[16], ATA_ID_PROD, 16); /* From SAT, use last 2 words from fw rev unless they are spaces */ ata_id_string(args->id, &rbuf[32], ATA_ID_FW_REV + 2, 4); if (strncmp(&rbuf[32], " ", 4) == 0) ata_id_string(args->id, &rbuf[32], ATA_ID_FW_REV, 4); if (rbuf[32] == 0 || rbuf[32] == ' ') memcpy(&rbuf[32], "n/a ", 4); if (ata_id_zoned_cap(args->id) || args->dev->class == ATA_DEV_ZAC) memcpy(rbuf + 58, versions_zbc, sizeof(versions_zbc)); else memcpy(rbuf + 58, versions, sizeof(versions)); return 0; } /** * ata_scsiop_inq_00 - Simulate INQUIRY VPD page 0, list of pages * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Returns list of inquiry VPD pages available. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_inq_00(struct ata_scsi_args *args, u8 *rbuf) { int i, num_pages = 0; static const u8 pages[] = { 0x00, /* page 0x00, this page */ 0x80, /* page 0x80, unit serial no page */ 0x83, /* page 0x83, device ident page */ 0x89, /* page 0x89, ata info page */ 0xb0, /* page 0xb0, block limits page */ 0xb1, /* page 0xb1, block device characteristics page */ 0xb2, /* page 0xb2, thin provisioning page */ 0xb6, /* page 0xb6, zoned block device characteristics */ 0xb9, /* page 0xb9, concurrent positioning ranges */ }; for (i = 0; i < sizeof(pages); i++) { if (pages[i] == 0xb6 && !(args->dev->flags & ATA_DFLAG_ZAC)) continue; rbuf[num_pages + 4] = pages[i]; num_pages++; } rbuf[3] = num_pages; /* number of supported VPD pages */ return 0; } /** * ata_scsiop_inq_80 - Simulate INQUIRY VPD page 80, device serial number * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Returns ATA device serial number. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_inq_80(struct ata_scsi_args *args, u8 *rbuf) { static const u8 hdr[] = { 0, 0x80, /* this page code */ 0, ATA_ID_SERNO_LEN, /* page len */ }; memcpy(rbuf, hdr, sizeof(hdr)); ata_id_string(args->id, (unsigned char *) &rbuf[4], ATA_ID_SERNO, ATA_ID_SERNO_LEN); return 0; } /** * ata_scsiop_inq_83 - Simulate INQUIRY VPD page 83, device identity * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Yields two logical unit device identification designators: * - vendor specific ASCII containing the ATA serial number * - SAT defined "t10 vendor id based" containing ASCII vendor * name ("ATA "), model and serial numbers. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_inq_83(struct ata_scsi_args *args, u8 *rbuf) { const int sat_model_serial_desc_len = 68; int num; rbuf[1] = 0x83; /* this page code */ num = 4; /* piv=0, assoc=lu, code_set=ACSII, designator=vendor */ rbuf[num + 0] = 2; rbuf[num + 3] = ATA_ID_SERNO_LEN; num += 4; ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_SERNO, ATA_ID_SERNO_LEN); num += ATA_ID_SERNO_LEN; /* SAT defined lu model and serial numbers descriptor */ /* piv=0, assoc=lu, code_set=ACSII, designator=t10 vendor id */ rbuf[num + 0] = 2; rbuf[num + 1] = 1; rbuf[num + 3] = sat_model_serial_desc_len; num += 4; memcpy(rbuf + num, "ATA ", 8); num += 8; ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_PROD, ATA_ID_PROD_LEN); num += ATA_ID_PROD_LEN; ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_SERNO, ATA_ID_SERNO_LEN); num += ATA_ID_SERNO_LEN; if (ata_id_has_wwn(args->id)) { /* SAT defined lu world wide name */ /* piv=0, assoc=lu, code_set=binary, designator=NAA */ rbuf[num + 0] = 1; rbuf[num + 1] = 3; rbuf[num + 3] = ATA_ID_WWN_LEN; num += 4; ata_id_string(args->id, (unsigned char *) rbuf + num, ATA_ID_WWN, ATA_ID_WWN_LEN); num += ATA_ID_WWN_LEN; } rbuf[3] = num - 4; /* page len (assume less than 256 bytes) */ return 0; } /** * ata_scsiop_inq_89 - Simulate INQUIRY VPD page 89, ATA info * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Yields SAT-specified ATA VPD page. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_inq_89(struct ata_scsi_args *args, u8 *rbuf) { rbuf[1] = 0x89; /* our page code */ rbuf[2] = (0x238 >> 8); /* page size fixed at 238h */ rbuf[3] = (0x238 & 0xff); memcpy(&rbuf[8], "linux ", 8); memcpy(&rbuf[16], "libata ", 16); memcpy(&rbuf[32], DRV_VERSION, 4); rbuf[36] = 0x34; /* force D2H Reg FIS (34h) */ rbuf[37] = (1 << 7); /* bit 7 indicates Command FIS */ /* TODO: PMP? */ /* we don't store the ATA device signature, so we fake it */ rbuf[38] = ATA_DRDY; /* really, this is Status reg */ rbuf[40] = 0x1; rbuf[48] = 0x1; rbuf[56] = ATA_CMD_ID_ATA; memcpy(&rbuf[60], &args->id[0], 512); return 0; } static unsigned int ata_scsiop_inq_b0(struct ata_scsi_args *args, u8 *rbuf) { struct ata_device *dev = args->dev; u16 min_io_sectors; rbuf[1] = 0xb0; rbuf[3] = 0x3c; /* required VPD size with unmap support */ /* * Optimal transfer length granularity. * * This is always one physical block, but for disks with a smaller * logical than physical sector size we need to figure out what the * latter is. */ min_io_sectors = 1 << ata_id_log2_per_physical_sector(args->id); put_unaligned_be16(min_io_sectors, &rbuf[6]); /* * Optimal unmap granularity. * * The ATA spec doesn't even know about a granularity or alignment * for the TRIM command. We can leave away most of the unmap related * VPD page entries, but we have specifify a granularity to signal * that we support some form of unmap - in thise case via WRITE SAME * with the unmap bit set. */ if (ata_id_has_trim(args->id)) { u64 max_blocks = 65535 * ATA_MAX_TRIM_RNUM; if (dev->horkage & ATA_HORKAGE_MAX_TRIM_128M) max_blocks = 128 << (20 - SECTOR_SHIFT); put_unaligned_be64(max_blocks, &rbuf[36]); put_unaligned_be32(1, &rbuf[28]); } return 0; } static unsigned int ata_scsiop_inq_b1(struct ata_scsi_args *args, u8 *rbuf) { int form_factor = ata_id_form_factor(args->id); int media_rotation_rate = ata_id_rotation_rate(args->id); u8 zoned = ata_id_zoned_cap(args->id); rbuf[1] = 0xb1; rbuf[3] = 0x3c; rbuf[4] = media_rotation_rate >> 8; rbuf[5] = media_rotation_rate; rbuf[7] = form_factor; if (zoned) rbuf[8] = (zoned << 4); return 0; } static unsigned int ata_scsiop_inq_b2(struct ata_scsi_args *args, u8 *rbuf) { /* SCSI Thin Provisioning VPD page: SBC-3 rev 22 or later */ rbuf[1] = 0xb2; rbuf[3] = 0x4; rbuf[5] = 1 << 6; /* TPWS */ return 0; } static unsigned int ata_scsiop_inq_b6(struct ata_scsi_args *args, u8 *rbuf) { /* * zbc-r05 SCSI Zoned Block device characteristics VPD page */ rbuf[1] = 0xb6; rbuf[3] = 0x3C; /* * URSWRZ bit is only meaningful for host-managed ZAC drives */ if (args->dev->zac_zoned_cap & 1) rbuf[4] |= 1; put_unaligned_be32(args->dev->zac_zones_optimal_open, &rbuf[8]); put_unaligned_be32(args->dev->zac_zones_optimal_nonseq, &rbuf[12]); put_unaligned_be32(args->dev->zac_zones_max_open, &rbuf[16]); return 0; } static unsigned int ata_scsiop_inq_b9(struct ata_scsi_args *args, u8 *rbuf) { struct ata_cpr_log *cpr_log = args->dev->cpr_log; u8 *desc = &rbuf[64]; int i; /* SCSI Concurrent Positioning Ranges VPD page: SBC-5 rev 1 or later */ rbuf[1] = 0xb9; put_unaligned_be16(64 + (int)cpr_log->nr_cpr * 32 - 4, &rbuf[2]); for (i = 0; i < cpr_log->nr_cpr; i++, desc += 32) { desc[0] = cpr_log->cpr[i].num; desc[1] = cpr_log->cpr[i].num_storage_elements; put_unaligned_be64(cpr_log->cpr[i].start_lba, &desc[8]); put_unaligned_be64(cpr_log->cpr[i].num_lbas, &desc[16]); } return 0; } /** * modecpy - Prepare response for MODE SENSE * @dest: output buffer * @src: data being copied * @n: length of mode page * @changeable: whether changeable parameters are requested * * Generate a generic MODE SENSE page for either current or changeable * parameters. * * LOCKING: * None. */ static void modecpy(u8 *dest, const u8 *src, int n, bool changeable) { if (changeable) { memcpy(dest, src, 2); memset(dest + 2, 0, n - 2); } else { memcpy(dest, src, n); } } /** * ata_msense_caching - Simulate MODE SENSE caching info page * @id: device IDENTIFY data * @buf: output buffer * @changeable: whether changeable parameters are requested * * Generate a caching info page, which conditionally indicates * write caching to the SCSI layer, depending on device * capabilities. * * LOCKING: * None. */ static unsigned int ata_msense_caching(u16 *id, u8 *buf, bool changeable) { modecpy(buf, def_cache_mpage, sizeof(def_cache_mpage), changeable); if (changeable) { buf[2] |= (1 << 2); /* ata_mselect_caching() */ } else { buf[2] |= (ata_id_wcache_enabled(id) << 2); /* write cache enable */ buf[12] |= (!ata_id_rahead_enabled(id) << 5); /* disable read ahead */ } return sizeof(def_cache_mpage); } /* * Simulate MODE SENSE control mode page, sub-page 0. */ static unsigned int ata_msense_control_spg0(struct ata_device *dev, u8 *buf, bool changeable) { modecpy(buf, def_control_mpage, sizeof(def_control_mpage), changeable); if (changeable) { /* ata_mselect_control() */ buf[2] |= (1 << 2); } else { bool d_sense = (dev->flags & ATA_DFLAG_D_SENSE); /* descriptor format sense data */ buf[2] |= (d_sense << 2); } return sizeof(def_control_mpage); } /* * Translate an ATA duration limit in microseconds to a SCSI duration limit * using the t2cdlunits 0xa (10ms). Since the SCSI duration limits are 2-bytes * only, take care of overflows. */ static inline u16 ata_xlat_cdl_limit(u8 *buf) { u32 limit = get_unaligned_le32(buf); return min_t(u32, limit / 10000, 65535); } /* * Simulate MODE SENSE control mode page, sub-pages 07h and 08h * (command duration limits T2A and T2B mode pages). */ static unsigned int ata_msense_control_spgt2(struct ata_device *dev, u8 *buf, u8 spg) { u8 *b, *cdl = dev->cdl, *desc; u32 policy; int i; /* * Fill the subpage. The first four bytes of the T2A/T2B mode pages * are a header. The PAGE LENGTH field is the size of the page * excluding the header. */ buf[0] = CONTROL_MPAGE; buf[1] = spg; put_unaligned_be16(CDL_T2_SUB_MPAGE_LEN - 4, &buf[2]); if (spg == CDL_T2A_SUB_MPAGE) { /* * Read descriptors map to the T2A page: * set perf_vs_duration_guidleine. */ buf[7] = (cdl[0] & 0x03) << 4; desc = cdl + 64; } else { /* Write descriptors map to the T2B page */ desc = cdl + 288; } /* Fill the T2 page descriptors */ b = &buf[8]; policy = get_unaligned_le32(&cdl[0]); for (i = 0; i < 7; i++, b += 32, desc += 32) { /* t2cdlunits: fixed to 10ms */ b[0] = 0x0a; /* Max inactive time and its policy */ put_unaligned_be16(ata_xlat_cdl_limit(&desc[8]), &b[2]); b[6] = ((policy >> 8) & 0x0f) << 4; /* Max active time and its policy */ put_unaligned_be16(ata_xlat_cdl_limit(&desc[4]), &b[4]); b[6] |= (policy >> 4) & 0x0f; /* Command duration guideline and its policy */ put_unaligned_be16(ata_xlat_cdl_limit(&desc[16]), &b[10]); b[14] = policy & 0x0f; } return CDL_T2_SUB_MPAGE_LEN; } /* * Simulate MODE SENSE control mode page, sub-page f2h * (ATA feature control mode page). */ static unsigned int ata_msense_control_ata_feature(struct ata_device *dev, u8 *buf) { /* PS=0, SPF=1 */ buf[0] = CONTROL_MPAGE | (1 << 6); buf[1] = ATA_FEATURE_SUB_MPAGE; /* * The first four bytes of ATA Feature Control mode page are a header. * The PAGE LENGTH field is the size of the page excluding the header. */ put_unaligned_be16(ATA_FEATURE_SUB_MPAGE_LEN - 4, &buf[2]); if (dev->flags & ATA_DFLAG_CDL) buf[4] = 0x02; /* Support T2A and T2B pages */ else buf[4] = 0; return ATA_FEATURE_SUB_MPAGE_LEN; } /** * ata_msense_control - Simulate MODE SENSE control mode page * @dev: ATA device of interest * @buf: output buffer * @spg: sub-page code * @changeable: whether changeable parameters are requested * * Generate a generic MODE SENSE control mode page. * * LOCKING: * None. */ static unsigned int ata_msense_control(struct ata_device *dev, u8 *buf, u8 spg, bool changeable) { unsigned int n; switch (spg) { case 0: return ata_msense_control_spg0(dev, buf, changeable); case CDL_T2A_SUB_MPAGE: case CDL_T2B_SUB_MPAGE: return ata_msense_control_spgt2(dev, buf, spg); case ATA_FEATURE_SUB_MPAGE: return ata_msense_control_ata_feature(dev, buf); case ALL_SUB_MPAGES: n = ata_msense_control_spg0(dev, buf, changeable); n += ata_msense_control_spgt2(dev, buf + n, CDL_T2A_SUB_MPAGE); n += ata_msense_control_spgt2(dev, buf + n, CDL_T2A_SUB_MPAGE); n += ata_msense_control_ata_feature(dev, buf + n); return n; default: return 0; } } /** * ata_msense_rw_recovery - Simulate MODE SENSE r/w error recovery page * @buf: output buffer * @changeable: whether changeable parameters are requested * * Generate a generic MODE SENSE r/w error recovery page. * * LOCKING: * None. */ static unsigned int ata_msense_rw_recovery(u8 *buf, bool changeable) { modecpy(buf, def_rw_recovery_mpage, sizeof(def_rw_recovery_mpage), changeable); return sizeof(def_rw_recovery_mpage); } /** * ata_scsiop_mode_sense - Simulate MODE SENSE 6, 10 commands * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Simulate MODE SENSE commands. Assume this is invoked for direct * access devices (e.g. disks) only. There should be no block * descriptor for other device types. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_mode_sense(struct ata_scsi_args *args, u8 *rbuf) { struct ata_device *dev = args->dev; u8 *scsicmd = args->cmd->cmnd, *p = rbuf; static const u8 sat_blk_desc[] = { 0, 0, 0, 0, /* number of blocks: sat unspecified */ 0, 0, 0x2, 0x0 /* block length: 512 bytes */ }; u8 pg, spg; unsigned int ebd, page_control, six_byte; u8 dpofua = 0, bp = 0xff; u16 fp; six_byte = (scsicmd[0] == MODE_SENSE); ebd = !(scsicmd[1] & 0x8); /* dbd bit inverted == edb */ /* * LLBA bit in msense(10) ignored (compliant) */ page_control = scsicmd[2] >> 6; switch (page_control) { case 0: /* current */ case 1: /* changeable */ case 2: /* defaults */ break; /* supported */ case 3: /* saved */ goto saving_not_supp; default: fp = 2; bp = 6; goto invalid_fld; } if (six_byte) p += 4 + (ebd ? 8 : 0); else p += 8 + (ebd ? 8 : 0); pg = scsicmd[2] & 0x3f; spg = scsicmd[3]; /* * Supported subpages: all subpages and sub-pages 07h, 08h and f2h of * the control page. */ if (spg) { switch (spg) { case ALL_SUB_MPAGES: break; case CDL_T2A_SUB_MPAGE: case CDL_T2B_SUB_MPAGE: case ATA_FEATURE_SUB_MPAGE: if (dev->flags & ATA_DFLAG_CDL && pg == CONTROL_MPAGE) break; fallthrough; default: fp = 3; goto invalid_fld; } } switch(pg) { case RW_RECOVERY_MPAGE: p += ata_msense_rw_recovery(p, page_control == 1); break; case CACHE_MPAGE: p += ata_msense_caching(args->id, p, page_control == 1); break; case CONTROL_MPAGE: p += ata_msense_control(args->dev, p, spg, page_control == 1); break; case ALL_MPAGES: p += ata_msense_rw_recovery(p, page_control == 1); p += ata_msense_caching(args->id, p, page_control == 1); p += ata_msense_control(args->dev, p, spg, page_control == 1); break; default: /* invalid page code */ fp = 2; goto invalid_fld; } if (dev->flags & ATA_DFLAG_FUA) dpofua = 1 << 4; if (six_byte) { rbuf[0] = p - rbuf - 1; rbuf[2] |= dpofua; if (ebd) { rbuf[3] = sizeof(sat_blk_desc); memcpy(rbuf + 4, sat_blk_desc, sizeof(sat_blk_desc)); } } else { put_unaligned_be16(p - rbuf - 2, &rbuf[0]); rbuf[3] |= dpofua; if (ebd) { rbuf[7] = sizeof(sat_blk_desc); memcpy(rbuf + 8, sat_blk_desc, sizeof(sat_blk_desc)); } } return 0; invalid_fld: ata_scsi_set_invalid_field(dev, args->cmd, fp, bp); return 1; saving_not_supp: ata_scsi_set_sense(dev, args->cmd, ILLEGAL_REQUEST, 0x39, 0x0); /* "Saving parameters not supported" */ return 1; } /** * ata_scsiop_read_cap - Simulate READ CAPACITY[ 16] commands * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Simulate READ CAPACITY commands. * * LOCKING: * None. */ static unsigned int ata_scsiop_read_cap(struct ata_scsi_args *args, u8 *rbuf) { struct ata_device *dev = args->dev; u64 last_lba = dev->n_sectors - 1; /* LBA of the last block */ u32 sector_size; /* physical sector size in bytes */ u8 log2_per_phys; u16 lowest_aligned; sector_size = ata_id_logical_sector_size(dev->id); log2_per_phys = ata_id_log2_per_physical_sector(dev->id); lowest_aligned = ata_id_logical_sector_offset(dev->id, log2_per_phys); if (args->cmd->cmnd[0] == READ_CAPACITY) { if (last_lba >= 0xffffffffULL) last_lba = 0xffffffff; /* sector count, 32-bit */ rbuf[0] = last_lba >> (8 * 3); rbuf[1] = last_lba >> (8 * 2); rbuf[2] = last_lba >> (8 * 1); rbuf[3] = last_lba; /* sector size */ rbuf[4] = sector_size >> (8 * 3); rbuf[5] = sector_size >> (8 * 2); rbuf[6] = sector_size >> (8 * 1); rbuf[7] = sector_size; } else { /* sector count, 64-bit */ rbuf[0] = last_lba >> (8 * 7); rbuf[1] = last_lba >> (8 * 6); rbuf[2] = last_lba >> (8 * 5); rbuf[3] = last_lba >> (8 * 4); rbuf[4] = last_lba >> (8 * 3); rbuf[5] = last_lba >> (8 * 2); rbuf[6] = last_lba >> (8 * 1); rbuf[7] = last_lba; /* sector size */ rbuf[ 8] = sector_size >> (8 * 3); rbuf[ 9] = sector_size >> (8 * 2); rbuf[10] = sector_size >> (8 * 1); rbuf[11] = sector_size; rbuf[12] = 0; rbuf[13] = log2_per_phys; rbuf[14] = (lowest_aligned >> 8) & 0x3f; rbuf[15] = lowest_aligned; if (ata_id_has_trim(args->id) && !(dev->horkage & ATA_HORKAGE_NOTRIM)) { rbuf[14] |= 0x80; /* LBPME */ if (ata_id_has_zero_after_trim(args->id) && dev->horkage & ATA_HORKAGE_ZERO_AFTER_TRIM) { ata_dev_info(dev, "Enabling discard_zeroes_data\n"); rbuf[14] |= 0x40; /* LBPRZ */ } } if (ata_id_zoned_cap(args->id) || args->dev->class == ATA_DEV_ZAC) rbuf[12] = (1 << 4); /* RC_BASIS */ } return 0; } /** * ata_scsiop_report_luns - Simulate REPORT LUNS command * @args: device IDENTIFY data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Simulate REPORT LUNS command. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_report_luns(struct ata_scsi_args *args, u8 *rbuf) { rbuf[3] = 8; /* just one lun, LUN 0, size 8 bytes */ return 0; } /* * ATAPI devices typically report zero for their SCSI version, and sometimes * deviate from the spec WRT response data format. If SCSI version is * reported as zero like normal, then we make the following fixups: * 1) Fake MMC-5 version, to indicate to the Linux scsi midlayer this is a * modern device. * 2) Ensure response data format / ATAPI information are always correct. */ static void atapi_fixup_inquiry(struct scsi_cmnd *cmd) { u8 buf[4]; sg_copy_to_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), buf, 4); if (buf[2] == 0) { buf[2] = 0x5; buf[3] = 0x32; } sg_copy_from_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), buf, 4); } static void atapi_qc_complete(struct ata_queued_cmd *qc) { struct scsi_cmnd *cmd = qc->scsicmd; unsigned int err_mask = qc->err_mask; /* handle completion from EH */ if (unlikely(err_mask || qc->flags & ATA_QCFLAG_SENSE_VALID)) { if (!(qc->flags & ATA_QCFLAG_SENSE_VALID)) { /* FIXME: not quite right; we don't want the * translation of taskfile registers into a * sense descriptors, since that's only * correct for ATA, not ATAPI */ ata_gen_passthru_sense(qc); } /* SCSI EH automatically locks door if sdev->locked is * set. Sometimes door lock request continues to * fail, for example, when no media is present. This * creates a loop - SCSI EH issues door lock which * fails and gets invoked again to acquire sense data * for the failed command. * * If door lock fails, always clear sdev->locked to * avoid this infinite loop. * * This may happen before SCSI scan is complete. Make * sure qc->dev->sdev isn't NULL before dereferencing. */ if (qc->cdb[0] == ALLOW_MEDIUM_REMOVAL && qc->dev->sdev) qc->dev->sdev->locked = 0; qc->scsicmd->result = SAM_STAT_CHECK_CONDITION; ata_qc_done(qc); return; } /* successful completion path */ if (cmd->cmnd[0] == INQUIRY && (cmd->cmnd[1] & 0x03) == 0) atapi_fixup_inquiry(cmd); cmd->result = SAM_STAT_GOOD; ata_qc_done(qc); } /** * atapi_xlat - Initialize PACKET taskfile * @qc: command structure to be initialized * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Zero on success, non-zero on failure. */ static unsigned int atapi_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; struct ata_device *dev = qc->dev; int nodata = (scmd->sc_data_direction == DMA_NONE); int using_pio = !nodata && (dev->flags & ATA_DFLAG_PIO); unsigned int nbytes; memset(qc->cdb, 0, dev->cdb_len); memcpy(qc->cdb, scmd->cmnd, scmd->cmd_len); qc->complete_fn = atapi_qc_complete; qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; if (scmd->sc_data_direction == DMA_TO_DEVICE) { qc->tf.flags |= ATA_TFLAG_WRITE; } qc->tf.command = ATA_CMD_PACKET; ata_qc_set_pc_nbytes(qc); /* check whether ATAPI DMA is safe */ if (!nodata && !using_pio && atapi_check_dma(qc)) using_pio = 1; /* Some controller variants snoop this value for Packet * transfers to do state machine and FIFO management. Thus we * want to set it properly, and for DMA where it is * effectively meaningless. */ nbytes = min(ata_qc_raw_nbytes(qc), (unsigned int)63 * 1024); /* Most ATAPI devices which honor transfer chunk size don't * behave according to the spec when odd chunk size which * matches the transfer length is specified. If the number of * bytes to transfer is 2n+1. According to the spec, what * should happen is to indicate that 2n+1 is going to be * transferred and transfer 2n+2 bytes where the last byte is * padding. * * In practice, this doesn't happen. ATAPI devices first * indicate and transfer 2n bytes and then indicate and * transfer 2 bytes where the last byte is padding. * * This inconsistency confuses several controllers which * perform PIO using DMA such as Intel AHCIs and sil3124/32. * These controllers use actual number of transferred bytes to * update DMA pointer and transfer of 4n+2 bytes make those * controller push DMA pointer by 4n+4 bytes because SATA data * FISes are aligned to 4 bytes. This causes data corruption * and buffer overrun. * * Always setting nbytes to even number solves this problem * because then ATAPI devices don't have to split data at 2n * boundaries. */ if (nbytes & 0x1) nbytes++; qc->tf.lbam = (nbytes & 0xFF); qc->tf.lbah = (nbytes >> 8); if (nodata) qc->tf.protocol = ATAPI_PROT_NODATA; else if (using_pio) qc->tf.protocol = ATAPI_PROT_PIO; else { /* DMA data xfer */ qc->tf.protocol = ATAPI_PROT_DMA; qc->tf.feature |= ATAPI_PKT_DMA; if ((dev->flags & ATA_DFLAG_DMADIR) && (scmd->sc_data_direction != DMA_TO_DEVICE)) /* some SATA bridges need us to indicate data xfer direction */ qc->tf.feature |= ATAPI_DMADIR; } /* FIXME: We need to translate 0x05 READ_BLOCK_LIMITS to a MODE_SENSE as ATAPI tape drives don't get this right otherwise */ return 0; } static struct ata_device *ata_find_dev(struct ata_port *ap, unsigned int devno) { /* * For the non-PMP case, ata_link_max_devices() returns 1 (SATA case), * or 2 (IDE master + slave case). However, the former case includes * libsas hosted devices which are numbered per scsi host, leading * to devno potentially being larger than 0 but with each struct * ata_device having its own struct ata_port and struct ata_link. * To accommodate these, ignore devno and always use device number 0. */ if (likely(!sata_pmp_attached(ap))) { int link_max_devices = ata_link_max_devices(&ap->link); if (link_max_devices == 1) return &ap->link.device[0]; if (devno < link_max_devices) return &ap->link.device[devno]; return NULL; } /* * For PMP-attached devices, the device number corresponds to C * (channel) of SCSI [H:C:I:L], indicating the port pmp link * for the device. */ if (devno < ap->nr_pmp_links) return &ap->pmp_link[devno].device[0]; return NULL; } static struct ata_device *__ata_scsi_find_dev(struct ata_port *ap, const struct scsi_device *scsidev) { int devno; /* skip commands not addressed to targets we simulate */ if (!sata_pmp_attached(ap)) { if (unlikely(scsidev->channel || scsidev->lun)) return NULL; devno = scsidev->id; } else { if (unlikely(scsidev->id || scsidev->lun)) return NULL; devno = scsidev->channel; } return ata_find_dev(ap, devno); } /** * ata_scsi_find_dev - lookup ata_device from scsi_cmnd * @ap: ATA port to which the device is attached * @scsidev: SCSI device from which we derive the ATA device * * Given various information provided in struct scsi_cmnd, * map that onto an ATA bus, and using that mapping * determine which ata_device is associated with the * SCSI command to be sent. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * Associated ATA device, or %NULL if not found. */ struct ata_device * ata_scsi_find_dev(struct ata_port *ap, const struct scsi_device *scsidev) { struct ata_device *dev = __ata_scsi_find_dev(ap, scsidev); if (unlikely(!dev || !ata_dev_enabled(dev))) return NULL; return dev; } /* * ata_scsi_map_proto - Map pass-thru protocol value to taskfile value. * @byte1: Byte 1 from pass-thru CDB. * * RETURNS: * ATA_PROT_UNKNOWN if mapping failed/unimplemented, protocol otherwise. */ static u8 ata_scsi_map_proto(u8 byte1) { switch((byte1 & 0x1e) >> 1) { case 3: /* Non-data */ return ATA_PROT_NODATA; case 6: /* DMA */ case 10: /* UDMA Data-in */ case 11: /* UDMA Data-Out */ return ATA_PROT_DMA; case 4: /* PIO Data-in */ case 5: /* PIO Data-out */ return ATA_PROT_PIO; case 12: /* FPDMA */ return ATA_PROT_NCQ; case 0: /* Hard Reset */ case 1: /* SRST */ case 8: /* Device Diagnostic */ case 9: /* Device Reset */ case 7: /* DMA Queued */ case 15: /* Return Response Info */ default: /* Reserved */ break; } return ATA_PROT_UNKNOWN; } /** * ata_scsi_pass_thru - convert ATA pass-thru CDB to taskfile * @qc: command structure to be initialized * * Handles either 12, 16, or 32-byte versions of the CDB. * * RETURNS: * Zero on success, non-zero on failure. */ static unsigned int ata_scsi_pass_thru(struct ata_queued_cmd *qc) { struct ata_taskfile *tf = &(qc->tf); struct scsi_cmnd *scmd = qc->scsicmd; struct ata_device *dev = qc->dev; const u8 *cdb = scmd->cmnd; u16 fp; u16 cdb_offset = 0; /* 7Fh variable length cmd means a ata pass-thru(32) */ if (cdb[0] == VARIABLE_LENGTH_CMD) cdb_offset = 9; tf->protocol = ata_scsi_map_proto(cdb[1 + cdb_offset]); if (tf->protocol == ATA_PROT_UNKNOWN) { fp = 1; goto invalid_fld; } if ((cdb[2 + cdb_offset] & 0x3) == 0) { /* * When T_LENGTH is zero (No data is transferred), dir should * be DMA_NONE. */ if (scmd->sc_data_direction != DMA_NONE) { fp = 2 + cdb_offset; goto invalid_fld; } if (ata_is_ncq(tf->protocol)) tf->protocol = ATA_PROT_NCQ_NODATA; } /* enable LBA */ tf->flags |= ATA_TFLAG_LBA; /* * 12 and 16 byte CDBs use different offsets to * provide the various register values. */ switch (cdb[0]) { case ATA_16: /* * 16-byte CDB - may contain extended commands. * * If that is the case, copy the upper byte register values. */ if (cdb[1] & 0x01) { tf->hob_feature = cdb[3]; tf->hob_nsect = cdb[5]; tf->hob_lbal = cdb[7]; tf->hob_lbam = cdb[9]; tf->hob_lbah = cdb[11]; tf->flags |= ATA_TFLAG_LBA48; } else tf->flags &= ~ATA_TFLAG_LBA48; /* * Always copy low byte, device and command registers. */ tf->feature = cdb[4]; tf->nsect = cdb[6]; tf->lbal = cdb[8]; tf->lbam = cdb[10]; tf->lbah = cdb[12]; tf->device = cdb[13]; tf->command = cdb[14]; break; case ATA_12: /* * 12-byte CDB - incapable of extended commands. */ tf->flags &= ~ATA_TFLAG_LBA48; tf->feature = cdb[3]; tf->nsect = cdb[4]; tf->lbal = cdb[5]; tf->lbam = cdb[6]; tf->lbah = cdb[7]; tf->device = cdb[8]; tf->command = cdb[9]; break; default: /* * 32-byte CDB - may contain extended command fields. * * If that is the case, copy the upper byte register values. */ if (cdb[10] & 0x01) { tf->hob_feature = cdb[20]; tf->hob_nsect = cdb[22]; tf->hob_lbal = cdb[16]; tf->hob_lbam = cdb[15]; tf->hob_lbah = cdb[14]; tf->flags |= ATA_TFLAG_LBA48; } else tf->flags &= ~ATA_TFLAG_LBA48; tf->feature = cdb[21]; tf->nsect = cdb[23]; tf->lbal = cdb[19]; tf->lbam = cdb[18]; tf->lbah = cdb[17]; tf->device = cdb[24]; tf->command = cdb[25]; tf->auxiliary = get_unaligned_be32(&cdb[28]); break; } /* For NCQ commands copy the tag value */ if (ata_is_ncq(tf->protocol)) tf->nsect = qc->hw_tag << 3; /* enforce correct master/slave bit */ tf->device = dev->devno ? tf->device | ATA_DEV1 : tf->device & ~ATA_DEV1; switch (tf->command) { /* READ/WRITE LONG use a non-standard sect_size */ case ATA_CMD_READ_LONG: case ATA_CMD_READ_LONG_ONCE: case ATA_CMD_WRITE_LONG: case ATA_CMD_WRITE_LONG_ONCE: if (tf->protocol != ATA_PROT_PIO || tf->nsect != 1) { fp = 1; goto invalid_fld; } qc->sect_size = scsi_bufflen(scmd); break; /* commands using reported Logical Block size (e.g. 512 or 4K) */ case ATA_CMD_CFA_WRITE_NE: case ATA_CMD_CFA_TRANS_SECT: case ATA_CMD_CFA_WRITE_MULT_NE: /* XXX: case ATA_CMD_CFA_WRITE_SECTORS_WITHOUT_ERASE: */ case ATA_CMD_READ: case ATA_CMD_READ_EXT: case ATA_CMD_READ_QUEUED: /* XXX: case ATA_CMD_READ_QUEUED_EXT: */ case ATA_CMD_FPDMA_READ: case ATA_CMD_READ_MULTI: case ATA_CMD_READ_MULTI_EXT: case ATA_CMD_PIO_READ: case ATA_CMD_PIO_READ_EXT: case ATA_CMD_READ_STREAM_DMA_EXT: case ATA_CMD_READ_STREAM_EXT: case ATA_CMD_VERIFY: case ATA_CMD_VERIFY_EXT: case ATA_CMD_WRITE: case ATA_CMD_WRITE_EXT: case ATA_CMD_WRITE_FUA_EXT: case ATA_CMD_WRITE_QUEUED: case ATA_CMD_WRITE_QUEUED_FUA_EXT: case ATA_CMD_FPDMA_WRITE: case ATA_CMD_WRITE_MULTI: case ATA_CMD_WRITE_MULTI_EXT: case ATA_CMD_WRITE_MULTI_FUA_EXT: case ATA_CMD_PIO_WRITE: case ATA_CMD_PIO_WRITE_EXT: case ATA_CMD_WRITE_STREAM_DMA_EXT: case ATA_CMD_WRITE_STREAM_EXT: qc->sect_size = scmd->device->sector_size; break; /* Everything else uses 512 byte "sectors" */ default: qc->sect_size = ATA_SECT_SIZE; } /* * Set flags so that all registers will be written, pass on * write indication (used for PIO/DMA setup), result TF is * copied back and we don't whine too much about its failure. */ tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; if (scmd->sc_data_direction == DMA_TO_DEVICE) tf->flags |= ATA_TFLAG_WRITE; qc->flags |= ATA_QCFLAG_RESULT_TF | ATA_QCFLAG_QUIET; /* * Set transfer length. * * TODO: find out if we need to do more here to * cover scatter/gather case. */ ata_qc_set_pc_nbytes(qc); /* We may not issue DMA commands if no DMA mode is set */ if (tf->protocol == ATA_PROT_DMA && !ata_dma_enabled(dev)) { fp = 1; goto invalid_fld; } /* We may not issue NCQ commands to devices not supporting NCQ */ if (ata_is_ncq(tf->protocol) && !ata_ncq_enabled(dev)) { fp = 1; goto invalid_fld; } /* sanity check for pio multi commands */ if ((cdb[1] & 0xe0) && !is_multi_taskfile(tf)) { fp = 1; goto invalid_fld; } if (is_multi_taskfile(tf)) { unsigned int multi_count = 1 << (cdb[1] >> 5); /* compare the passed through multi_count * with the cached multi_count of libata */ if (multi_count != dev->multi_count) ata_dev_warn(dev, "invalid multi_count %u ignored\n", multi_count); } /* * Filter SET_FEATURES - XFER MODE command -- otherwise, * SET_FEATURES - XFER MODE must be preceded/succeeded * by an update to hardware-specific registers for each * controller (i.e. the reason for ->set_piomode(), * ->set_dmamode(), and ->post_set_mode() hooks). */ if (tf->command == ATA_CMD_SET_FEATURES && tf->feature == SETFEATURES_XFER) { fp = (cdb[0] == ATA_16) ? 4 : 3; goto invalid_fld; } /* * Filter TPM commands by default. These provide an * essentially uncontrolled encrypted "back door" between * applications and the disk. Set libata.allow_tpm=1 if you * have a real reason for wanting to use them. This ensures * that installed software cannot easily mess stuff up without * user intent. DVR type users will probably ship with this enabled * for movie content management. * * Note that for ATA8 we can issue a DCS change and DCS freeze lock * for this and should do in future but that it is not sufficient as * DCS is an optional feature set. Thus we also do the software filter * so that we comply with the TC consortium stated goal that the user * can turn off TC features of their system. */ if (tf->command >= 0x5C && tf->command <= 0x5F && !libata_allow_tpm) { fp = (cdb[0] == ATA_16) ? 14 : 9; goto invalid_fld; } return 0; invalid_fld: ata_scsi_set_invalid_field(dev, scmd, fp, 0xff); return 1; } /** * ata_format_dsm_trim_descr() - SATL Write Same to DSM Trim * @cmd: SCSI command being translated * @trmax: Maximum number of entries that will fit in sector_size bytes. * @sector: Starting sector * @count: Total Range of request in logical sectors * * Rewrite the WRITE SAME descriptor to be a DSM TRIM little-endian formatted * descriptor. * * Upto 64 entries of the format: * 63:48 Range Length * 47:0 LBA * * Range Length of 0 is ignored. * LBA's should be sorted order and not overlap. * * NOTE: this is the same format as ADD LBA(S) TO NV CACHE PINNED SET * * Return: Number of bytes copied into sglist. */ static size_t ata_format_dsm_trim_descr(struct scsi_cmnd *cmd, u32 trmax, u64 sector, u32 count) { struct scsi_device *sdp = cmd->device; size_t len = sdp->sector_size; size_t r; __le64 *buf; u32 i = 0; unsigned long flags; WARN_ON(len > ATA_SCSI_RBUF_SIZE); if (len > ATA_SCSI_RBUF_SIZE) len = ATA_SCSI_RBUF_SIZE; spin_lock_irqsave(&ata_scsi_rbuf_lock, flags); buf = ((void *)ata_scsi_rbuf); memset(buf, 0, len); while (i < trmax) { u64 entry = sector | ((u64)(count > 0xffff ? 0xffff : count) << 48); buf[i++] = __cpu_to_le64(entry); if (count <= 0xffff) break; count -= 0xffff; sector += 0xffff; } r = sg_copy_from_buffer(scsi_sglist(cmd), scsi_sg_count(cmd), buf, len); spin_unlock_irqrestore(&ata_scsi_rbuf_lock, flags); return r; } /** * ata_scsi_write_same_xlat() - SATL Write Same to ATA SCT Write Same * @qc: Command to be translated * * Translate a SCSI WRITE SAME command to be either a DSM TRIM command or * an SCT Write Same command. * Based on WRITE SAME has the UNMAP flag: * * - When set translate to DSM TRIM * - When clear translate to SCT Write Same */ static unsigned int ata_scsi_write_same_xlat(struct ata_queued_cmd *qc) { struct ata_taskfile *tf = &qc->tf; struct scsi_cmnd *scmd = qc->scsicmd; struct scsi_device *sdp = scmd->device; size_t len = sdp->sector_size; struct ata_device *dev = qc->dev; const u8 *cdb = scmd->cmnd; u64 block; u32 n_block; const u32 trmax = len >> 3; u32 size; u16 fp; u8 bp = 0xff; u8 unmap = cdb[1] & 0x8; /* we may not issue DMA commands if no DMA mode is set */ if (unlikely(!ata_dma_enabled(dev))) goto invalid_opcode; /* * We only allow sending this command through the block layer, * as it modifies the DATA OUT buffer, which would corrupt user * memory for SG_IO commands. */ if (unlikely(blk_rq_is_passthrough(scsi_cmd_to_rq(scmd)))) goto invalid_opcode; if (unlikely(scmd->cmd_len < 16)) { fp = 15; goto invalid_fld; } scsi_16_lba_len(cdb, &block, &n_block); if (!unmap || (dev->horkage & ATA_HORKAGE_NOTRIM) || !ata_id_has_trim(dev->id)) { fp = 1; bp = 3; goto invalid_fld; } /* If the request is too large the cmd is invalid */ if (n_block > 0xffff * trmax) { fp = 2; goto invalid_fld; } /* * WRITE SAME always has a sector sized buffer as payload, this * should never be a multiple entry S/G list. */ if (!scsi_sg_count(scmd)) goto invalid_param_len; /* * size must match sector size in bytes * For DATA SET MANAGEMENT TRIM in ACS-2 nsect (aka count) * is defined as number of 512 byte blocks to be transferred. */ size = ata_format_dsm_trim_descr(scmd, trmax, block, n_block); if (size != len) goto invalid_param_len; if (ata_ncq_enabled(dev) && ata_fpdma_dsm_supported(dev)) { /* Newer devices support queued TRIM commands */ tf->protocol = ATA_PROT_NCQ; tf->command = ATA_CMD_FPDMA_SEND; tf->hob_nsect = ATA_SUBCMD_FPDMA_SEND_DSM & 0x1f; tf->nsect = qc->hw_tag << 3; tf->hob_feature = (size / 512) >> 8; tf->feature = size / 512; tf->auxiliary = 1; } else { tf->protocol = ATA_PROT_DMA; tf->hob_feature = 0; tf->feature = ATA_DSM_TRIM; tf->hob_nsect = (size / 512) >> 8; tf->nsect = size / 512; tf->command = ATA_CMD_DSM; } tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_WRITE; ata_qc_set_pc_nbytes(qc); return 0; invalid_fld: ata_scsi_set_invalid_field(dev, scmd, fp, bp); return 1; invalid_param_len: /* "Parameter list length error" */ ata_scsi_set_sense(dev, scmd, ILLEGAL_REQUEST, 0x1a, 0x0); return 1; invalid_opcode: /* "Invalid command operation code" */ ata_scsi_set_sense(dev, scmd, ILLEGAL_REQUEST, 0x20, 0x0); return 1; } /** * ata_scsiop_maint_in - Simulate a subset of MAINTENANCE_IN * @args: device MAINTENANCE_IN data / SCSI command of interest. * @rbuf: Response buffer, to which simulated SCSI cmd output is sent. * * Yields a subset to satisfy scsi_report_opcode() * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsiop_maint_in(struct ata_scsi_args *args, u8 *rbuf) { struct ata_device *dev = args->dev; u8 *cdb = args->cmd->cmnd; u8 supported = 0, cdlp = 0, rwcdlp = 0; unsigned int err = 0; if (cdb[2] != 1 && cdb[2] != 3) { ata_dev_warn(dev, "invalid command format %d\n", cdb[2]); err = 2; goto out; } switch (cdb[3]) { case INQUIRY: case MODE_SENSE: case MODE_SENSE_10: case READ_CAPACITY: case SERVICE_ACTION_IN_16: case REPORT_LUNS: case REQUEST_SENSE: case SYNCHRONIZE_CACHE: case SYNCHRONIZE_CACHE_16: case REZERO_UNIT: case SEEK_6: case SEEK_10: case TEST_UNIT_READY: case SEND_DIAGNOSTIC: case MAINTENANCE_IN: case READ_6: case READ_10: case WRITE_6: case WRITE_10: case ATA_12: case ATA_16: case VERIFY: case VERIFY_16: case MODE_SELECT: case MODE_SELECT_10: case START_STOP: supported = 3; break; case READ_16: supported = 3; if (dev->flags & ATA_DFLAG_CDL) { /* * CDL read descriptors map to the T2A page, that is, * rwcdlp = 0x01 and cdlp = 0x01 */ rwcdlp = 0x01; cdlp = 0x01 << 3; } break; case WRITE_16: supported = 3; if (dev->flags & ATA_DFLAG_CDL) { /* * CDL write descriptors map to the T2B page, that is, * rwcdlp = 0x01 and cdlp = 0x02 */ rwcdlp = 0x01; cdlp = 0x02 << 3; } break; case ZBC_IN: case ZBC_OUT: if (ata_id_zoned_cap(dev->id) || dev->class == ATA_DEV_ZAC) supported = 3; break; case SECURITY_PROTOCOL_IN: case SECURITY_PROTOCOL_OUT: if (dev->flags & ATA_DFLAG_TRUSTED) supported = 3; break; default: break; } out: /* One command format */ rbuf[0] = rwcdlp; rbuf[1] = cdlp | supported; return err; } /** * ata_scsi_report_zones_complete - convert ATA output * @qc: command structure returning the data * * Convert T-13 little-endian field representation into * T-10 big-endian field representation. * What a mess. */ static void ata_scsi_report_zones_complete(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; struct sg_mapping_iter miter; unsigned long flags; unsigned int bytes = 0; sg_miter_start(&miter, scsi_sglist(scmd), scsi_sg_count(scmd), SG_MITER_TO_SG | SG_MITER_ATOMIC); local_irq_save(flags); while (sg_miter_next(&miter)) { unsigned int offset = 0; if (bytes == 0) { char *hdr; u32 list_length; u64 max_lba, opt_lba; u16 same; /* Swizzle header */ hdr = miter.addr; list_length = get_unaligned_le32(&hdr[0]); same = get_unaligned_le16(&hdr[4]); max_lba = get_unaligned_le64(&hdr[8]); opt_lba = get_unaligned_le64(&hdr[16]); put_unaligned_be32(list_length, &hdr[0]); hdr[4] = same & 0xf; put_unaligned_be64(max_lba, &hdr[8]); put_unaligned_be64(opt_lba, &hdr[16]); offset += 64; bytes += 64; } while (offset < miter.length) { char *rec; u8 cond, type, non_seq, reset; u64 size, start, wp; /* Swizzle zone descriptor */ rec = miter.addr + offset; type = rec[0] & 0xf; cond = (rec[1] >> 4) & 0xf; non_seq = (rec[1] & 2); reset = (rec[1] & 1); size = get_unaligned_le64(&rec[8]); start = get_unaligned_le64(&rec[16]); wp = get_unaligned_le64(&rec[24]); rec[0] = type; rec[1] = (cond << 4) | non_seq | reset; put_unaligned_be64(size, &rec[8]); put_unaligned_be64(start, &rec[16]); put_unaligned_be64(wp, &rec[24]); WARN_ON(offset + 64 > miter.length); offset += 64; bytes += 64; } } sg_miter_stop(&miter); local_irq_restore(flags); ata_scsi_qc_complete(qc); } static unsigned int ata_scsi_zbc_in_xlat(struct ata_queued_cmd *qc) { struct ata_taskfile *tf = &qc->tf; struct scsi_cmnd *scmd = qc->scsicmd; const u8 *cdb = scmd->cmnd; u16 sect, fp = (u16)-1; u8 sa, options, bp = 0xff; u64 block; u32 n_block; if (unlikely(scmd->cmd_len < 16)) { ata_dev_warn(qc->dev, "invalid cdb length %d\n", scmd->cmd_len); fp = 15; goto invalid_fld; } scsi_16_lba_len(cdb, &block, &n_block); if (n_block != scsi_bufflen(scmd)) { ata_dev_warn(qc->dev, "non-matching transfer count (%d/%d)\n", n_block, scsi_bufflen(scmd)); goto invalid_param_len; } sa = cdb[1] & 0x1f; if (sa != ZI_REPORT_ZONES) { ata_dev_warn(qc->dev, "invalid service action %d\n", sa); fp = 1; goto invalid_fld; } /* * ZAC allows only for transfers in 512 byte blocks, * and uses a 16 bit value for the transfer count. */ if ((n_block / 512) > 0xffff || n_block < 512 || (n_block % 512)) { ata_dev_warn(qc->dev, "invalid transfer count %d\n", n_block); goto invalid_param_len; } sect = n_block / 512; options = cdb[14] & 0xbf; if (ata_ncq_enabled(qc->dev) && ata_fpdma_zac_mgmt_in_supported(qc->dev)) { tf->protocol = ATA_PROT_NCQ; tf->command = ATA_CMD_FPDMA_RECV; tf->hob_nsect = ATA_SUBCMD_FPDMA_RECV_ZAC_MGMT_IN & 0x1f; tf->nsect = qc->hw_tag << 3; tf->feature = sect & 0xff; tf->hob_feature = (sect >> 8) & 0xff; tf->auxiliary = ATA_SUBCMD_ZAC_MGMT_IN_REPORT_ZONES | (options << 8); } else { tf->command = ATA_CMD_ZAC_MGMT_IN; tf->feature = ATA_SUBCMD_ZAC_MGMT_IN_REPORT_ZONES; tf->protocol = ATA_PROT_DMA; tf->hob_feature = options; tf->hob_nsect = (sect >> 8) & 0xff; tf->nsect = sect & 0xff; } tf->device = ATA_LBA; tf->lbah = (block >> 16) & 0xff; tf->lbam = (block >> 8) & 0xff; tf->lbal = block & 0xff; tf->hob_lbah = (block >> 40) & 0xff; tf->hob_lbam = (block >> 32) & 0xff; tf->hob_lbal = (block >> 24) & 0xff; tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48; qc->flags |= ATA_QCFLAG_RESULT_TF; ata_qc_set_pc_nbytes(qc); qc->complete_fn = ata_scsi_report_zones_complete; return 0; invalid_fld: ata_scsi_set_invalid_field(qc->dev, scmd, fp, bp); return 1; invalid_param_len: /* "Parameter list length error" */ ata_scsi_set_sense(qc->dev, scmd, ILLEGAL_REQUEST, 0x1a, 0x0); return 1; } static unsigned int ata_scsi_zbc_out_xlat(struct ata_queued_cmd *qc) { struct ata_taskfile *tf = &qc->tf; struct scsi_cmnd *scmd = qc->scsicmd; struct ata_device *dev = qc->dev; const u8 *cdb = scmd->cmnd; u8 all, sa; u64 block; u32 n_block; u16 fp = (u16)-1; if (unlikely(scmd->cmd_len < 16)) { fp = 15; goto invalid_fld; } sa = cdb[1] & 0x1f; if ((sa != ZO_CLOSE_ZONE) && (sa != ZO_FINISH_ZONE) && (sa != ZO_OPEN_ZONE) && (sa != ZO_RESET_WRITE_POINTER)) { fp = 1; goto invalid_fld; } scsi_16_lba_len(cdb, &block, &n_block); if (n_block) { /* * ZAC MANAGEMENT OUT doesn't define any length */ goto invalid_param_len; } all = cdb[14] & 0x1; if (all) { /* * Ignore the block address (zone ID) as defined by ZBC. */ block = 0; } else if (block >= dev->n_sectors) { /* * Block must be a valid zone ID (a zone start LBA). */ fp = 2; goto invalid_fld; } if (ata_ncq_enabled(qc->dev) && ata_fpdma_zac_mgmt_out_supported(qc->dev)) { tf->protocol = ATA_PROT_NCQ_NODATA; tf->command = ATA_CMD_NCQ_NON_DATA; tf->feature = ATA_SUBCMD_NCQ_NON_DATA_ZAC_MGMT_OUT; tf->nsect = qc->hw_tag << 3; tf->auxiliary = sa | ((u16)all << 8); } else { tf->protocol = ATA_PROT_NODATA; tf->command = ATA_CMD_ZAC_MGMT_OUT; tf->feature = sa; tf->hob_feature = all; } tf->lbah = (block >> 16) & 0xff; tf->lbam = (block >> 8) & 0xff; tf->lbal = block & 0xff; tf->hob_lbah = (block >> 40) & 0xff; tf->hob_lbam = (block >> 32) & 0xff; tf->hob_lbal = (block >> 24) & 0xff; tf->device = ATA_LBA; tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48; return 0; invalid_fld: ata_scsi_set_invalid_field(qc->dev, scmd, fp, 0xff); return 1; invalid_param_len: /* "Parameter list length error" */ ata_scsi_set_sense(qc->dev, scmd, ILLEGAL_REQUEST, 0x1a, 0x0); return 1; } /** * ata_mselect_caching - Simulate MODE SELECT for caching info page * @qc: Storage for translated ATA taskfile * @buf: input buffer * @len: number of valid bytes in the input buffer * @fp: out parameter for the failed field on error * * Prepare a taskfile to modify caching information for the device. * * LOCKING: * None. */ static int ata_mselect_caching(struct ata_queued_cmd *qc, const u8 *buf, int len, u16 *fp) { struct ata_taskfile *tf = &qc->tf; struct ata_device *dev = qc->dev; u8 mpage[CACHE_MPAGE_LEN]; u8 wce; int i; /* * The first two bytes of def_cache_mpage are a header, so offsets * in mpage are off by 2 compared to buf. Same for len. */ if (len != CACHE_MPAGE_LEN - 2) { *fp = min(len, CACHE_MPAGE_LEN - 2); return -EINVAL; } wce = buf[0] & (1 << 2); /* * Check that read-only bits are not modified. */ ata_msense_caching(dev->id, mpage, false); for (i = 0; i < CACHE_MPAGE_LEN - 2; i++) { if (i == 0) continue; if (mpage[i + 2] != buf[i]) { *fp = i; return -EINVAL; } } tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; tf->protocol = ATA_PROT_NODATA; tf->nsect = 0; tf->command = ATA_CMD_SET_FEATURES; tf->feature = wce ? SETFEATURES_WC_ON : SETFEATURES_WC_OFF; return 0; } /* * Simulate MODE SELECT control mode page, sub-page 0. */ static int ata_mselect_control_spg0(struct ata_queued_cmd *qc, const u8 *buf, int len, u16 *fp) { struct ata_device *dev = qc->dev; u8 mpage[CONTROL_MPAGE_LEN]; u8 d_sense; int i; /* * The first two bytes of def_control_mpage are a header, so offsets * in mpage are off by 2 compared to buf. Same for len. */ if (len != CONTROL_MPAGE_LEN - 2) { *fp = min(len, CONTROL_MPAGE_LEN - 2); return -EINVAL; } d_sense = buf[0] & (1 << 2); /* * Check that read-only bits are not modified. */ ata_msense_control_spg0(dev, mpage, false); for (i = 0; i < CONTROL_MPAGE_LEN - 2; i++) { if (i == 0) continue; if (mpage[2 + i] != buf[i]) { *fp = i; return -EINVAL; } } if (d_sense & (1 << 2)) dev->flags |= ATA_DFLAG_D_SENSE; else dev->flags &= ~ATA_DFLAG_D_SENSE; return 0; } /* * Translate MODE SELECT control mode page, sub-pages f2h (ATA feature mode * page) into a SET FEATURES command. */ static unsigned int ata_mselect_control_ata_feature(struct ata_queued_cmd *qc, const u8 *buf, int len, u16 *fp) { struct ata_device *dev = qc->dev; struct ata_taskfile *tf = &qc->tf; u8 cdl_action; /* * The first four bytes of ATA Feature Control mode page are a header, * so offsets in mpage are off by 4 compared to buf. Same for len. */ if (len != ATA_FEATURE_SUB_MPAGE_LEN - 4) { *fp = min(len, ATA_FEATURE_SUB_MPAGE_LEN - 4); return -EINVAL; } /* Check cdl_ctrl */ switch (buf[0] & 0x03) { case 0: /* Disable CDL */ cdl_action = 0; dev->flags &= ~ATA_DFLAG_CDL_ENABLED; break; case 0x02: /* Enable CDL T2A/T2B: NCQ priority must be disabled */ if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED) { ata_dev_err(dev, "NCQ priority must be disabled to enable CDL\n"); return -EINVAL; } cdl_action = 1; dev->flags |= ATA_DFLAG_CDL_ENABLED; break; default: *fp = 0; return -EINVAL; } tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; tf->protocol = ATA_PROT_NODATA; tf->command = ATA_CMD_SET_FEATURES; tf->feature = SETFEATURES_CDL; tf->nsect = cdl_action; return 1; } /** * ata_mselect_control - Simulate MODE SELECT for control page * @qc: Storage for translated ATA taskfile * @spg: target sub-page of the control page * @buf: input buffer * @len: number of valid bytes in the input buffer * @fp: out parameter for the failed field on error * * Prepare a taskfile to modify caching information for the device. * * LOCKING: * None. */ static int ata_mselect_control(struct ata_queued_cmd *qc, u8 spg, const u8 *buf, int len, u16 *fp) { switch (spg) { case 0: return ata_mselect_control_spg0(qc, buf, len, fp); case ATA_FEATURE_SUB_MPAGE: return ata_mselect_control_ata_feature(qc, buf, len, fp); default: return -EINVAL; } } /** * ata_scsi_mode_select_xlat - Simulate MODE SELECT 6, 10 commands * @qc: Storage for translated ATA taskfile * * Converts a MODE SELECT command to an ATA SET FEATURES taskfile. * Assume this is invoked for direct access devices (e.g. disks) only. * There should be no block descriptor for other device types. * * LOCKING: * spin_lock_irqsave(host lock) */ static unsigned int ata_scsi_mode_select_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; const u8 *cdb = scmd->cmnd; u8 pg, spg; unsigned six_byte, pg_len, hdr_len, bd_len; int len, ret; u16 fp = (u16)-1; u8 bp = 0xff; u8 buffer[64]; const u8 *p = buffer; six_byte = (cdb[0] == MODE_SELECT); if (six_byte) { if (scmd->cmd_len < 5) { fp = 4; goto invalid_fld; } len = cdb[4]; hdr_len = 4; } else { if (scmd->cmd_len < 9) { fp = 8; goto invalid_fld; } len = get_unaligned_be16(&cdb[7]); hdr_len = 8; } /* We only support PF=1, SP=0. */ if ((cdb[1] & 0x11) != 0x10) { fp = 1; bp = (cdb[1] & 0x01) ? 1 : 5; goto invalid_fld; } /* Test early for possible overrun. */ if (!scsi_sg_count(scmd) || scsi_sglist(scmd)->length < len) goto invalid_param_len; /* Move past header and block descriptors. */ if (len < hdr_len) goto invalid_param_len; if (!sg_copy_to_buffer(scsi_sglist(scmd), scsi_sg_count(scmd), buffer, sizeof(buffer))) goto invalid_param_len; if (six_byte) bd_len = p[3]; else bd_len = get_unaligned_be16(&p[6]); len -= hdr_len; p += hdr_len; if (len < bd_len) goto invalid_param_len; if (bd_len != 0 && bd_len != 8) { fp = (six_byte) ? 3 : 6; fp += bd_len + hdr_len; goto invalid_param; } len -= bd_len; p += bd_len; if (len == 0) goto skip; /* Parse both possible formats for the mode page headers. */ pg = p[0] & 0x3f; if (p[0] & 0x40) { if (len < 4) goto invalid_param_len; spg = p[1]; pg_len = get_unaligned_be16(&p[2]); p += 4; len -= 4; } else { if (len < 2) goto invalid_param_len; spg = 0; pg_len = p[1]; p += 2; len -= 2; } /* * Supported subpages: all subpages and ATA feature sub-page f2h of * the control page. */ if (spg) { switch (spg) { case ALL_SUB_MPAGES: /* All subpages is not supported for the control page */ if (pg == CONTROL_MPAGE) { fp = (p[0] & 0x40) ? 1 : 0; fp += hdr_len + bd_len; goto invalid_param; } break; case ATA_FEATURE_SUB_MPAGE: if (qc->dev->flags & ATA_DFLAG_CDL && pg == CONTROL_MPAGE) break; fallthrough; default: fp = (p[0] & 0x40) ? 1 : 0; fp += hdr_len + bd_len; goto invalid_param; } } if (pg_len > len) goto invalid_param_len; switch (pg) { case CACHE_MPAGE: if (ata_mselect_caching(qc, p, pg_len, &fp) < 0) { fp += hdr_len + bd_len; goto invalid_param; } break; case CONTROL_MPAGE: ret = ata_mselect_control(qc, spg, p, pg_len, &fp); if (ret < 0) { fp += hdr_len + bd_len; goto invalid_param; } if (!ret) goto skip; /* No ATA command to send */ break; default: /* Invalid page code */ fp = bd_len + hdr_len; goto invalid_param; } /* * Only one page has changeable data, so we only support setting one * page at a time. */ if (len > pg_len) goto invalid_param; return 0; invalid_fld: ata_scsi_set_invalid_field(qc->dev, scmd, fp, bp); return 1; invalid_param: ata_scsi_set_invalid_parameter(qc->dev, scmd, fp); return 1; invalid_param_len: /* "Parameter list length error" */ ata_scsi_set_sense(qc->dev, scmd, ILLEGAL_REQUEST, 0x1a, 0x0); return 1; skip: scmd->result = SAM_STAT_GOOD; return 1; } static u8 ata_scsi_trusted_op(u32 len, bool send, bool dma) { if (len == 0) return ATA_CMD_TRUSTED_NONDATA; else if (send) return dma ? ATA_CMD_TRUSTED_SND_DMA : ATA_CMD_TRUSTED_SND; else return dma ? ATA_CMD_TRUSTED_RCV_DMA : ATA_CMD_TRUSTED_RCV; } static unsigned int ata_scsi_security_inout_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; const u8 *cdb = scmd->cmnd; struct ata_taskfile *tf = &qc->tf; u8 secp = cdb[1]; bool send = (cdb[0] == SECURITY_PROTOCOL_OUT); u16 spsp = get_unaligned_be16(&cdb[2]); u32 len = get_unaligned_be32(&cdb[6]); bool dma = !(qc->dev->flags & ATA_DFLAG_PIO); /* * We don't support the ATA "security" protocol. */ if (secp == 0xef) { ata_scsi_set_invalid_field(qc->dev, scmd, 1, 0); return 1; } if (cdb[4] & 7) { /* INC_512 */ if (len > 0xffff) { ata_scsi_set_invalid_field(qc->dev, scmd, 6, 0); return 1; } } else { if (len > 0x01fffe00) { ata_scsi_set_invalid_field(qc->dev, scmd, 6, 0); return 1; } /* convert to the sector-based ATA addressing */ len = (len + 511) / 512; } tf->protocol = dma ? ATA_PROT_DMA : ATA_PROT_PIO; tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR | ATA_TFLAG_LBA; if (send) tf->flags |= ATA_TFLAG_WRITE; tf->command = ata_scsi_trusted_op(len, send, dma); tf->feature = secp; tf->lbam = spsp & 0xff; tf->lbah = spsp >> 8; if (len) { tf->nsect = len & 0xff; tf->lbal = len >> 8; } else { if (!send) tf->lbah = (1 << 7); } ata_qc_set_pc_nbytes(qc); return 0; } /** * ata_scsi_var_len_cdb_xlat - SATL variable length CDB to Handler * @qc: Command to be translated * * Translate a SCSI variable length CDB to specified commands. * It checks a service action value in CDB to call corresponding handler. * * RETURNS: * Zero on success, non-zero on failure * */ static unsigned int ata_scsi_var_len_cdb_xlat(struct ata_queued_cmd *qc) { struct scsi_cmnd *scmd = qc->scsicmd; const u8 *cdb = scmd->cmnd; const u16 sa = get_unaligned_be16(&cdb[8]); /* * if service action represents a ata pass-thru(32) command, * then pass it to ata_scsi_pass_thru handler. */ if (sa == ATA_32) return ata_scsi_pass_thru(qc); /* unsupported service action */ return 1; } /** * ata_get_xlat_func - check if SCSI to ATA translation is possible * @dev: ATA device * @cmd: SCSI command opcode to consider * * Look up the SCSI command given, and determine whether the * SCSI command is to be translated or simulated. * * RETURNS: * Pointer to translation function if possible, %NULL if not. */ static inline ata_xlat_func_t ata_get_xlat_func(struct ata_device *dev, u8 cmd) { switch (cmd) { case READ_6: case READ_10: case READ_16: case WRITE_6: case WRITE_10: case WRITE_16: return ata_scsi_rw_xlat; case WRITE_SAME_16: return ata_scsi_write_same_xlat; case SYNCHRONIZE_CACHE: case SYNCHRONIZE_CACHE_16: if (ata_try_flush_cache(dev)) return ata_scsi_flush_xlat; break; case VERIFY: case VERIFY_16: return ata_scsi_verify_xlat; case ATA_12: case ATA_16: return ata_scsi_pass_thru; case VARIABLE_LENGTH_CMD: return ata_scsi_var_len_cdb_xlat; case MODE_SELECT: case MODE_SELECT_10: return ata_scsi_mode_select_xlat; case ZBC_IN: return ata_scsi_zbc_in_xlat; case ZBC_OUT: return ata_scsi_zbc_out_xlat; case SECURITY_PROTOCOL_IN: case SECURITY_PROTOCOL_OUT: if (!(dev->flags & ATA_DFLAG_TRUSTED)) break; return ata_scsi_security_inout_xlat; case START_STOP: return ata_scsi_start_stop_xlat; } return NULL; } int __ata_scsi_queuecmd(struct scsi_cmnd *scmd, struct ata_device *dev) { struct ata_port *ap = dev->link->ap; u8 scsi_op = scmd->cmnd[0]; ata_xlat_func_t xlat_func; /* * scsi_queue_rq() will defer commands if scsi_host_in_recovery(). * However, this check is done without holding the ap->lock (a libata * specific lock), so we can have received an error irq since then, * therefore we must check if EH is pending, while holding ap->lock. */ if (ap->pflags & (ATA_PFLAG_EH_PENDING | ATA_PFLAG_EH_IN_PROGRESS)) return SCSI_MLQUEUE_DEVICE_BUSY; if (unlikely(!scmd->cmd_len)) goto bad_cdb_len; if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { if (unlikely(scmd->cmd_len > dev->cdb_len)) goto bad_cdb_len; xlat_func = ata_get_xlat_func(dev, scsi_op); } else if (likely((scsi_op != ATA_16) || !atapi_passthru16)) { /* relay SCSI command to ATAPI device */ int len = COMMAND_SIZE(scsi_op); if (unlikely(len > scmd->cmd_len || len > dev->cdb_len || scmd->cmd_len > ATAPI_CDB_LEN)) goto bad_cdb_len; xlat_func = atapi_xlat; } else { /* ATA_16 passthru, treat as an ATA command */ if (unlikely(scmd->cmd_len > 16)) goto bad_cdb_len; xlat_func = ata_get_xlat_func(dev, scsi_op); } if (xlat_func) return ata_scsi_translate(dev, scmd, xlat_func); ata_scsi_simulate(dev, scmd); return 0; bad_cdb_len: scmd->result = DID_ERROR << 16; scsi_done(scmd); return 0; } /** * ata_scsi_queuecmd - Issue SCSI cdb to libata-managed device * @shost: SCSI host of command to be sent * @cmd: SCSI command to be sent * * In some cases, this function translates SCSI commands into * ATA taskfiles, and queues the taskfiles to be sent to * hardware. In other cases, this function simulates a * SCSI device by evaluating and responding to certain * SCSI commands. This creates the overall effect of * ATA and ATAPI devices appearing as SCSI devices. * * LOCKING: * ATA host lock * * RETURNS: * Return value from __ata_scsi_queuecmd() if @cmd can be queued, * 0 otherwise. */ int ata_scsi_queuecmd(struct Scsi_Host *shost, struct scsi_cmnd *cmd) { struct ata_port *ap; struct ata_device *dev; struct scsi_device *scsidev = cmd->device; int rc = 0; unsigned long irq_flags; ap = ata_shost_to_port(shost); spin_lock_irqsave(ap->lock, irq_flags); dev = ata_scsi_find_dev(ap, scsidev); if (likely(dev)) rc = __ata_scsi_queuecmd(cmd, dev); else { cmd->result = (DID_BAD_TARGET << 16); scsi_done(cmd); } spin_unlock_irqrestore(ap->lock, irq_flags); return rc; } EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); /** * ata_scsi_simulate - simulate SCSI command on ATA device * @dev: the target device * @cmd: SCSI command being sent to device. * * Interprets and directly executes a select list of SCSI commands * that can be handled internally. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_scsi_simulate(struct ata_device *dev, struct scsi_cmnd *cmd) { struct ata_scsi_args args; const u8 *scsicmd = cmd->cmnd; u8 tmp8; args.dev = dev; args.id = dev->id; args.cmd = cmd; switch(scsicmd[0]) { case INQUIRY: if (scsicmd[1] & 2) /* is CmdDt set? */ ata_scsi_set_invalid_field(dev, cmd, 1, 0xff); else if ((scsicmd[1] & 1) == 0) /* is EVPD clear? */ ata_scsi_rbuf_fill(&args, ata_scsiop_inq_std); else switch (scsicmd[2]) { case 0x00: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_00); break; case 0x80: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_80); break; case 0x83: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_83); break; case 0x89: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_89); break; case 0xb0: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_b0); break; case 0xb1: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_b1); break; case 0xb2: ata_scsi_rbuf_fill(&args, ata_scsiop_inq_b2); break; case 0xb6: if (dev->flags & ATA_DFLAG_ZAC) ata_scsi_rbuf_fill(&args, ata_scsiop_inq_b6); else ata_scsi_set_invalid_field(dev, cmd, 2, 0xff); break; case 0xb9: if (dev->cpr_log) ata_scsi_rbuf_fill(&args, ata_scsiop_inq_b9); else ata_scsi_set_invalid_field(dev, cmd, 2, 0xff); break; default: ata_scsi_set_invalid_field(dev, cmd, 2, 0xff); break; } break; case MODE_SENSE: case MODE_SENSE_10: ata_scsi_rbuf_fill(&args, ata_scsiop_mode_sense); break; case READ_CAPACITY: ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap); break; case SERVICE_ACTION_IN_16: if ((scsicmd[1] & 0x1f) == SAI_READ_CAPACITY_16) ata_scsi_rbuf_fill(&args, ata_scsiop_read_cap); else ata_scsi_set_invalid_field(dev, cmd, 1, 0xff); break; case REPORT_LUNS: ata_scsi_rbuf_fill(&args, ata_scsiop_report_luns); break; case REQUEST_SENSE: ata_scsi_set_sense(dev, cmd, 0, 0, 0); break; /* if we reach this, then writeback caching is disabled, * turning this into a no-op. */ case SYNCHRONIZE_CACHE: case SYNCHRONIZE_CACHE_16: fallthrough; /* no-op's, complete with success */ case REZERO_UNIT: case SEEK_6: case SEEK_10: case TEST_UNIT_READY: break; case SEND_DIAGNOSTIC: tmp8 = scsicmd[1] & ~(1 << 3); if (tmp8 != 0x4 || scsicmd[3] || scsicmd[4]) ata_scsi_set_invalid_field(dev, cmd, 1, 0xff); break; case MAINTENANCE_IN: if ((scsicmd[1] & 0x1f) == MI_REPORT_SUPPORTED_OPERATION_CODES) ata_scsi_rbuf_fill(&args, ata_scsiop_maint_in); else ata_scsi_set_invalid_field(dev, cmd, 1, 0xff); break; /* all other commands */ default: ata_scsi_set_sense(dev, cmd, ILLEGAL_REQUEST, 0x20, 0x0); /* "Invalid command operation code" */ break; } scsi_done(cmd); } int ata_scsi_add_hosts(struct ata_host *host, const struct scsi_host_template *sht) { int i, rc; for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; struct Scsi_Host *shost; rc = -ENOMEM; shost = scsi_host_alloc(sht, sizeof(struct ata_port *)); if (!shost) goto err_alloc; shost->eh_noresume = 1; *(struct ata_port **)&shost->hostdata[0] = ap; ap->scsi_host = shost; shost->transportt = ata_scsi_transport_template; shost->unique_id = ap->print_id; shost->max_id = 16; shost->max_lun = 1; shost->max_channel = 1; shost->max_cmd_len = 32; /* Schedule policy is determined by ->qc_defer() * callback and it needs to see every deferred qc. * Set host_blocked to 1 to prevent SCSI midlayer from * automatically deferring requests. */ shost->max_host_blocked = 1; rc = scsi_add_host_with_dma(shost, &ap->tdev, ap->host->dev); if (rc) goto err_alloc; } return 0; err_alloc: while (--i >= 0) { struct Scsi_Host *shost = host->ports[i]->scsi_host; /* scsi_host_put() is in ata_devres_release() */ scsi_remove_host(shost); } return rc; } #ifdef CONFIG_OF static void ata_scsi_assign_ofnode(struct ata_device *dev, struct ata_port *ap) { struct scsi_device *sdev = dev->sdev; struct device *d = ap->host->dev; struct device_node *np = d->of_node; struct device_node *child; for_each_available_child_of_node(np, child) { int ret; u32 val; ret = of_property_read_u32(child, "reg", &val); if (ret) continue; if (val == dev->devno) { dev_dbg(d, "found matching device node\n"); sdev->sdev_gendev.of_node = child; return; } } } #else static void ata_scsi_assign_ofnode(struct ata_device *dev, struct ata_port *ap) { } #endif void ata_scsi_scan_host(struct ata_port *ap, int sync) { int tries = 5; struct ata_device *last_failed_dev = NULL; struct ata_link *link; struct ata_device *dev; repeat: ata_for_each_link(link, ap, EDGE) { ata_for_each_dev(dev, link, ENABLED) { struct scsi_device *sdev; int channel = 0, id = 0; if (dev->sdev) continue; if (ata_is_host_link(link)) id = dev->devno; else channel = link->pmp; sdev = __scsi_add_device(ap->scsi_host, channel, id, 0, NULL); if (!IS_ERR(sdev)) { dev->sdev = sdev; ata_scsi_assign_ofnode(dev, ap); scsi_device_put(sdev); } else { dev->sdev = NULL; } } } /* If we scanned while EH was in progress or allocation * failure occurred, scan would have failed silently. Check * whether all devices are attached. */ ata_for_each_link(link, ap, EDGE) { ata_for_each_dev(dev, link, ENABLED) { if (!dev->sdev) goto exit_loop; } } exit_loop: if (!link) return; /* we're missing some SCSI devices */ if (sync) { /* If caller requested synchrnous scan && we've made * any progress, sleep briefly and repeat. */ if (dev != last_failed_dev) { msleep(100); last_failed_dev = dev; goto repeat; } /* We might be failing to detect boot device, give it * a few more chances. */ if (--tries) { msleep(100); goto repeat; } ata_port_err(ap, "WARNING: synchronous SCSI scan failed without making any progress, switching to async\n"); } queue_delayed_work(system_long_wq, &ap->hotplug_task, round_jiffies_relative(HZ)); } /** * ata_scsi_offline_dev - offline attached SCSI device * @dev: ATA device to offline attached SCSI device for * * This function is called from ata_eh_hotplug() and responsible * for taking the SCSI device attached to @dev offline. This * function is called with host lock which protects dev->sdev * against clearing. * * LOCKING: * spin_lock_irqsave(host lock) * * RETURNS: * 1 if attached SCSI device exists, 0 otherwise. */ int ata_scsi_offline_dev(struct ata_device *dev) { if (dev->sdev) { scsi_device_set_state(dev->sdev, SDEV_OFFLINE); return 1; } return 0; } /** * ata_scsi_remove_dev - remove attached SCSI device * @dev: ATA device to remove attached SCSI device for * * This function is called from ata_eh_scsi_hotplug() and * responsible for removing the SCSI device attached to @dev. * * LOCKING: * Kernel thread context (may sleep). */ static void ata_scsi_remove_dev(struct ata_device *dev) { struct ata_port *ap = dev->link->ap; struct scsi_device *sdev; unsigned long flags; /* Alas, we need to grab scan_mutex to ensure SCSI device * state doesn't change underneath us and thus * scsi_device_get() always succeeds. The mutex locking can * be removed if there is __scsi_device_get() interface which * increments reference counts regardless of device state. */ mutex_lock(&ap->scsi_host->scan_mutex); spin_lock_irqsave(ap->lock, flags); /* clearing dev->sdev is protected by host lock */ sdev = dev->sdev; dev->sdev = NULL; if (sdev) { /* If user initiated unplug races with us, sdev can go * away underneath us after the host lock and * scan_mutex are released. Hold onto it. */ if (scsi_device_get(sdev) == 0) { /* The following ensures the attached sdev is * offline on return from ata_scsi_offline_dev() * regardless it wins or loses the race * against this function. */ scsi_device_set_state(sdev, SDEV_OFFLINE); } else { WARN_ON(1); sdev = NULL; } } spin_unlock_irqrestore(ap->lock, flags); mutex_unlock(&ap->scsi_host->scan_mutex); if (sdev) { ata_dev_info(dev, "detaching (SCSI %s)\n", dev_name(&sdev->sdev_gendev)); scsi_remove_device(sdev); scsi_device_put(sdev); } } static void ata_scsi_handle_link_detach(struct ata_link *link) { struct ata_port *ap = link->ap; struct ata_device *dev; ata_for_each_dev(dev, link, ALL) { unsigned long flags; if (!(dev->flags & ATA_DFLAG_DETACHED)) continue; spin_lock_irqsave(ap->lock, flags); dev->flags &= ~ATA_DFLAG_DETACHED; spin_unlock_irqrestore(ap->lock, flags); if (zpodd_dev_enabled(dev)) zpodd_exit(dev); ata_scsi_remove_dev(dev); } } /** * ata_scsi_media_change_notify - send media change event * @dev: Pointer to the disk device with media change event * * Tell the block layer to send a media change notification * event. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_scsi_media_change_notify(struct ata_device *dev) { if (dev->sdev) sdev_evt_send_simple(dev->sdev, SDEV_EVT_MEDIA_CHANGE, GFP_ATOMIC); } /** * ata_scsi_hotplug - SCSI part of hotplug * @work: Pointer to ATA port to perform SCSI hotplug on * * Perform SCSI part of hotplug. It's executed from a separate * workqueue after EH completes. This is necessary because SCSI * hot plugging requires working EH and hot unplugging is * synchronized with hot plugging with a mutex. * * LOCKING: * Kernel thread context (may sleep). */ void ata_scsi_hotplug(struct work_struct *work) { struct ata_port *ap = container_of(work, struct ata_port, hotplug_task.work); int i; if (ap->pflags & ATA_PFLAG_UNLOADING) return; mutex_lock(&ap->scsi_scan_mutex); /* Unplug detached devices. We cannot use link iterator here * because PMP links have to be scanned even if PMP is * currently not attached. Iterate manually. */ ata_scsi_handle_link_detach(&ap->link); if (ap->pmp_link) for (i = 0; i < SATA_PMP_MAX_PORTS; i++) ata_scsi_handle_link_detach(&ap->pmp_link[i]); /* scan for new ones */ ata_scsi_scan_host(ap, 0); mutex_unlock(&ap->scsi_scan_mutex); } /** * ata_scsi_user_scan - indication for user-initiated bus scan * @shost: SCSI host to scan * @channel: Channel to scan * @id: ID to scan * @lun: LUN to scan * * This function is called when user explicitly requests bus * scan. Set probe pending flag and invoke EH. * * LOCKING: * SCSI layer (we don't care) * * RETURNS: * Zero. */ int ata_scsi_user_scan(struct Scsi_Host *shost, unsigned int channel, unsigned int id, u64 lun) { struct ata_port *ap = ata_shost_to_port(shost); unsigned long flags; int devno, rc = 0; if (lun != SCAN_WILD_CARD && lun) return -EINVAL; if (!sata_pmp_attached(ap)) { if (channel != SCAN_WILD_CARD && channel) return -EINVAL; devno = id; } else { if (id != SCAN_WILD_CARD && id) return -EINVAL; devno = channel; } spin_lock_irqsave(ap->lock, flags); if (devno == SCAN_WILD_CARD) { struct ata_link *link; ata_for_each_link(link, ap, EDGE) { struct ata_eh_info *ehi = &link->eh_info; ehi->probe_mask |= ATA_ALL_DEVICES; ehi->action |= ATA_EH_RESET; } } else { struct ata_device *dev = ata_find_dev(ap, devno); if (dev) { struct ata_eh_info *ehi = &dev->link->eh_info; ehi->probe_mask |= 1 << dev->devno; ehi->action |= ATA_EH_RESET; } else rc = -EINVAL; } if (rc == 0) { ata_port_schedule_eh(ap); spin_unlock_irqrestore(ap->lock, flags); ata_port_wait_eh(ap); } else spin_unlock_irqrestore(ap->lock, flags); return rc; } /** * ata_scsi_dev_rescan - initiate scsi_rescan_device() * @work: Pointer to ATA port to perform scsi_rescan_device() * * After ATA pass thru (SAT) commands are executed successfully, * libata need to propagate the changes to SCSI layer. * * LOCKING: * Kernel thread context (may sleep). */ void ata_scsi_dev_rescan(struct work_struct *work) { struct ata_port *ap = container_of(work, struct ata_port, scsi_rescan_task.work); struct ata_link *link; struct ata_device *dev; unsigned long flags; bool do_resume; int ret = 0; mutex_lock(&ap->scsi_scan_mutex); spin_lock_irqsave(ap->lock, flags); ata_for_each_link(link, ap, EDGE) { ata_for_each_dev(dev, link, ENABLED) { struct scsi_device *sdev = dev->sdev; /* * If the port was suspended before this was scheduled, * bail out. */ if (ap->pflags & ATA_PFLAG_SUSPENDED) goto unlock_ap; if (!sdev) continue; if (scsi_device_get(sdev)) continue; do_resume = dev->flags & ATA_DFLAG_RESUMING; spin_unlock_irqrestore(ap->lock, flags); if (do_resume) { ret = scsi_resume_device(sdev); if (ret == -EWOULDBLOCK) goto unlock_scan; dev->flags &= ~ATA_DFLAG_RESUMING; } ret = scsi_rescan_device(sdev); scsi_device_put(sdev); spin_lock_irqsave(ap->lock, flags); if (ret) goto unlock_ap; } } unlock_ap: spin_unlock_irqrestore(ap->lock, flags); unlock_scan: mutex_unlock(&ap->scsi_scan_mutex); /* Reschedule with a delay if scsi_rescan_device() returned an error */ if (ret) schedule_delayed_work(&ap->scsi_rescan_task, msecs_to_jiffies(5)); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1