Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Langsdorf, Mark | 2222 | 73.48% | 6 | 17.14% |
Anton Vorontsov | 515 | 17.03% | 3 | 8.57% |
Brian Norris | 131 | 4.33% | 2 | 5.71% |
Linus Walleij | 42 | 1.39% | 1 | 2.86% |
Rob Herring | 40 | 1.32% | 3 | 8.57% |
Jassi Brar | 23 | 0.76% | 1 | 2.86% |
Sergey Shtylyov | 14 | 0.46% | 4 | 11.43% |
Robert Richter | 7 | 0.23% | 2 | 5.71% |
Dan Carpenter | 6 | 0.20% | 1 | 2.86% |
Geert Uytterhoeven | 4 | 0.13% | 1 | 2.86% |
Hans de Goede | 3 | 0.10% | 1 | 2.86% |
Richard Zhu | 3 | 0.10% | 1 | 2.86% |
Evan Wang | 3 | 0.10% | 1 | 2.86% |
Tejun Heo | 3 | 0.10% | 1 | 2.86% |
Thomas Gleixner | 2 | 0.07% | 1 | 2.86% |
Yuanhan Liu | 1 | 0.03% | 1 | 2.86% |
Uwe Kleine-König | 1 | 0.03% | 1 | 2.86% |
Sergei Shtylyov | 1 | 0.03% | 1 | 2.86% |
Jingoo Han | 1 | 0.03% | 1 | 2.86% |
Alexander Gordeev | 1 | 0.03% | 1 | 2.86% |
Bart Van Assche | 1 | 0.03% | 1 | 2.86% |
Total | 3024 | 35 |
// SPDX-License-Identifier: GPL-2.0-only /* * Calxeda Highbank AHCI SATA platform driver * Copyright 2012 Calxeda, Inc. * * based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov */ #include <linux/kernel.h> #include <linux/gfp.h> #include <linux/module.h> #include <linux/types.h> #include <linux/err.h> #include <linux/io.h> #include <linux/spinlock.h> #include <linux/device.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/libata.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/export.h> #include <linux/gpio/consumer.h> #include "ahci.h" #define CPHY_MAP(dev, addr) ((((dev) & 0x1f) << 7) | (((addr) >> 9) & 0x7f)) #define CPHY_ADDR(addr) (((addr) & 0x1ff) << 2) #define SERDES_CR_CTL 0x80a0 #define SERDES_CR_ADDR 0x80a1 #define SERDES_CR_DATA 0x80a2 #define CR_BUSY 0x0001 #define CR_START 0x0001 #define CR_WR_RDN 0x0002 #define CPHY_TX_INPUT_STS 0x2001 #define CPHY_RX_INPUT_STS 0x2002 #define CPHY_SATA_TX_OVERRIDE 0x8000 #define CPHY_SATA_RX_OVERRIDE 0x4000 #define CPHY_TX_OVERRIDE 0x2004 #define CPHY_RX_OVERRIDE 0x2005 #define SPHY_LANE 0x100 #define SPHY_HALF_RATE 0x0001 #define CPHY_SATA_DPLL_MODE 0x0700 #define CPHY_SATA_DPLL_SHIFT 8 #define CPHY_SATA_DPLL_RESET (1 << 11) #define CPHY_SATA_TX_ATTEN 0x1c00 #define CPHY_SATA_TX_ATTEN_SHIFT 10 #define CPHY_PHY_COUNT 6 #define CPHY_LANE_COUNT 4 #define CPHY_PORT_COUNT (CPHY_PHY_COUNT * CPHY_LANE_COUNT) static DEFINE_SPINLOCK(cphy_lock); /* Each of the 6 phys can have up to 4 sata ports attached to i. Map 0-based * sata ports to their phys and then to their lanes within the phys */ struct phy_lane_info { void __iomem *phy_base; u8 lane_mapping; u8 phy_devs; u8 tx_atten; }; static struct phy_lane_info port_data[CPHY_PORT_COUNT]; static DEFINE_SPINLOCK(sgpio_lock); #define SCLOCK 0 #define SLOAD 1 #define SDATA 2 #define SGPIO_PINS 3 #define SGPIO_PORTS 8 struct ecx_plat_data { u32 n_ports; /* number of extra clocks that the SGPIO PIC controller expects */ u32 pre_clocks; u32 post_clocks; struct gpio_desc *sgpio_gpiod[SGPIO_PINS]; u32 sgpio_pattern; u32 port_to_sgpio[SGPIO_PORTS]; }; #define SGPIO_SIGNALS 3 #define ECX_ACTIVITY_BITS 0x300000 #define ECX_ACTIVITY_SHIFT 0 #define ECX_LOCATE_BITS 0x80000 #define ECX_LOCATE_SHIFT 1 #define ECX_FAULT_BITS 0x400000 #define ECX_FAULT_SHIFT 2 static inline int sgpio_bit_shift(struct ecx_plat_data *pdata, u32 port, u32 shift) { return 1 << (3 * pdata->port_to_sgpio[port] + shift); } static void ecx_parse_sgpio(struct ecx_plat_data *pdata, u32 port, u32 state) { if (state & ECX_ACTIVITY_BITS) pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, ECX_ACTIVITY_SHIFT); else pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, ECX_ACTIVITY_SHIFT); if (state & ECX_LOCATE_BITS) pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, ECX_LOCATE_SHIFT); else pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, ECX_LOCATE_SHIFT); if (state & ECX_FAULT_BITS) pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port, ECX_FAULT_SHIFT); else pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port, ECX_FAULT_SHIFT); } /* * Tell the LED controller that the signal has changed by raising the clock * line for 50 uS and then lowering it for 50 uS. */ static void ecx_led_cycle_clock(struct ecx_plat_data *pdata) { gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 1); udelay(50); gpiod_set_value(pdata->sgpio_gpiod[SCLOCK], 0); udelay(50); } static ssize_t ecx_transmit_led_message(struct ata_port *ap, u32 state, ssize_t size) { struct ahci_host_priv *hpriv = ap->host->private_data; struct ecx_plat_data *pdata = hpriv->plat_data; struct ahci_port_priv *pp = ap->private_data; unsigned long flags; int pmp, i; struct ahci_em_priv *emp; u32 sgpio_out; /* get the slot number from the message */ pmp = (state & EM_MSG_LED_PMP_SLOT) >> 8; if (pmp < EM_MAX_SLOTS) emp = &pp->em_priv[pmp]; else return -EINVAL; if (!(hpriv->em_msg_type & EM_MSG_TYPE_LED)) return size; spin_lock_irqsave(&sgpio_lock, flags); ecx_parse_sgpio(pdata, ap->port_no, state); sgpio_out = pdata->sgpio_pattern; for (i = 0; i < pdata->pre_clocks; i++) ecx_led_cycle_clock(pdata); gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 1); ecx_led_cycle_clock(pdata); gpiod_set_value(pdata->sgpio_gpiod[SLOAD], 0); /* * bit-bang out the SGPIO pattern, by consuming a bit and then * clocking it out. */ for (i = 0; i < (SGPIO_SIGNALS * pdata->n_ports); i++) { gpiod_set_value(pdata->sgpio_gpiod[SDATA], sgpio_out & 1); sgpio_out >>= 1; ecx_led_cycle_clock(pdata); } for (i = 0; i < pdata->post_clocks; i++) ecx_led_cycle_clock(pdata); /* save off new led state for port/slot */ emp->led_state = state; spin_unlock_irqrestore(&sgpio_lock, flags); return size; } static void highbank_set_em_messages(struct device *dev, struct ahci_host_priv *hpriv, struct ata_port_info *pi) { struct device_node *np = dev->of_node; struct ecx_plat_data *pdata = hpriv->plat_data; int i; for (i = 0; i < SGPIO_PINS; i++) { struct gpio_desc *gpiod; gpiod = devm_gpiod_get_index(dev, "calxeda,sgpio", i, GPIOD_OUT_HIGH); if (IS_ERR(gpiod)) { dev_err(dev, "failed to get GPIO %d\n", i); continue; } gpiod_set_consumer_name(gpiod, "CX SGPIO"); pdata->sgpio_gpiod[i] = gpiod; } of_property_read_u32_array(np, "calxeda,led-order", pdata->port_to_sgpio, pdata->n_ports); if (of_property_read_u32(np, "calxeda,pre-clocks", &pdata->pre_clocks)) pdata->pre_clocks = 0; if (of_property_read_u32(np, "calxeda,post-clocks", &pdata->post_clocks)) pdata->post_clocks = 0; /* store em_loc */ hpriv->em_loc = 0; hpriv->em_buf_sz = 4; hpriv->em_msg_type = EM_MSG_TYPE_LED; pi->flags |= ATA_FLAG_EM | ATA_FLAG_SW_ACTIVITY; } static u32 __combo_phy_reg_read(u8 sata_port, u32 addr) { u32 data; u8 dev = port_data[sata_port].phy_devs; spin_lock(&cphy_lock); writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800); data = readl(port_data[sata_port].phy_base + CPHY_ADDR(addr)); spin_unlock(&cphy_lock); return data; } static void __combo_phy_reg_write(u8 sata_port, u32 addr, u32 data) { u8 dev = port_data[sata_port].phy_devs; spin_lock(&cphy_lock); writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800); writel(data, port_data[sata_port].phy_base + CPHY_ADDR(addr)); spin_unlock(&cphy_lock); } static void combo_phy_wait_for_ready(u8 sata_port) { while (__combo_phy_reg_read(sata_port, SERDES_CR_CTL) & CR_BUSY) udelay(5); } static u32 combo_phy_read(u8 sata_port, u32 addr) { combo_phy_wait_for_ready(sata_port); __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr); __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_START); combo_phy_wait_for_ready(sata_port); return __combo_phy_reg_read(sata_port, SERDES_CR_DATA); } static void combo_phy_write(u8 sata_port, u32 addr, u32 data) { combo_phy_wait_for_ready(sata_port); __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr); __combo_phy_reg_write(sata_port, SERDES_CR_DATA, data); __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_WR_RDN | CR_START); } static void highbank_cphy_disable_overrides(u8 sata_port) { u8 lane = port_data[sata_port].lane_mapping; u32 tmp; if (unlikely(port_data[sata_port].phy_base == NULL)) return; tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE); tmp &= ~CPHY_SATA_RX_OVERRIDE; combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); } static void cphy_override_tx_attenuation(u8 sata_port, u32 val) { u8 lane = port_data[sata_port].lane_mapping; u32 tmp; if (val & 0x8) return; tmp = combo_phy_read(sata_port, CPHY_TX_INPUT_STS + lane * SPHY_LANE); tmp &= ~CPHY_SATA_TX_OVERRIDE; combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); tmp |= CPHY_SATA_TX_OVERRIDE; combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); tmp |= (val << CPHY_SATA_TX_ATTEN_SHIFT) & CPHY_SATA_TX_ATTEN; combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp); } static void cphy_override_rx_mode(u8 sata_port, u32 val) { u8 lane = port_data[sata_port].lane_mapping; u32 tmp; tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE); tmp &= ~CPHY_SATA_RX_OVERRIDE; combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); tmp |= CPHY_SATA_RX_OVERRIDE; combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); tmp &= ~CPHY_SATA_DPLL_MODE; tmp |= val << CPHY_SATA_DPLL_SHIFT; combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); tmp |= CPHY_SATA_DPLL_RESET; combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); tmp &= ~CPHY_SATA_DPLL_RESET; combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp); msleep(15); } static void highbank_cphy_override_lane(u8 sata_port) { u8 lane = port_data[sata_port].lane_mapping; u32 tmp, k = 0; if (unlikely(port_data[sata_port].phy_base == NULL)) return; do { tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE); } while ((tmp & SPHY_HALF_RATE) && (k++ < 1000)); cphy_override_rx_mode(sata_port, 3); cphy_override_tx_attenuation(sata_port, port_data[sata_port].tx_atten); } static int highbank_initialize_phys(struct device *dev, void __iomem *addr) { struct device_node *sata_node = dev->of_node; int phy_count = 0, phy, port = 0, i; void __iomem *cphy_base[CPHY_PHY_COUNT] = {}; struct device_node *phy_nodes[CPHY_PHY_COUNT] = {}; u32 tx_atten[CPHY_PORT_COUNT] = {}; memset(port_data, 0, sizeof(struct phy_lane_info) * CPHY_PORT_COUNT); do { u32 tmp; struct of_phandle_args phy_data; if (of_parse_phandle_with_args(sata_node, "calxeda,port-phys", "#phy-cells", port, &phy_data)) break; for (phy = 0; phy < phy_count; phy++) { if (phy_nodes[phy] == phy_data.np) break; } if (phy_nodes[phy] == NULL) { phy_nodes[phy] = phy_data.np; cphy_base[phy] = of_iomap(phy_nodes[phy], 0); if (cphy_base[phy] == NULL) { return 0; } phy_count += 1; } port_data[port].lane_mapping = phy_data.args[0]; of_property_read_u32(phy_nodes[phy], "phydev", &tmp); port_data[port].phy_devs = tmp; port_data[port].phy_base = cphy_base[phy]; of_node_put(phy_data.np); port += 1; } while (port < CPHY_PORT_COUNT); of_property_read_u32_array(sata_node, "calxeda,tx-atten", tx_atten, port); for (i = 0; i < port; i++) port_data[i].tx_atten = (u8) tx_atten[i]; return 0; } /* * The Calxeda SATA phy intermittently fails to bring up a link with Gen3 * Retrying the phy hard reset can work around the issue, but the drive * may fail again. In less than 150 out of 15000 test runs, it took more * than 10 tries for the link to be established (but never more than 35). * Triple the maximum observed retry count to provide plenty of margin for * rare events and to guarantee that the link is established. * * Also, the default 2 second time-out on a failed drive is too long in * this situation. The uboot implementation of the same driver function * uses a much shorter time-out period and never experiences a time out * issue. Reducing the time-out to 500ms improves the responsiveness. * The other timing constants were kept the same as the stock AHCI driver. * This change was also tested 15000 times on 24 drives and none of them * experienced a time out. */ static int ahci_highbank_hardreset(struct ata_link *link, unsigned int *class, unsigned long deadline) { static const unsigned int timing[] = { 5, 100, 500}; struct ata_port *ap = link->ap; struct ahci_port_priv *pp = ap->private_data; struct ahci_host_priv *hpriv = ap->host->private_data; u8 *d2h_fis = pp->rx_fis + RX_FIS_D2H_REG; struct ata_taskfile tf; bool online; u32 sstatus; int rc; int retry = 100; hpriv->stop_engine(ap); /* clear D2H reception area to properly wait for D2H FIS */ ata_tf_init(link->device, &tf); tf.status = ATA_BUSY; ata_tf_to_fis(&tf, 0, 0, d2h_fis); do { highbank_cphy_disable_overrides(link->ap->port_no); rc = sata_link_hardreset(link, timing, deadline, &online, NULL); highbank_cphy_override_lane(link->ap->port_no); /* If the status is 1, we are connected, but the link did not * come up. So retry resetting the link again. */ if (sata_scr_read(link, SCR_STATUS, &sstatus)) break; if (!(sstatus & 0x3)) break; } while (!online && retry--); hpriv->start_engine(ap); if (online) *class = ahci_dev_classify(ap); return rc; } static struct ata_port_operations ahci_highbank_ops = { .inherits = &ahci_ops, .hardreset = ahci_highbank_hardreset, .transmit_led_message = ecx_transmit_led_message, }; static const struct ata_port_info ahci_highbank_port_info = { .flags = AHCI_FLAG_COMMON, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &ahci_highbank_ops, }; static const struct scsi_host_template ahci_highbank_platform_sht = { AHCI_SHT("sata_highbank"), }; static const struct of_device_id ahci_of_match[] = { { .compatible = "calxeda,hb-ahci" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, ahci_of_match); static int ahci_highbank_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ahci_host_priv *hpriv; struct ecx_plat_data *pdata; struct ata_host *host; struct resource *mem; int irq; int i; int rc; u32 n_ports; struct ata_port_info pi = ahci_highbank_port_info; const struct ata_port_info *ppi[] = { &pi, NULL }; mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) { dev_err(dev, "no mmio space\n"); return -EINVAL; } irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; if (!irq) return -EINVAL; hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL); if (!hpriv) { dev_err(dev, "can't alloc ahci_host_priv\n"); return -ENOMEM; } pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { dev_err(dev, "can't alloc ecx_plat_data\n"); return -ENOMEM; } hpriv->irq = irq; hpriv->flags |= (unsigned long)pi.private_data; hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem)); if (!hpriv->mmio) { dev_err(dev, "can't map %pR\n", mem); return -ENOMEM; } rc = highbank_initialize_phys(dev, hpriv->mmio); if (rc) return rc; ahci_save_initial_config(dev, hpriv); /* prepare host */ if (hpriv->cap & HOST_CAP_NCQ) pi.flags |= ATA_FLAG_NCQ; if (hpriv->cap & HOST_CAP_PMP) pi.flags |= ATA_FLAG_PMP; if (hpriv->cap & HOST_CAP_64) dma_set_coherent_mask(dev, DMA_BIT_MASK(64)); /* CAP.NP sometimes indicate the index of the last enabled * port, at other times, that of the last possible port, so * determining the maximum port number requires looking at * both CAP.NP and port_map. */ n_ports = max(ahci_nr_ports(hpriv->cap), fls(hpriv->port_map)); pdata->n_ports = n_ports; hpriv->plat_data = pdata; highbank_set_em_messages(dev, hpriv, &pi); host = ata_host_alloc_pinfo(dev, ppi, n_ports); if (!host) { rc = -ENOMEM; goto err0; } host->private_data = hpriv; if (!(hpriv->cap & HOST_CAP_SSS) || ahci_ignore_sss) host->flags |= ATA_HOST_PARALLEL_SCAN; for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; ata_port_desc(ap, "mmio %pR", mem); ata_port_desc(ap, "port 0x%x", 0x100 + ap->port_no * 0x80); /* set enclosure management message type */ if (ap->flags & ATA_FLAG_EM) ap->em_message_type = hpriv->em_msg_type; /* disabled/not-implemented port */ if (!(hpriv->port_map & (1 << i))) ap->ops = &ata_dummy_port_ops; } rc = ahci_reset_controller(host); if (rc) goto err0; ahci_init_controller(host); ahci_print_info(host, "platform"); rc = ahci_host_activate(host, &ahci_highbank_platform_sht); if (rc) goto err0; return 0; err0: return rc; } #ifdef CONFIG_PM_SLEEP static int ahci_highbank_suspend(struct device *dev) { struct ata_host *host = dev_get_drvdata(dev); struct ahci_host_priv *hpriv = host->private_data; void __iomem *mmio = hpriv->mmio; u32 ctl; if (hpriv->flags & AHCI_HFLAG_NO_SUSPEND) { dev_err(dev, "firmware update required for suspend/resume\n"); return -EIO; } /* * AHCI spec rev1.1 section 8.3.3: * Software must disable interrupts prior to requesting a * transition of the HBA to D3 state. */ ctl = readl(mmio + HOST_CTL); ctl &= ~HOST_IRQ_EN; writel(ctl, mmio + HOST_CTL); readl(mmio + HOST_CTL); /* flush */ ata_host_suspend(host, PMSG_SUSPEND); return 0; } static int ahci_highbank_resume(struct device *dev) { struct ata_host *host = dev_get_drvdata(dev); int rc; if (dev->power.power_state.event == PM_EVENT_SUSPEND) { rc = ahci_reset_controller(host); if (rc) return rc; ahci_init_controller(host); } ata_host_resume(host); return 0; } #endif static SIMPLE_DEV_PM_OPS(ahci_highbank_pm_ops, ahci_highbank_suspend, ahci_highbank_resume); static struct platform_driver ahci_highbank_driver = { .remove_new = ata_platform_remove_one, .driver = { .name = "highbank-ahci", .of_match_table = ahci_of_match, .pm = &ahci_highbank_pm_ops, }, .probe = ahci_highbank_probe, }; module_platform_driver(ahci_highbank_driver); MODULE_DESCRIPTION("Calxeda Highbank AHCI SATA platform driver"); MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@calxeda.com>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("sata:highbank");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1